Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Keith W Pratz, MD

Director of Leukemia Program Hospital of the University of Pennsylvania Associate Professor of Medicine University of Pennsylvania Philadelphia, Pennsylvania

Commercial Support

This activity is supported by educational grants from Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, and Servier Pharmaceuticals LLC.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, Daiichi Sankyo Inc, Eisai Inc, Epizyme Inc, Exact Sciences Inc, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Natera Inc, Novartis, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc and Verastem Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Pratz — Disclosures

Advisory Committee	AbbVie Inc, Agios Pharmaceuticals Inc, Astellas, Bristol-Myers Squibb Company, Celgene Corporation, Jazz Pharmaceuticals Inc, Novartis
Contracted Research	AbbVie Inc, Agios Pharmaceuticals Inc, Astellas, Takeda Pharmaceuticals USA Inc

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY WITH DR NEIL LOVE

Chronic Myeloid Leukemia

DR MICHAEL MAURO MEMORIAL SLOAN KETTERING CANCER CENTER

Dr Michael Mauro – Chronic Myeloid Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Optimizing the Management of Metastatic Castration-Resistant Prostate Cancer

> Tuesday, November 9, 2021 5:00 PM – 6:00 PM ET

> Faculty Simon Chowdhury, MD, PhD

VIRTUAL MOLECULAR TUMOR BOARD **Optimizing Biomarker-Based Decision-Making for Patients with Non-Small Cell Lung Cancer with EGFR Mutations or with Other Oncogene-Addicted Lung Cancers** A 2-Part CME/MOC-Accredited Webinar Series Thursday, November 11, 2021 5:00 PM - 6:00 PM ET Faculty Marc Ladanyi, MD Andrew J McKenzie, PhD Helena Yu, MD **Moderator**

Neil Love, MD

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Monday, November 15, 2021 5:00 PM – 6:00 PM ET

Faculty Christopher R Flowers, MD, MS

Philip A Thompson, MB, BS (Hons)

6)

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with ER-Positive Breast Cancer

Wednesday, November 17, 2021 5:00 PM – 6:00 PM ET

> **Faculty** Kevin Kalinsky, MD, MS

Meet The Professor Current and Future Role of Immunotherapy in the Management of Lung Cancer

> Thursday, November 18, 2021 5:00 PM – 6:00 PM ET

> > Faculty Stephen V Liu, MD

Meet The Professor Management of BRAF-Mutant Melanoma

Monday, November 29, 2021 5:00 PM – 6:00 PM ET

> Faculty Jason J Luke, MD

Venetoclax Mechanism of Action

- Cancer cells increase the expression of anti-apoptotic proteins to offset the increase in pro-apoptotic proteins, tipping the balance toward cell survival
- The large # of pro-apoptotic proteins bound and sequestered by Bcl-2 in AML make them "primed" for death

VIALE-A Study Design

(NCT02993523)

* 2 patients were not stratified by cytogenetic risk. They were excluded from efficacy analysis but included in the safety analysis. 6 patients who did not receive treatment were excluded from the safety analysis set.

AML: Acute myeloid leukemia; CHF: Congestive heart failure; CNS: Central nervous system; CR: Complete remission; CRi: CR+ incomplete marrow remission; CRh: CR+ incomplete hematologic recovery; DCLO: diffusion lung capacity for carbon monoxide; ECOG: Eastern Cooperative Oncology Group; FEV1 : Forced expiratory volume; HMA: Hypomethylating agent; NCCN: National Comprehensive Cancer Network

4

FLT3 Mutations (ITD and TKD) Occur in Approximately 30% to 35% of Patients with AML

Daver N et al. Leukemia 2019;33:299-312.

IDH1 and IDH2 Mutations in AML

Buege MJ et al. *Cancers* 2018;10:187; Döhner H et al. *N Engl J Med* 2015;373(12):1136-52; Bullinger L et al. *J Clin Oncol* 2017;35(9):934-46.

