Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Naval Daver, MD

Director, Leukemia Research Alliance Program Associate Professor Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, Texas

Commercial Support

This activity is supported by educational grants from Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, and Servier Pharmaceuticals LLC.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, Daiichi Sankyo Inc, Eisai Inc, Epizyme Inc, Exact Sciences Inc, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Natera Inc, Novartis, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Daver — Disclosures

Advisory Committee	AbbVie Inc, Agios Pharmaceuticals Inc, Amgen Inc, Arog Pharmaceuticals Inc, Astellas, Bristol-Myers Squibb Company, Celgene Corporation, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, ImmunoGen Inc, Jazz Pharmaceuticals Inc, Novartis, Pfizer Inc, Servier Pharmaceuticals LLC, Shattuck Labs, Syndax Pharmaceuticals Inc, Trillium Therapeutics Inc
Contracted Research	AbbVie Inc, Amgen Inc, Astellas, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Fate Therapeutics, Genentech, a member of the Roche Group, Gilead Sciences Inc, GlycoMimetics Inc, Hanmi Pharmaceutical, ImmunoGen Inc, NovImmune SA, Pfizer Inc, Servier Pharmaceuticals LLC, Trillium Therapeutics Inc, Trovagene

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY WITH DR NEIL LOVE

Chronic Myeloid Leukemia

DR MICHAEL MAURO MEMORIAL SLOAN KETTERING CANCER CENTER

Dr Michael Mauro – Chronic Myeloid Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Wednesday, December 15, 2021 5:00 PM – 6:00 PM ET

> Faculty Brian T Hill, MD, PhD

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with ER-Positive Breast Cancer

Thursday, December 16, 2021 5:00 PM – 6:00 PM ET

> Faculty Ruth O'Regan, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology Follicular Lymphoma Tuesday, January 4, 2022 5:00 PM – 6:00 PM ET

> **Faculty** Laurie H Sehn, MD, MPH Additional faculty to be announced.

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology Breast Cancer

> Thursday, January 6, 2022 5:00 PM – 6:00 PM ET

Faculty Harold J Burstein, MD, PhD Additional faculty to be announced.

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Colorectal Cancer (Part 1 of a 3-Part Series)

> Wednesday, January 19, 2022 10:15 PM – 11:45 PM ET

Faculty Alan P Venook, MD Additional faculty to be announced.

> Moderator *To be announced.*

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Gastroesophageal Cancers (Part 2 of a 3-Part Series)

> Thursday, January 20, 2022 9:15 PM – 10:45 PM ET

Faculty Yelena Y Janjigian, MD Eric Van Cutsem, MD, PhD Additional faculty to be announced.

> Moderator Samuel J Klempner, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Hepatobiliary Cancers (Part 3 of a 3-Part Series)

> Friday, January 21, 2022 9:15 PM – 10:45 PM ET

Faculty

Ghassan Abou-Alfa, MD, MBA Richard S Finn, MD Robin K Kelley, MD

> Moderator Tanios Bekaii-Saab, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Naval Daver, MD

Director, Leukemia Research Alliance Program Associate Professor Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, Texas

Meet The Professor Program Participating Faculty

Naval Daver, MD

Director, Leukemia Research Alliance Program Associate Professor Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, Texas

Daniel A Pollyea, MD, MS

Associate Professor of Medicine Clinical Director of Leukemia Services Robert H Allen, MD Chair in Hematology Research Division of Hematology University of Colorado School of Medicine Aurora, Colorado

Amir Fathi, MD Director, Leukemia Program Massachusetts General Hospital Associate Professor of Medicine Harvard Medical School Boston, Massachusetts

Rebecca L Olin, MD, MSCE Associate Professor of Medicine Division of Hematology/Oncology Department of Medicine University of California, San Francisco San Francisco, California

Keith W Pratz, MD Director of Leukemia Program Hospital of the University of Pennsylvania Associate Professor of Medicine University of Pennsylvania Philadelphia, Pennsylvania

Meet The Professor Program Participating Faculty

Eytan M Stein, MD

Assistant Attending Physician Director, Program for Drug Development in Leukemia Leukemia Service, Department of Medicine Memorial Sloan Kettering Cancer Center New York, New York

Andrew H Wei, MBBS, PhD Professor, Department of Haematology Alfred Hospital Monash University Walter and Eliza Hall Institute of Medical Research Melbourne, Australia

Wendy Stock, MD

Anjuli Seth Nayak Professor of Leukemia Research University of Chicago Medicine and Comprehensive Cancer Center Chicago, Illinois

Moderator Neil Love, MD Research To Practice Miami, Florida

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Wednesday, December 15, 2021 5:00 PM – 6:00 PM ET

> Faculty Brian T Hill, MD, PhD

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with ER-Positive Breast Cancer

Thursday, December 16, 2021 5:00 PM – 6:00 PM ET

> Faculty Ruth O'Regan, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology Follicular Lymphoma Tuesday, January 4, 2022 5:00 PM – 6:00 PM ET

> Faculty Laurie H Sehn, MD, MPH Additional faculty to be announced

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology Breast Cancer

> Thursday, January 6, 2022 5:00 PM – 6:00 PM ET

Faculty Harold J Burstein, MD, PhD Additional faculty to be announced

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Colorectal Cancer (Part 1 of a 3-Part Series)

> Wednesday, January 19, 2022 10:15 PM – 11:45 PM ET

Faculty Alan P Venook, MD Additional faculty to be announced

> Moderator To be announced

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Gastroesophageal Cancers (Part 2 of a 3-Part Series)

> Thursday, January 20, 2022 9:15 PM – 10:45 PM ET

Faculty Yelena Y Janjigian, MD Eric Van Cutsem, MD, PhD Additional faculty to be announced

> Moderator Samuel J Klempner, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Hepatobiliary Cancers (Part 3 of a 3-Part Series)

> Friday, January 21, 2022 9:15 PM – 10:45 PM ET

Faculty

Ghassan Abou-Alfa, MD, MBA Richard S Finn, MD Robin K Kelley, MD

> Moderator Tanios Bekaii-Saab, MD

Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Naval Daver, MD

Director, Leukemia Research Alliance Program Associate Professor Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, Texas

Ranju Gupta, MD LVPG Hematology Oncology Associates Lehigh Valley Health Network Bethlehem, Pennsylvania

Erik J Rupard, MD Drexel University College of Medicine West Reading, Pennsylvania

Shaachi Gupta, MD, MPH Florida Cancer Specialists and Research Institute Lake Worth, Florida

Prashant Sharma, MD Intermountain Healthcare Salt Lake City, Utah

Rebecca L Olin, MD, MSCE University of California, San Francisco San Francisco, California

Do you generally admit to the hospital all patients with AML who are receiving venetoclax in combination with a hypomethylating agent (HMA)?

Agenda

Module 1: Introduction

Module 2: Case Presentations

- Dr S Gupta: A 78-year-old man with AML and a TP53 mutation
- Dr Olin: A 40-year-old woman with relapsed AML
- Dr Sharma: A 33-year-old woman with therapy-related core binding factor (CBF) AML
- Dr Rupard: A 71-year-old man with AML and an IDH2 mutation
- Dr Sharma: A 67-year-old woman with AML and a FLT3-ITD mutation
- Dr R Gupta: A 78-year-old man with AML and an IDH2 mutation

Module 3: ASH 2021 Review

Module 4: Faculty Survey

Module 5: Journal Club with Dr Daver

Module 6: Appendix

Agenda

Module 1: Introduction

Module 2: Case Presentations

- Dr S Gupta: A 78-year-old man with AML and a TP53 mutation
- Dr Olin: A 40-year-old woman with relapsed AML
- Dr Sharma: A 33-year-old woman with therapy-related core binding factor (CBF) AML
- Dr Rupard: A 71-year-old man with AML and an IDH2 mutation
- Dr Sharma: A 67-year-old woman with AML and a FLT3-ITD mutation
- Dr R Gupta: A 78-year-old man with AML and an IDH2 mutation

Module 3: ASH 2021 Review

Module 4: Faculty Survey

Module 5: Journal Club with Dr Daver

Module 6: Appendix

Lancet Haematol 2021;8:e922-33

Review

CrossMar

Harnessing the benefits of available targeted therapies in acute myeloid leukaemia

Hagop Kantarjian, Nicholas J Short, Courtney DiNardo, Eytan M Stein, Naval Daver, Alexander E Perl, Eunice S Wang, Andrew Wei, Martin Tallman

Quizartinib Added to Chemotherapy Demonstrates Superior Overall Survival Compared to Chemotherapy Alone for Adult Patients with Newly Diagnosed FLT3-ITD Positive AML Press Release: November 18, 2021

"Positive topline results [were announced] from the global pivotal QuANTUM-First phase 3 trial evaluating quizartinib, a highly potent and selective FLT3 inhibitor, in patients with newly diagnosed *FLT3*-ITD positive acute myeloid leukemia (AML).

QuANTUM-First met its primary endpoint, demonstrating that patients who received quizartinib in combination with standard induction and consolidation chemotherapy and then continued with single agent quizartinib had a statistically significant and clinically meaningful improvement in overall survival (OS) compared to those who received standard treatment alone. The safety of quizartinib was shown to be manageable and consistent with the known safety profile."

https://www.businesswire.com/news/home/20211118006328/en/Quizartinib-Added-to-Chemotherapy-Demonstrates-Superior-Overall-Survival-Compared-to-Chemotherapy-Alone-in-Adult-Patients-with-Newly-Diagnosed-FLT3-ITD-Positive-AML

Agenda

Module 1: Introduction

Module 2: Case Presentations

- Dr S Gupta: A 78-year-old man with AML and a TP53 mutation
- Dr Olin: A 40-year-old woman with relapsed AML
- Dr Sharma: A 33-year-old woman with therapy-related core binding factor (CBF) AML
- Dr Rupard: A 71-year-old man with AML and an IDH2 mutation
- Dr Sharma: A 67-year-old woman with AML and a FLT3-ITD mutation
- Dr R Gupta: A 78-year-old man with AML and an IDH2 mutation

Module 3: ASH 2021 Review

Module 4: Faculty Survey

Module 5: Journal Club with Dr Daver

Module 6: Appendix

Case Presentation – Dr Gupta: A 78-year-old man with AML and a TP53 mutation

- WBC borderline: 3.5, low hemoglobin, macrocytosis
- BMB: 60% blasts
- FISH and NGS: Complex cytogenetics, including TP53 mutation
- Decitabine/venetoclax 200 mg/d
- BMB on C1, d22: 10%
- Fluconazole

Questions

- Even though he is not receiving the full dose of venetoclax, should I further dose reduce when starting fluconazole?
- Should I have waited until day 28 to repeat the bone marrow biopsy?
- How do you approach treatment for patients with TP53 mutations, knowing that they may not respond for very long?

Dr Shaachi Gupta

Case Presentation – Dr Olin: A 40-year-old woman with relapsed AML

Dr Rebecca Olin

- 2017: Diagnosed with AML and t(6;11) without actionable mutations
- 7 + 3 \rightarrow Consolidation HiDAC x 4
- Late 2020: Increasing pancytopenia
- BMB: Relapsed AML and t(6;11)
- Molecular genetics: NRAS, PTPN11, KRAS, WT1 mutations

Case Presentation – Dr Olin: A 40-year-old woman with relapsed AML (continued)

- 2017: Diagnosed with AML and t(6;11) without actionable mutations
- 7 + 3 \rightarrow Consolidation HiDAC x 4
- Late 2020: Increasing pancytopenia
- BMB: Relapsed AML and t(6;11)
- Molecular genetics: NRAS, PTPN11, KRAS, WT1 mutations
- FLAG-IDA + venetoclax, with CR → Allogeneic SCT

Questions

- What are your thoughts about the FLAG-IDA/venetoclax regimen?
- Are you using this regimen more often or waiting for more data to emerge?

Dr Rebecca Olin

Case Presentation – Dr Sharma: A 33-year-old woman with therapy-related core binding factor (CBF) AML

- PMH: Right breast IDC, s/p lumpectomy, SLNB, adjuvant TC → ACT, RT, tamoxifen in 2019
- 4/2020: Presented with a "boil" on left axilla
- CBC: WBC 17,000, ANC 900, Hgb 6.5, Plts 55,000
- BMB: CBF t-AML, with 28% blasts, INV16, NRAS-positive, JAK2 mutation
- Thrombocytopenia, transfusion dependent
- 7 + 3 due to refractory thrombocytopenia, with morphological CR \rightarrow Consolidation HiDAC
 - Gemtuzumab ozogamicin (GO) not added due to thrombocytopenia
- Due to complications, she was not transplant eligible \rightarrow Continue HiDAC consolidation x 2 \rightarrow CC-486

Questions

• What is the best approach to treatment in a younger patient with CBF AML, particularly therapyrelated AML?

Dr Prashant Sharma

Case Presentation – Dr Rupard: A 71-year-old man with AML and an IDH2 mutation

Dr Erik Rupard

- Presents with fatigue, weakness and WBC 40,000
- BMB: 90% cellular, with 30% blasts
- Cytogenetics and FISH: WNL
- NGS: IDH2 mutation, RUNX1, SRSF2 and ASXL1 mutations
- Liposomal daunorubicin/cytarabine, with CR in 2 months, but relapses 8 months later
- Enasidenib, with a durable partial response

Questions

- What has been your experience with liposomal daunorubicin/cytarabine?
- Is this typical for AML to relapse in 8 months?
- What is the role of targeted agents, such as enasidenib, in treating these patients?