VIALE-A: Outcomes with Venetoclax + Azacitidine for AML with IDH1/2 Mutations

Phase Ib/II Study of Ivosidenib with Venetoclax with or without Azacitidine in Patients with Myeloid Cancer and an IDH1 Mutation

 3 x 3 dose escalation/de-escalation study exploring 4 dose levels in 25 patients with advanced MDS or MPN or newly diagnosed or R/R AML

Therapy-Related AML

The WHO defines t-AML as AML that arises from prior cytotoxic therapy or ionizing radiotherapy for an unrelated disease. Estimated to account for 5-10% of all AML cases.

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: Most Frequently Reported Adverse Events

Lancet JE et al. J Clin Oncol 2018;36(26):2684-92.

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Keith W Pratz, MD

Director of Leukemia Program Hospital of the University of Pennsylvania Associate Professor of Medicine University of Pennsylvania Philadelphia, Pennsylvania

Meet The Professor Program Participating Faculty

Amir Fathi, MD

Director, Leukemia Program Massachusetts General Hospital Associate Professor of Medicine Harvard Medical School Boston, Massachusetts

Andrew H Wei, MBBS, PhD Professor, Department of Haematology Alfred Hospital Monash University Walter and Eliza Hall Institute of Medical Research Melbourne, Australia

Rebecca L Olin, MD, MSCE Associate Professor of Medicine Division of Hematology/Oncology Department of Medicine University of California, San Francisco San Francisco, California

Keith W Pratz, MD Director of Leukemia Program Hospital of the University of Pennsylvania Associate Professor of Medicine University of Pennsylvania Philadelphia, Pennsylvania

Moderator Neil Love, MD Research To Practice Miami, Florida

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Meet The Professor Optimizing the Management of Metastatic Castration-Resistant Prostate Cancer

> Tuesday, November 9, 2021 5:00 PM – 6:00 PM ET

> Faculty Simon Chowdhury, MD, PhD

VIRTUAL MOLECULAR TUMOR BOARD **Optimizing Biomarker-Based Decision-Making for Patients with Non-Small Cell Lung Cancer with EGFR Mutations or with Other Oncogene-Addicted Lung Cancers** A 2-Part CME/MOC-Accredited Webinar Series Thursday, November 11, 2021 5:00 PM - 6:00 PM ET Faculty Marc Ladanyi, MD Andrew J McKenzie, PhD Helena Yu, MD **Moderator**

Neil Love, MD

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Monday, November 15, 2021 5:00 PM – 6:00 PM ET

Faculty Christopher R Flowers, MD, MS

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with ER-Positive Breast Cancer

Wednesday, November 17, 2021 5:00 PM – 6:00 PM ET

> **Faculty** Kevin Kalinsky, MD, MS

Meet The Professor Current and Future Role of Immunotherapy in the Management of Lung Cancer

> Thursday, November 18, 2021 5:00 PM – 6:00 PM ET

> > Faculty Stephen V Liu, MD

Meet The Professor Management of BRAF-Mutant Melanoma

Monday, November 29, 2021 5:00 PM – 6:00 PM ET

> Faculty Jason J Luke, MD

Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Keith W Pratz, MD

Director of Leukemia Program Hospital of the University of Pennsylvania Associate Professor of Medicine University of Pennsylvania Philadelphia, Pennsylvania

Rebecca L Olin, MD, MSCE University of California, San Francisco San Francisco, California

Raji Shameem, MD Florida Cancer Specialists and Research Institute Deland, Florida

Shachar Peles, MD Florida Cancer Specialists and Research Institute Lake Worth, Florida

John Yang, MD Oncologist Fall River, Massachusetts

Regulatory and reimbursement issues aside, in general, what is your preferred initial treatment for a patient with AML with no actionable mutations who is not eligible for intensive chemotherapy?