Case Presentation – Dr Sharma: A 67-year-old woman with AML and a FLT3-ITD mutation

- Presents with fatigue, pancytopenia
- AML, FLT3-ITD mutation

Dr Prashant Sharma

- 7 + 3 + midostaurin → Consolidation HiDAC + midostaurin c/b severe cytopenias, sepsis, FTT, CMV viremia
- Patient declines further chemotherapy and transplant
- EOT BMB: NED, with negative flow
- Gilteritinib 120 mg/d \rightarrow Cytopenias \rightarrow Dose reduced to 80 mg/d x 7 months
- BMB: Relapse
- Azacitidine/venetoclax, with CR

Question

- Would you have treated the patient differently?
- What is your opinion on gilteritinib in combination with induction chemotherapy for patients with FLT3-positive ITD mutation? How would you manage these patients post-transplant? Would you use gilteritinib?

Case Presentation – Dr Gupta: A 78-year-old man with AML and an IDH2 mutation

- PMH: Rectal cancer
- Newly diagnosed with AML (ECOG PS 1)
- Azacitidine/venetoclax
- Molecular testing: IDH2 mutation

Questions

- Would you continue azacitidine/venetoclax and only consider IDH2 inhibitors at relapse?
- Are there guidelines for IDH inhibitor-related differentiation syndrome? What happens if the patient continues to have differentiation syndrome despite maximal supportive care?

Dr Ranju Gupta

Agenda

Module 1: Introduction

Module 2: Case Presentations

- Dr S Gupta: A 78-year-old man with AML and a TP53 mutation
- Dr Olin: A 40-year-old woman with relapsed AML
- Dr Sharma: A 33-year-old woman with therapy-related core binding factor (CBF) AML
- Dr Rupard: A 71-year-old man with AML and an IDH2 mutation
- Dr Sharma: A 67-year-old woman with AML and a FLT3-ITD mutation
- Dr R Gupta: A 78-year-old man with AML and an IDH2 mutation

Module 3: ASH 2021 Review

Module 4: Faculty Survey

Module 5: Journal Club with Dr Daver

Module 6: Appendix

- Venugopal S et al. NPM1 Mutations Do Not Retain a Favorable Prognostic Impact in Adults with Advanced Relapsed or Refractory (R/R) Acute Myeloid Leukemia (AML). ASH 2021;Abstract 2287.
- Schaefer-Eckart K et al. Immediate Allogeneic Hematopietic Stem Cell Transplantation for Patients with NPM1-Mutated AML in Molecular Relapse. ASH 2021;Abstract 2288.
- Vachhani P et al. Real World Treatment Patterns and Outcomes of Venetoclax (Ven) and Hypomethylating Agents (HMA) in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) in the United States. ASH 2021;Abstract 2290.

- Lachowiez C et al. Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed Acute Myeloid Leukemia. ASH 2021; Abstract 701.
- Maiti A et al. Phase II Trial of Ten-Day Decitabine with Venetoclax (DEC10-VEN) in Acute Myeloid Leukemia: Updated Outcomes in Genomic Subgroups. ASH 2021; Abstract 694.
- Daver N et al. Phase I/II Study of Azacitidine (AZA) with Venetoclax (VEN) and Magrolimab (Magro) in Patients (pts) with Newly Diagnosed Older/Unfit or High-Risk Acute Myeloid Leukemia (AML) and Relapsed/Refractory (R/R) AML. ASH 2021; Abstract 371.
- Bazinet A et al. A Phase II Study of 5-Azacytidine (AZA) and Venetoclax as Maintenance Therapy in Patients with Acute Myeloid Leukemia (AML) in Remission. ASH 2021;Abstract 2326.

- Kim K et al. A Phase II Study of CPX-351 plus Venetoclax in Patients with Relapsed/Refractory (R/R) or Newly Diagnosed Acute Myeloid Leukemia (AML). ASH 2021;Abstract 1275.
- Chen S et al. Venetoclax plus Decitabine for Young Adults with Newly Diagnosed ELN Adverse-Risk Acute Myeloid Leukemia: Interim Analysis of a Prospective, Multicenter, Single-Arm, Phase 2 Trial. ASH 2021;Abstract 35.
- Pollyea DA et al. Outcomes in Patients with Poor-Risk Cytogenetics with or without TP53 Mutations Treated with Venetoclax Combined with Hypomethylating Agents. ASH 2021;Abstract 224.

- Reville PK et al. Phase II Study of Venetoclax Added to Cladribine (CLAD) and Low Dose AraC (LDAC) Alternating with 5-Azacytidine (AZA) in Older and Unfit Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). ASH 2021; Abstract 367.
- Chen S et al. Venetoclax plus Decitabine for Young Adults with Newly Diagnosed ELN Adverse-Risk Acute Myeloid Leukemia: Interim Analysis of a Prospective, Multicenter, Single-Arm, Phase 2 Trial. ASH 2021;Abstract 35.
- Pollyea DA et al. Outcomes in Patients with Poor-Risk Cytogenetics with or without TP53 Mutations Treated with Venetoclax Combined with Hypomethylating Agents. ASH 2021;Abstract 224.

- Borate U et al. Comparative Outcomes and Molecular Response Predictors of IDH1/2-Mutated Adult Acute Myeloid Leukemia (AML) Patients (Pts) After Frontline Treatment with Intensive Induction Chemotherapy (IC), Targeted Inhibitors, or Hypomethylating Agents (HMA) (Alliance). ASH 2021; Abstract 226.
- Patel P et al. Ivosidenib (IVO) in Combination with Azacitidine (AZA) in Newly Diagnosed (ND) Older Patients with IDH1 R132-Mutated Acute Myeloid Leukemia (AML) Induces High Response Rates: A Phase 2 Sub-Study of the Beat AML Master Trial. ASH 2021;Abstract 875.

- Yilmaz M et al. Quizartinib (Quiz) with Decitabine (DAC) and Venetoclax (VEN) Is Highly Active in Patients (pts) with FLT3-ITD Mutated Acute Myeloid Leukemia (AML) – RAS/MAPK Mutations Continue to Drive Primary and Secondary Resistance. ASH 2021;Abstract 370.
- Daver N et al. Venetoclax in Combination with Gilteritinib Demonstrates Molecular Clearance of FLT3 Mutation in Relapsed/Refractory FLT3-Mutated Acute Myeloid Leukemia. ASH 2021;Abstract 691.
- Yilmaz M et al. Hypomethylating Agent (HMA) Therapy and Venetoclax (VEN) with FLT3 Inhibitor "Triplet" Therapy Is Highly Active in Older/Unfit Patients with FLT3 Mutated AML. ASH 2021;Abstract 798.

 Rivera D et al. Liposomal Cytarabine and Daunorubicin (CPX-351) in Combination with Gemtuzumab Ozogamicin (GO) in Relapsed Refractory (R/R) Acute Myeloid Leukemia (AML) and Post-Hypomethylating Agent (Post-HMA) Failure High-Risk Myelodysplastic Syndrome (HR-MDS). ASH 2021; Abstract 2323.

Agenda

Module 1: Introduction

Module 2: Case Presentations

- Dr S Gupta: A 78-year-old man with AML and a TP53 mutation
- Dr Olin: A 40-year-old woman with relapsed AML
- Dr Sharma: A 33-year-old woman with therapy-related core binding factor (CBF) AML
- Dr Rupard: A 71-year-old man with AML and an IDH2 mutation
- Dr Sharma: A 67-year-old woman with AML and a FLT3-ITD mutation
- Dr R Gupta: A 78-year-old man with AML and an IDH2 mutation

Module 3: ASH 2021 Review

Module 4: Faculty Survey

Module 5: Journal Club with Dr Daver

Module 6: Appendix

In what clinical situations, if any, do you recommend HMA/ venetoclax for a patient with AML who is <u>eligible</u> for intensive chemotherapy (eg, adverse cytogenetics)?

HMA = hypomethylating agent; tAML = treatment-related AML

A 65-year-old patient with intermediate-risk AML, no actionable mutations, PS 0, receives 7 + 3 induction therapy, achieves a complete remission after 2 cycles and then receives 2 cycles of high-dose cytarabine consolidation but declines transplant. Would you offer this patient maintenance therapy?

Dr Daver	Yes, azacitidine + venetoclax or CC-486	Dr Pratz	Yes, CC-486
Dr Fathi	Yes, CC-486	Dr Stein	Yes, CC-486
Dr Olin	Yes, CC-486	Dr Stock	Yes, CC-486
Dr Pollyea	Yes, CC-486	Prof Wei	Yes, CC-486

Have you administered or would you administer CC-486 (oral azacitidine) as maintenance therapy to a patient who has undergone stem cell transplant?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is eligible for intensive</u> <u>chemotherapy</u> who presents with AML and a <u>FLT3-ITD mutation</u>?

CLIA = trial regimen, cladribine, high-dose cytarabine and idarubicin

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not eligible for intensive</u> <u>chemotherapy</u> who presents with AML and a <u>FLT3-ITD mutation</u>?

HMA: azacitidine or decitabine

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is eligible for intensive</u> <u>chemotherapy</u> who presents with AML and an <u>IDH1 mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not eligible for intensive</u> <u>chemotherapy</u> who presents with AML and an <u>IDH1 mutation</u>?

HMA: azacitidine or decitabine

Agenda

Module 1: Introduction

Module 2: Case Presentations

- Dr S Gupta: A 78-year-old man with AML and a TP53 mutation
- Dr Olin: A 40-year-old woman with relapsed AML
- Dr Sharma: A 33-year-old woman with therapy-related core binding factor (CBF) AML
- Dr Rupard: A 71-year-old man with AML and an IDH2 mutation
- Dr Sharma: A 67-year-old woman with AML and a FLT3-ITD mutation
- Dr R Gupta: A 78-year-old man with AML and an IDH2 mutation

Module 3: ASH 2021 Review

Module 4: Faculty Survey

Module 5: Journal Club with Dr Daver

Module 6: Appendix

- Alwash Y et al. Development of TP53 mutations over the course of therapy for acute myeloid leukemia. Am J Hematol 2021;96(11):1420-28.
- Kim K et al. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. *Cancer* 2021;127(20):3772-81.
- Venugopal S et al. Outcomes in patients with newly diagnosed TP53-mutated acute myeloid leukemia with or without venetoclax-based therapy. *Cancer* 2021;127(19):3541-51.

Maiti A et al. Ten-day decitabine with venetoclax versus intensive chemotherapy in relapsed or refractory acute myeloid leukemia: A propensity score-matched analysis. *Cancer* 2021; 127(22):4213-20.

Sasaki K et al. Prediction of early (4-week) mortality in acute myeloid leukemia with intensive chemotherapy. *Am J Hematol* 2021;[Online ahead of print].

- Lachowiez CA et al. A phase Ib/II study of ivosidenib with venetoclax +/- azacitidine in IDH1-mutated myeloid malignancies. ASCO 2021;Abstract 7012.
- Venugopal S et al. Phase II study of the IDH2-inhibitor enasidenib in patients with high-risk IDH2-mutated myelodysplastic syndromes (MDS). ASCO 2021; Abstract 7010.
- Yilmaz M et al. Quizartinib with decitabine and venetoclax (triplet) is highly active in patients with FLT3-ITD mutated acute myeloid leukemia (AML). ASCO 2021; Abstract e19019.

- Abou Dalle I et al. Phase II study of single-agent nivolumab in patients with myelofibrosis. Ann Hematol 2021;100(12):2957-60.
- Abbas HA et al. Single-cell polyfunctional proteomics of CD4 cells from patients with AML predicts responses to anti-PD-1-based therapy. *Blood Adv* 2021;5(22):4569-74.

- Tambaro FP et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia 2021;35(11):3282-6.
- Tanaka T et al. Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. *Blood* 2021;138(18):1733-9.

Agenda

Module 1: Introduction

Module 2: Case Presentations

- Dr S Gupta: A 78-year-old man with AML and a TP53 mutation
- Dr Olin: A 40-year-old woman with relapsed AML
- Dr Sharma: A 33-year-old woman with therapy-related core binding factor (CBF) AML
- Dr Rupard: A 71-year-old man with AML and an IDH2 mutation
- Dr Sharma: A 67-year-old woman with AML and a FLT3-ITD mutation
- Dr R Gupta: A 78-year-old man with AML and an IDH2 mutation

Module 3: ASH 2021 Review

Module 4: Faculty Survey

Module 5: Journal Club with Dr Daver

Regulatory and reimbursement issues aside, in general, what is your preferred initial treatment for a patient with AML with no actionable mutations who is not eligible for intensive chemotherapy?

HMA: azacitidine or decitabine

Do you generally admit to the hospital all patients with AML who are receiving venetoclax in combination with a hypomethylating agent (HMA)?

For a patient with AML who is pancytopenic and is receiving venetoclax in combination with an HMA or low-dose cytarabine(LDAC), when do you perform the first bone marrow evaluation?

For a patient with AML who is receiving venetoclax in combination with an HMA and is responding to and tolerating treatment, for how long do you generally continue therapy?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for a younger patient with AML and a <u>FLT3-ITD</u> <u>mutation who is eligible for intensive chemotherapy</u> and has experienced disease progression after 7 + 3 with midostaurin?

Dr Daver	Venetoclax + gilteritinib +/- azacitidine or FLAG-IDA + gilteritinib	Dr Pratz	Azacitidine + venetoclax + gilteritinib
Dr Fathi	HMA + gilteritinib	Dr Stein	Gilteritinib
Dr Olin	Gilteritinib, or would consider FLAG-IDA + venetoclax	Dr Stock	Gilteritinib
Dr Pollyea	Gilteritinib	Prof Wei	Azacitidine + venetoclax + gilteritinib

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for an older patient with AML and a <u>FLT3-ITD mutation</u> <u>who is not eligible for intensive chemotherapy</u> and has experienced disease progression after 7 + 3 with midostaurin?