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes
Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation
Module 3: Dr Olin — A 62-year-old man with therapy-related AML
Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations
Module 5: Dr Olin — A 63-year-old man with relapsed AML
Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation Module 3: Dr Olin — A 62-year-old man with therapy-related AML Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations Module 5: Dr Olin — A 63-year-old man with relapsed AML Module 6: Journal Club with Dr Pratz Module 7: Faculty Survey

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes

Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation

Module 3: Dr Olin — A 62-year-old man with therapy-related AML

Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations

Module 5: Dr Olin — A 63-year-old man with relapsed AML

Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Case Presentation – Dr Peles: A 71-year-old woman with AML with MDS-related changes

- Annual routine physical: WBC 1.6, ANC 2,556, Hb 11.1, Plt 77; asymptomatic
- Bone marrow biopsy: AML 40% blasts, mild dyserythropoiesis, normal karyotype
- Decitabine (IV)/venetoclax initiated
- NGS: CBL, CUX1, SRSF2, and PDGFRA mutations
- Bone marrow biopsy day 28: 4% blasts

Questions

- Should I have treated her with liposomal daunorubicin/cytarabine, given that this is AML with MDS-related changes? Should I have waited for the NGS results to make that decision?
- She has a 9/10 match donor for allotransplant. Is that a reasonable option for her?

Dr Shachar Peles

Case Presentation – Dr Peles: A 71-year-old woman with AML with MDS-related changes (continued)

- Annual routine physical: WBC 1.6, ANC 2,556, Hb 11.1, Plt 77; asymptomatic
- Bone marrow biopsy: AML 40% blasts, mild dyserythropoiesis, normal karyotype
- Decitabine (IV)/venetoclax initiated
- NGS: CBL, CUX1, SRSF2, and PDGFRA mutations
- Bone marrow biopsy day 28: 4% blasts

Questions

- May oral decitabine be substituted, either with the initial cycle of therapy or subsequent cycles of therapy? Can we administer decitabine/venetoclax initially, and then continue with oral azacitidine?
- Do we know the efficacy in terms of adding venetoclax to an HMA in an MDS patient once they've progressed on HMA alone?
- Do we have data on using venetoclax in combination with an HMA right out of the gate on patients with MDS? How would you integrate the combination?

Dr Shachar Peles

Venetoclax Mechanism of Action

- Cancer cells increase the expression of anti-apoptotic proteins to offset the increase in pro-apoptotic proteins, tipping the balance toward cell survival
- The large # of pro-apoptotic proteins bound and sequestered by Bcl-2 in AML make them "primed" for death

VIALE-A Study Design

(NCT02993523)

* 2 patients were not stratified by cytogenetic risk. They were excluded from efficacy analysis but included in the safety analysis. 6 patients who did not receive treatment were excluded from the safety analysis set.

AML: Acute myeloid leukemia; CHF: Congestive heart failure; CNS: Central nervous system; CR: Complete remission; CRi: CR+ incomplete marrow remission; CRh: CR+ incomplete hematologic recovery; DCLO: diffusion lung capacity for carbon monoxide; ECOG: Eastern Cooperative Oncology Group; FEV1 : Forced expiratory volume; HMA: Hypomethylating agent; NCCN: National Comprehensive Cancer Network

4

VIALE-A: Overall Survival

VIALE-A: Response Rates (CR + CRi) in Subgroups

DiNardo C et al. EHA 2020; Abstract LB2601.

VIALE-C Phase 3 Study Design

Randomized 2:1, double-blind, placebo-controlled trial

Progressive disease was defined per ELN recommendations.²

AML, acute myeloid leukemia; CR, complete remission; CRh, CR with partial hematologic recovery; CRi, CR with incomplete blood count recovery; EFS, event-free survival; ELN, European LeukemiaNet; IRT, Interactive Response Technology; IWG, International Working Group; LDAC, low-dose cytarabine; MRD, minimal residual disease; OS, overall survival; QD, once a day; ROW, rest of world; SC, subcutaneous. 1. Cheson BD, et al. *J Clin Oncol.* 2003;21:4642-4649; 2. Döhner H, et al. *Blood.* 2017;129:424-447.

4

VIALE-C: Overall Survival

Wei AH et al. Blood Cancer J 2021;11:163.

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes

Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation

Module 3: Dr Olin — A 62-year-old man with therapy-related AML

Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations

Module 5: Dr Olin — A 63-year-old man with relapsed AML

Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Case Presentation – Dr Shameem: A 77-year-old man with AML and an IDH1 mutation

- PMH: HLD, HTN, persistent pancytopenia including macrocytic anemia
- CBC on consultation showed WBC 1.1, ANC 0.10, Hb 9.7, MCV 116, Plt 91
- Peripheral blood flow cytometry: CD34+ blasts (9.9% of total cellularity)
- Bone marrow biopsy: consistent with AML with myelodysplasia changes, hypercellular bone marrow with 85% blasts, complex karyotype
- Azacitidine/venetoclax initiated as patient was anxious to start therapy
- NGS: IDH1 mutation
- Repeat bone marrow biopsy at 1 month: hypoplasia with no residual blasts

Questions

- In the elderly population, do you typically wait for NGS results before deciding a treatment course?
- What would be your first-line therapy of choice for a patient with an IDH1 or IDH2 mutation?
- What is your experience with differentiation syndrome associated with the use of IDH inhibitors? How do you manage it?

Dr Raji Shameem

IDH1 and IDH2 Mutations in AML

Buege MJ et al. *Cancers* 2018;10:187; Döhner H et al. *N Engl J Med* 2015;373(12):1136-52; Bullinger L et al. *J Clin Oncol* 2017;35(9):934-46.

Pivotal Studies of IDH Inhibitor Monotherapy for AML with IDH Mutations

IDH inhibitor	Enasidenib	Ivosidenib	
FDA approval	Aug 1, 2017	July 20, 2018	May 2, 2019
Setting	Relapsed/refractory	Relapsed/refractory	Newly diagnosed
Trial	AG221-C-001	AG120-C-001	AG120-C-001
IDH mutation	IDH2	IDH1	IDH1
Ν	109	179	28
Dose	100 mg qd	500 mg qd	500 mg qd
CR + CRh	23%	30.4%	42.9%
Median duration of response	8.2 mo	8.2 mo	Not estimable
Median OS, ITT	9.3 mo	8.8 mo	12.6 mo
Median OS, complete remission	19.7 mo	Not reached	Not reported

CRh = CR with partial hematologic recovery

Stein EM, et al. *Blood* 2017;130(6):722-731; Enasidenib PI, rev 11/2020; DiNardo CD, et al. *N Engl J Med* 2018;378(25):2386; Roboz GJ et al. *Blood* 2020;135(7)463-71; Ivosidenib PI, rev 8/2021.

AG-221-AML-005: A Phase II Study of Enasidenib + Azacitidine for Newly Diagnosed AML with an IDH2 Mutation

Clinical endpoint	Enasidenib + azacitidine (n = 68)	Azacitidine (n =33)		
Overall response*	50 (74%)	12 (36%)		
CR	37 (54%)	4 (12%)		
CR + CRh	39 (57%)	6 (18%)		
12-month survival estimate (%)	72%	70%		
Select Grade ≥3 treatment-emergent AEs, n (%)				
Thrombocytopenia	25 (37%)	6 (19%)		
Anemia	13 (19%)	7 (22%)		
Febrile neutropenia	11 (16%)	5 (16%)		
IDH differentiation syndrome	7 (10%)			

* Overall response defined as proportion of patients with complete remission, complete remission with incomplete blood count or platelet recovery, partial remission or morphological leukemia-free state

Positive Top-Line Data from the Global Phase III Study of Ivosidenib in Combination with Azacitidine for Previously Untreated AML with an IDH1 Mutation

Press Release: August 2, 2021

"The global Phase 3 double blinded placebo controlled AGILE study of ivosidenib in combination with the chemotherapy azacitidine in adults with previously untreated IDH1mutated acute myeloid leukemia (AML) met its primary endpoint of event-free survival (EFS). Treatment with ivosidenib in combination with azacitidine compared to azacitidine in combination with placebo demonstrated a statistically significant improvement in EFS. Additionally, the trial met all of its key secondary endpoints, including complete remission rate (CR rate), overall survival (OS), CR and complete remission with partial hematologic recovery rate (CRh rate) and objective response rate (ORR).