Dr Daver	Venetoclax + gilteritinib +/- azacitidine	Dr Pratz	Gilteritinib
Dr Fathi	HMA + gilteritinib	Dr Stein	Gilteritinib
Dr Olin	Gilteritinib	Dr Stock	Gilteritinib
Dr Pollyea	Gilteritinib	Prof Wei	Azacitidine + venetoclax + gilteritinib

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for a younger patient with AML and an <u>IDH1 mutation</u> <u>who is eligible for intensive chemotherapy</u> and has experienced disease progression after venetoclax/azacitidine?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for an <u>older patient</u> with AML and an <u>IDH1 mutation</u> <u>who is not eligible for intensive chemotherapy</u> and has experienced disease progression after venetoclax/azacitidine?

Dr Daver	Azacitidine + venetoclax +/- ivosidenib	Dr Pratz	Ivosidenib
Dr Fathi	Ivosidenib	Dr Stein	Ivosidenib
Dr Olin	Ivosidenib +/- decitabine	Dr Stock	Ivosidenib
Dr Pollyea	Ivosidenib	Prof Wei	lvosidenib + venetoclax

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is eligible for intensive</u> <u>chemotherapy</u> who presents with AML and an <u>IDH2 mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not eligible for intensive</u> <u>chemotherapy</u> who presents with AML and an <u>IDH2 mutation</u>?

HMA: azacitidine or decitabine

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for a <u>younger patient</u> with AML and an <u>IDH2 mutation who is</u> <u>eligible for intensive chemotherapy</u> and has experienced disease progression after venetoclax/azacitidine?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for an <u>older patient</u> with AML and an <u>IDH2 mutation who is</u> <u>not eligible for intensive chemotherapy</u> and has experienced disease progression after venetoclax/azacitidine?

Dr Daver	Azacitidine + enasidenib +/- venetoclax	Dr Pratz	Enasidenib
Dr Fathi	Enasidenib	Dr Stein	Enasidenib
Dr Olin	Enasidenib +/- decitabine	Dr Stock	Enasidenib
Dr Pollyea	Enasidenib	Prof Wei	Enasidenib + venetoclax

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger woman who is eligible for intensive chemotherapy</u>, who has a history of breast cancer for which she received adjuvant anthracycline chemotherapy and who now presents with AML with no actionable mutations?

Dr Daver	CPX-351 or FLAG-IDA + venetoclax	Dr Pratz	Azacitidine + venetoclax
Dr Fathi	CPX-351 if anthracycline dose cap not reached	Dr Stein	CPX-351
Dr Olin	CPX-351	Dr Stock	CPX-351
Dr Pollyea	CPX-351	Prof Wei	Azacitidine + venetoclax

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older woman who is not eligible for intensive chemotherapy</u>, who has a history of breast cancer for which she received adjuvant anthracycline chemotherapy and who now presents with AML with no actionable mutations?

Dr Daver	Azacitidine + venetoclax or CC-486 + venetoclax	Dr Pratz	Azacitidine + venetoclax
Dr Fathi	HMA + venetoclax	Dr Stein	Azacitidine + venetoclax
Dr Olin	HMA + venetoclax	Dr Stock	Azacitidine + venetoclax
Dr Pollyea	Azacitidine + venetoclax	Prof Wei	Azacitidine + venetoclax

HMA: azacitidine or decitabine

Optimal Management of Newly Diagnosed Acute Myeloid Leukemia (AML) Not Eligible for Intensive Therapy

Venetoclax Mechanism of Action

- Cancer cells increase the expression of anti-apoptotic proteins to offset the increase in pro-apoptotic proteins, tipping the balance toward cell survival
- The large # of pro-apoptotic proteins bound and sequestered by Bcl-2 in AML make them "primed" for death

VIALE-A Study Design

(NCT02993523)

* 2 patients were not stratified by cytogenetic risk. They were excluded from efficacy analysis but included in the safety analysis. 6 patients who did not receive treatment were excluded from the safety analysis set.

AML: Acute myeloid leukemia; CHF: Congestive heart failure; CNS: Central nervous system; CR: Complete remission; CRi: CR+ incomplete marrow remission; CRh: CR+ incomplete hematologic recovery; DCLO: diffusion lung capacity for carbon monoxide; ECOG: Eastern Cooperative Oncology Group; FEV1 : Forced expiratory volume; HMA: Hypomethylating agent; NCCN: National Comprehensive Cancer Network

4

VIALE-A: Overall Survival

VIALE-A: Overall Survival Subgroup Analysis

Subgroup	Azacitidine plus Venetoclax	Azacitidine plus Placebo	Hazard Ratio for Death (95% CI)	
	no. of events/1	total no. (%)		
All patients	161/286 (56.3)	109/145 (75.2)	⊢ ∎−1	0.64 (0.50-0.82)
Type of AML				
De novo	120/214 (56.1)	80/110 (72.7)	F-8-4	0.67 (0.51-0.90)
Secondary	41/72 (56.9)	29/35 (82.9)	F	0.56 (0.35-0.91)
Cytogenetic risk			ł	
Intermediate	84/182 (46.2)	62/89 (69.7)	F-8-4	0.57 (0.41-0.79)
Poor	77/104 (74.0)	47/56 (83.9)	F → B → 1	0.78 (0.54-1.12)
Molecular marker				
FLT3	19/29 (65.5)	19/22 (86.4)	► 8	0.66 (0.35-1.26)
IDH1	15/23 (65.2)	11/11 (100.0)		0.28 (0.12-0.65)
IDH2	15/40 (37.5)	14/18 (77.8)		0.34 (0.16-0.71)
IDH1 or IDH2	29/61 (47.5)	24/28 (85.7)	H	0.34 (0.20-0.60)
TP53	34/38 (89.5)	13/14 (92.9)		0.76 (0.40-1.45)
NPM1	16/27 (59.3)	14/17 (82.4)		0.73 (0.36-1.51)
		0.1	1.0	10.0
		-	Azacitidine plus Venetoclax Better Azacitidine plus Placebo Better	

VIALE-A: Response Rates (CR + CRi) in Subgroups

DiNardo C et al. EHA 2020; Abstract LB2601.

VIALE-A: Patients with ≥8 Weeks Transfusion-Free Interval

DiNardo C et al. EHA 2020; Abstract LB2601.

VIALE-A: Selected Adverse Events

Event	Azacitidine–Vene (N=28	toclax Group 33)	Azacitidine–Placebo Group (N=144)	
	All Grades†	≥Grade 3‡	All Grades†	≥Grade 3 <u>‡</u>
		number of patient	s (percent)	
Hematologic adverse events	236 (83)	233 (82)	100 (69)	98 (68)
Thrombocytopenia	130 (46)	126 (45)	58 (40)	55 (38)
Neutropenia	119 (42)	119 (42)	42 (29)	41 (28)
Febrile neutropenia	118 (42)	118 (42)	27 (19)	27 (19)
Anemia	78 (28)	74 (26)	30 (21)	29 (20)
Leukopenia	58 (21)	58 (21)	20 (14)	17 (12)
Serious adverse events§	235 (83)	232 (82)	105 (73)	102 (71)
Febrile neutropenia	84 (30)	84 (30)	15 (10)	15 (10)
Anemia	14 (5)	14 (5)	6 (4)	6 (4)
Neutropenia	13 (5)	13 (5)	3 (2)	3 (2)
Atrial fibrillation	13 (5)	10 (4)	2 (1)	2 (1)
Pneumonia	47 (17)	46 (16)	32 (22)	31 (22)
Sepsis	16 (6)	16 (6)	12 (8)	12 (8)

VIALE-C Phase 3 Study Design

Randomized 2:1, double-blind, placebo-controlled trial

Progressive disease was defined per ELN recommendations.²

AML, acute myeloid leukemia; CR, complete remission; CRh, CR with partial hematologic recovery; CRi, CR with incomplete blood count recovery; EFS, event-free survival; ELN, European LeukemiaNet; IRT, Interactive Response Technology; IWG, International Working Group; LDAC, low-dose cytarabine; MRD, minimal residual disease; OS, overall survival; QD, once a day; ROW, rest of world; SC, subcutaneous. 1. Cheson BD, et al. *J Clin Oncol.* 2003;21:4642-4649; 2. Döhner H, et al. *Blood.* 2017;129:424-447.

4

VIALE-C: Overall Survival

Wei AH et al. Blood Cancer J 2021;11:163.

VIALE-C: Overall Survival Subgroup Analysis

	Venetoc	lax + LDAC	Plac	ebo + LDAC			
	n/N (%)	Median months (95% CI)	n/N (%)	Median months (95% CI)			HR (95% CI)
All Subjects	99/143 (69.2)	8.4 (5.9, 10.1)	54/68 (79.4)	4.1 (3.1, 8.1)	⊢ ∎		0.72 (0.51 1.00)
Age (years)							0.72 (0.51, 1.00)
18 - < 75	41/61 (67.2)	9.8 (5.6, 11.2)	20/28 (71.4)	6.5 (2.0, 9.7)			
≥ 75	58/82 (70.7)	6.6 (4.6, 9.7)	34/40 (85.0)	3.6 (3.0, 8.9)	⊢_∎_ ;		0.80 (0.47, 1.37)
AML Status							0.67 (0.44, 1.03)
De novo	53/85 (62.4)	9.2 (7.2, 11.3)	36/45 (80.0)	6.5 (3.1, 9.8)			0.65 (0.42 0.99)
Secondary	46/58 (79.3)	5.6 (3.4, 9.8)	18/23 (78.3)	3.2 (1.8, 7.9)	⊢ ■		0.77 (0.45, 1.34)
Prior HMA					i		0.11 (0.40, 1.04)
Yes	24/28 (85.7)	5.6 (3.4, 9.6)	11/14 (78.6)	4.1 (2.2, 9.7)			0.91 (0.44, 1.86)
No	75/115 (65.2)	8.9 (6.6, 10.9)	43/54 (79.6)	4.7 (2.2, 8.8)	⊢ ∎j		0.67 (0.46, 0.98)
Cytogenetic Risk					1		
Favorable	1/1 (100.0)	NA	2/3 (66.7)	NA	1		NA
Intermediate	54/90 (60.0)	10.9 (7.9, 16.4)	36/43 (83.7)	6.5 (2.2, 8.9)	⊢_∎ î		0.57 (0.37, 0.87)
Poor	40/47 (85.1)	4.4 (3.0, 6.4)	15/20 (75.0)	3.6 (1.2, 9.7)	H		1.04 (0.58, 1.89)
					Favors	Favors	
					Venetoclax + LDAC	Placebo + LDAC	
				r r	· · · · · · · · · · · · · · · · · · ·		-
				0.1	1 1		10

Novel Induction and Maintenance Strategies for Younger Patients with AML; Promising Agents and Strategies Under Investigation

QUAZAR AML-001: Oral Azacitidine Maintenance Therapy for AML in First Remission

Wei AH et al. N Engl J Med 2020;383:2526-37.

QUAZAR AML-001: Overall Survival Subgroup Analysis

Subgroup	No. of	Patients	2-Yr S	urvival		2-Yr Survival Difference (959	% CI)
	CC-486	Placebo	CC-486	Placebo			
			9	%		percentage points	
Overall	238	234	50.6	37.1		_ _	13.5 (4.5 to 22.5)
Age							
≥55 to <65 yr	66	68	61.3	45.1	-	•	16.2 (-0.9 to 33.4)
≥65 yr	172	166	46.7	33.9		_	12.8 (2.3 to 23.3)
≥75 yr	28	24	51.9	24.8		• • • • • • • • • • • • • • • • • • •	27.1 (0.7 to 53.4)
Cytogenetic risk at induction							
Intermediate	203	203	54.1	40.4		——	13.6 (3.9 to 23.4)
Poor	35	31	30.3	15.5	-	•	14.8 (-5.6 to 35.2)
Consolidation after induction							
Yes	186	192	50.8	39.2			11.6 (1.4 to 21.7)
No	52	42	50.0	27.4			22.6 (3.2 to 42.0)
Consolidation cycles							
1 or 2	180	179	50.8	37.6		_ _	13.3 (2.9 to 23.7)
3	6	13	50.0	61.5	•		-11.5 (-59.5 to 36.4)
Response at randomization							
Complete remission	183	177	49.7	36.7		—• —	13.0 (2.7 to 23.3)
Complete remission with incomplete blood count recovery	50	44	55.1	38.6	-		16.5 (-3.8 to 36.8)
MRD status at randomization							
Positive	103	116	39.5	22.0		_ _	17.5 (5.3 to 29.8)
Negative	133	111	58.6	51.7		•	6.9 (-5.8 to 19.5)
					-80 -60 -40 -20	0 20 40 60 80	
					Placebo Better	CC-486 Better	

QUAZAR AML-001: Safety Summary and Select Adverse Events (AEs)

	CC-486 (N = 236)		Placebo (N = 233)	
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4
AEs leading to dose interruptions	43%	_	17%	—
AEs leading to dose reductions	16%	—	3%	_
AEs leading to discontinuation	13%	—	4%	_
Nausea	65%	3%	24%	<1%
Vomiting	60%	3%	10%	0
Diarrhea	50%	5%	21%	1%
Neutropenia	44%	41%	26%	24%
Thrombocytopenia	33%	22%	27%	21%
Anemia	20%	14%	18%	13%

Wei AH et al. N Engl J Med 2020;383:2526-37.

Current Management Approaches for Patients with AML and a FLT3 and/or IDH Mutation

FLT3 Mutations (ITD and TKD) Occur in Approximately 30% to 35% of Patients with AML

Daver N et al. Leukemia 2019;33:299-312.

Characteristics of Select FLT3 Inhibitors

FLT3 inhibitor	Inhibitory type	FLT3 kinase inhibition IC50 (nmol/L)	Non-FLT3 targets	FLT3-TKD mutation activity	Major toxicities
Sorafenib 400 mg BID	II	58	c-KIT PDGFR RAF VEGFR	No	Rash Hemorrhage Myelosuppression
Midostaurin 50 mg BID	I	6.3	c-KIT PDGFR PKC VEGFR	Yes	GI toxicity Myelosuppression
Quizartinib 30 – 60 mg QD	II	1.6	c-KIT	No	QTc prolongation Myelosuppression
Gilteritinib 120 mg QD	I	0.29	AXL LTK ALK	Yes	Elevated transaminases Diarrhea

Key Clinical Trials of FLT3 Inhibitors

Study	Agents	FLT3 inhibitor generation	Inhibits	Ν	Population	OS hazard ratio
SORAML Ph II	Sorafenib Placebo	First	ITD	267	Treatment naïve	0.82, n.s.
RATIFY Ph III	Midostaurin Placebo	First	ITD, TKD	717	Treatment naïve	0.78
QuANTUM-First Ph III	Quizartinib Placebo	Second	ITD	NR	Treatment naïve	NR
QuANTUM-R Ph III	Quizartinib SC	—	—	—	R/R	0.76
ARO-021 Ph III	Crenolanib Placebo	Second	ITD, TKD	510	Treatment naïve	Not yet reported
ADMIRAL Ph III	Gilteritinib SC	Second	ITD, TKD	371	R/R	0.64

OS = overall survival; SC = salvage chemotherapy; R/R = relapsed/refractory

Novatcheva ED et al. *Clin Lymphoma, Myeloma & Leuk* 2021;[Online ahead of print]. Rollig C et al. *Leukemia* 2021;35:2517-25.

ADMIRAL: Overall Survival

ADMIRAL: Subgroup Analysis of Overall Survival

		Salvage		
Subgroup	Gilteritinib	Chemotherap	y Hazard Ratio for Death	
no.	of events/to	tal no. of patien	ts	
All patients	171/247	90/124		0.64
FLT3 mutation type				
FLT3 ITD alone	145/215	81/113		0.62
FLT3 TKD alone	16/21	8/10		0.69
FLT3 ITD and FLT3 TKD	6/7	0		NE
Other	4/4	1/1	-	0.70
Previous use of FLT3 inhibitor				
Yes	26/32	11/14		0.70
No	145/215	79/110		0.62
Cytogenetic risk status				
Favorable	3/4	1/1	<	0.70
Intermediate	119/182	63/89		0.60
Unfavorable	22/26	7/11		1.63
Unknown	27/35	19/23	-	0.46
Response to first-line therapy per IRT				
Relapse ≤6 mo after allogeneic HSCT	24/31	16/17		0.38
Relapse >6 mo after allogeneic HSCT	10/17	4/8		0.86
Primary refractory disease without HSCT	70/98	28/48	· · · · · · · · · · · · · · · · · · ·	0.99
Relapse ≤6 mo after composite complete remission and no HSCT	47/67	28/34		0.49
Relapse >6 mo after composite complete remission and no HSCT	20/34	14/17		0.49
Preselected chemotherapy per IRT				
High intensity	96/149	52/75		0.66
Low intensity	75/98	38/49	— —	0.56
		0.	1 0.5 1.0 2.0	10.0

Gilteritinib Better Salvage Chemotherapy Better

ADMIRAL: Antileukemic Responses

	Gilteritinib (n = 247)	Salvage chemo (n = 124)	HR or risk difference
Complete remission (CR)	21.1%	10.5%	10.6
CR or CR with partial hematologic recovery	34.0%	15.3%	18.6
CR with partial hematologic recovery	13.0%	4.8%	Not determined
CR with incomplete hematologic recovery	25.5%	11.3%	Not determined
CR with incomplete platelet recovery	7.7%	0	Not determined
Composite CR*	54.3%	21.8%	32.5
Overall response	67.6%	25.8%	Not reported

*Composite complete remission was defined as the combination of CR, CR with incomplete hematologic recovery and CR with incomplete platelet recovery

IDH1 and IDH2 Mutations in AML

Buege MJ et al. *Cancers* 2018;10:187; Döhner H et al. *N Engl J Med* 2015;373(12):1136-52; Bullinger L et al. *J Clin Oncol* 2017;35(9):934-46.

Pivotal Studies of IDH Inhibitor Monotherapy for AML with IDH Mutations

IDH inhibitor	Enasidenib	Ivoside	enib
FDA approval	Aug 1, 2017	July 20, 2018	May 2, 2019
Setting	Relapsed/refractory	Relapsed/refractory	Newly diagnosed
Trial	AG221-C-001	AG120-C-001	AG120-C-001
IDH mutation	IDH2	IDH1	IDH1
Ν	109	179	28
Dose	100 mg qd	500 mg qd	500 mg qd
CR + CRh	23%	30.4%	42.9%
Median duration of response	8.2 mo	8.2 mo	Not estimable
Median OS, ITT	9.3 mo	8.8 mo	12.6 mo
Median OS, complete remission	19.7 mo	Not reached	Not reported

CRh = CR with partial hematologic recovery

Stein EM, et al. *Blood* 2017;130(6):722-731; Enasidenib PI, rev 11/2020; DiNardo CD, et al. *N Engl J Med* 2018;378(25):2386; Roboz GJ et al. *Blood* 2020;135(7)463-71; Ivosidenib PI, rev 8/2021.

AG-221-AML-005: A Phase II Study of Enasidenib + Azacitidine for Newly Diagnosed AML with an IDH2 Mutation

Clinical endpoint	Enasidenib + azacitidine (n = 68)	Azacitidine (n =33)		
Overall response*	50 (74%)	12 (36%)		
CR	37 (54%)	4 (12%)		
CR + CRh	39 (57%)	6 (18%)		
12-month survival estimate (%)	72%	70%		
Select Grade ≥3 treatment-emergent AEs, n (%)				
Thrombocytopenia	25 (37%)	6 (19%)		
Anemia	13 (19%)	7 (22%)		
Febrile neutropenia	11 (16%)	5 (16%)		
IDH differentiation syndrome	7 (10%)			

* Overall response defined as proportion of patients with complete remission, complete remission with incomplete blood count or platelet recovery, partial remission or morphological leukemia-free state

Phase Ib Trial of Ivosidenib in Combination with Azacitidine for Newly Diagnosed AML

Clinical endpoint	N = 23	
CR + CRh, n (%)	16 (70%)	
CR	14 (61%)	
CRh	2 (9%)	
ORR, n (%)	18 (73%)	
12-month survival estimate (%)	82%	
Select Grade ≥3 treatment-emergent AEs, n (%)		
Thrombocytopenia	14 (61%)	
Anemia	10 (43.5%)	
Febrile neutropenia	10 (43.5%)	
ECG QT prolongation	3 (13%)	
IDH differentiation syndrome	2 (9%)	

CRh = CR with partial hematologic recovery

Positive Top-Line Data from the Global Phase III Study of Ivosidenib in Combination with Azacitidine for Previously Untreated AML with an IDH1 Mutation

Press Release: August 2, 2021

"The global Phase 3 double blinded placebo controlled AGILE study of ivosidenib in combination with the chemotherapy azacitidine in adults with previously untreated IDH1mutated acute myeloid leukemia (AML) met its primary endpoint of event-free survival (EFS). Treatment with ivosidenib in combination with azacitidine compared to azacitidine in combination with placebo demonstrated a statistically significant improvement in EFS. Additionally, the trial met all of its key secondary endpoints, including complete remission rate (CR rate), overall survival (OS), CR and complete remission with partial hematologic recovery rate (CRh rate) and objective response rate (ORR).

The safety profile of ivosidenib in combination with azacitidine was consistent with previously published data. The study recently halted further enrollment based on the recommendation of the Independent Data Monitoring Committee (IDMC), as a difference of clinical importance was noted between the treatment groups."

https://www.prnewswire.com/news-releases/servier-announces-positive-topline-data-from-the-global-phase-3-study-of-tibsovo-ivosidenib-tablets-in-combination-with-azacitidine-in-patients-with-previously-untreated-idh1-mutated-acute-myeloid-leukemia-301345783.html

VIALE-A: Outcomes with Venetoclax + Azacitidine for AML with IDH1/2 Mutations

Phase Ib/II Study of Ivosidenib with Venetoclax with or without Azacitidine in Patients with Myeloid Cancer and an IDH1 Mutation

 3 x 3 dose escalation/de-escalation study exploring 4 dose levels in 25 patients with advanced MDS or MPN or newly diagnosed or R/R AML

Commonly Observed and Noteworthy IDH Inhibitor-Related Adverse Events (AEs)

Commonly Observed Treatment-Emergent AEs (Any Grade, >20%)

- Enasidenib: Hyperbilirubinemia, nausea
- **Ivosidenib:** Diarrhea, leukocytosis, nausea, fatigue, febrile neutropenia, dyspnea, anemia, QT prolongation, peripheral edema

Noteworthy Grade 3 and 4 AEs

- IDH differentiation syndrome: 5%-6%
- Prolongation of the QT interval
 - Enasidenib: Not reported
 - Ivosidenib: ~8%
- Leukocytosis: 2%-3%
- Hyperbilirubinemia
 - Enasidenib: 12%
 - Ivosidenib: Not reported

IDH Differentiation Syndrome (IDH-DS)

- Potentially fatal complication of effective leukemia treatment
 - First described in patients with APL treated with ATRA
- Signs and symptoms of IDH-DS not specific
 - Fever, edema, weight gain, leukocytosis, rash, hypotension, renal dysfunction, and pleural and pericardial effusions
 - A rising leukocyte count, comprising increasing neutrophils with a parallel decrease in leukemic blasts
- Median time to onset: ~30 days (range: 5-340 days)
- Frequency: 5%-6% Grade 3 or higher
 - Frequent dose interruptions but not associated with treatment discontinuation
- Treatment
 - Corticosteroids for IDH-DS
 - Hydroxyurea for leukocytosis, which frequently accompanies IDH-DS
 - Hyperuricemia agents for tumor lysis syndrome, which may co-occur

Stein EM et al. *Blood* 2017;130(6):722-31; Stein EM et al. *Blood* 2019;133(7):676-87; DiNardo CD et al. *N Engl J Med* 2018;378:2386-98; Birendra KC, DiNardo CD. *Clin Lymphoma Myeloma Leuk* 2016;16(8):460-5.

Incidence and Management of Secondary AML (sAML)

Survival by AML Diagnosis

Granfeldt Østgård LS et al. *J Clin Oncol* 2015;33:3641-49.

AML-MRC: AML with MDS-Related Changes

Definition: AML with a history of MDS or myelodysplasia-related cytogenetic findings, specifically ≥ 20% blasts in the peripheral blood or bone marrow and any of the following:

- Previously documented MDS or MDS/MPN
- Myelodysplasia-related cytogenetic abnormalities

- Morphologic detection of **multilineage** dysplasia

 Complex karyotype (3 or more abnormalities).
Unbalanced abnormalities: -7/del(7q), del(5q)/t(5q), i(17q)/t(17p), -13/del(13q), del(11q), del(12p)/t(12p), idic(X)(q13).
Balanced abnormalities: t(11;16)(q23.3;p13.3), t(3:21)(q26.2;q22.1), t(1;3)(p36.3;q21.2), t(2;11)(p21;q23.3), t(5;12)(q32;p13.2), t(5;7)(q32;q11.2), t(5;17)(q32;p13.2), t(5;10)(q32;q21.2), t(3;5)(q25.3;q35.1)

Footnote 1. The presence of 50% or more dysplastic cells in at least 2 cell lines, **excluding cases when a mutation** of NPM1 or biallelic mutation of CEBPA is present.

Therapy-Related AML

The WHO defines t-AML as AML that arises from prior cytotoxic therapy or ionizing radiotherapy for an unrelated disease. Estimated to account for 5-10% of all AML cases.

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML

<u>OS</u>

OS landmarked from time of HSCT

Lancet JE et al. J Clin Oncol 2018;36(26):2684-92.

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: Overall Survival by Baseline Characteristics

B Subgroup	CPX-351		7+3				
	No.	Median OS, months	No.	Median OS, months		HR (95% CI) for Death	
Age							-
60-69 years	96	9.63	102	6.87	0.68 (0.49 to 0.95)	⊢	
70-75 years	57	8.87	54	5.62	0.55 (0.36 to 0.84)		
Type of AML							
Therapy-related AML	30	12.17	33	5.95	0.48 (0.26 to 0.86)	⊢	
AML with antecedent MDS or CMML	82	7.38	86	5.95	0.70 (0.50 to 0.99)		
MDS with prior HMA exposure	50	5.65	55	7.43	0.98 (0.64 to 1.51)	↓ 	
MDS without prior HMA exposure	21	15.74	19	5.13	0.46 (0.21 to 0.97)	▶ ── ●	
CMML	11	9.33	12	2.28	0.37 (0.14 to 0.95)		
De novo AML with MDS karyotype	41	10.09	37	7.36	0.71 (0.42 to 1.20)		
Cytogenetic risk at screening							
Favorable/intermediate	71	14.72	63	8.41	0.64 (0.41 to 0.99)	⊢	
Unfavorable	72	6.60	83	5.16	0.73 (0.51 to 1.06)		
Baseline FLT3 mutation status							
<i>FLT3</i> wild type	116	9.33	120	5.98	0.64 (0.47 to 0.87)		
FLT3 mutation	22	10.25	21	4.60	0.76 (0.34 to 1.66)		
Overall HMA experience							
All patients with prior HMA exposure*	62	5.65	71	5.90	0.86 (0.59 to 1.26)		
					0.1 0	0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6	1.8
						CPX-351 Better 7+3 Better	

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: Most Frequently Reported Adverse Events

Lancet JE et al. J Clin Oncol 2018;36(26):2684-92.

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: 5-Year Overall Survival Results

<u>OS</u>

OS landmarked from time of HSCT

Lancet JE et al. Lancet Haematol 2021;8:e481-91.

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Wednesday, December 15, 2021 5:00 PM – 6:00 PM ET

> Faculty Brian T Hill, MD, PhD

> > Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