The safety profile of ivosidenib in combination with azacitidine was consistent with previously published data. The study recently halted further enrollment based on the recommendation of the Independent Data Monitoring Committee (IDMC), as a difference of clinical importance was noted between the treatment groups."

https://www.prnewswire.com/news-releases/servier-announces-positive-topline-data-from-the-global-phase-3-study-of-tibsovo-ivosidenib-tablets-in-combination-with-azacitidine-in-patients-with-previously-untreated-idh1-mutated-acute-myeloid-leukemia-301345783.html

VIALE-A: Outcomes with Venetoclax + Azacitidine for AML with IDH1/2 Mutations

Commonly Observed and Noteworthy IDH Inhibitor-Related Adverse Events (AEs)

Commonly Observed Treatment-Emergent AEs (Any Grade, >20%)

- Enasidenib: Hyperbilirubinemia, nausea
- **Ivosidenib:** Diarrhea, leukocytosis, nausea, fatigue, febrile neutropenia, dyspnea, anemia, QT prolongation, peripheral edema

Noteworthy Grade 3 and 4 AEs

- IDH differentiation syndrome: 5%-6%
- Prolongation of the QT interval
 - Enasidenib: Not reported
 - Ivosidenib: ~8%
- Leukocytosis: 2%-3%
- Hyperbilirubinemia
 - Enasidenib: 12%
 - Ivosidenib: Not reported

IDH Differentiation Syndrome (IDH-DS)

- Potentially fatal complication of effective leukemia treatment
 - First described in patients with APL treated with ATRA
- Signs and symptoms of IDH-DS not specific
 - Fever, edema, weight gain, leukocytosis, rash, hypotension, renal dysfunction, and pleural and pericardial effusions
 - A rising leukocyte count, comprising increasing neutrophils with a parallel decrease in leukemic blasts
- Median time to onset: ~30 days (range: 5-340 days)
- Frequency: 5%-6% Grade 3 or higher
 - Frequent dose interruptions but not associated with treatment discontinuation
- Treatment
 - Corticosteroids for IDH-DS
 - Hydroxyurea for leukocytosis, which frequently accompanies IDH-DS
 - Hyperuricemia agents for tumor lysis syndrome, which may co-occur

Stein EM et al. *Blood* 2017;130(6):722-31; Stein EM et al. *Blood* 2019;133(7):676-87; DiNardo CD et al. *N Engl J Med* 2018;378:2386-98; Birendra KC, DiNardo CD. *Clin Lymphoma Myeloma Leuk* 2016;16(8):460-5.

Agenda

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes

Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation

Module 3: Dr Olin — A 62-year-old man with therapy-related AML

Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations

Module 5: Dr Olin — A 63-year-old man with relapsed AML

Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Module 8: Appendix

Case Presentation – Dr Olin: A 62-year-old man with therapy-related AML

- Dr Rebecca Olin
- PMH: FL in 2013 treated with bendamustine/rituximab and rituximab maintenance
- Recently developed progressive dyspnea, dizziness and palpitation
- Bloodwork showed neutropenia and anemia
- Bone marrow biopsy: 70% 80% blasts
- Cytogenetics: Normal, but FISH showed monosomy 7 in 7% of cells
- NGS: TP53 and SRSF2 mutations

Case Presentation – Dr Olin: A 62-year-old man with therapy-related AML (continued)

- Dr Rebecca Olin
- PMH: FL in 2013 treated with bendamustine/rituximab and rituximab maintenance
- Cytogenetics: Normal, but FISH showed monosomy 7 in 7% of cells
- NGS: TP53 and SRSF2 mutations
- CPX-351→ bone marrow biopsies on d21 and d28 showed low cellularity and blast 10% 20%
- Reinduction with CPX-351, and treatment course complicated by neutropenic fevers, DVT and slow recovery counts
- Bone marrow biopsy on d48 showed remission \rightarrow allogeneic transplant

Questions

- What do you do when you encounter a positive nadir bone marrow biopsy result?
- What treatment would you have recommended? Would you recommend decitabine due to the presence of a TP53 mutation in this patient?

Case Presentation – Dr Olin: A 62-year-old man with therapy-related AML (cont)

- Dr Rebecca Olin
- PMH: FL in 2013 treated with bendamustine/rituximab and rituximab maintenance
- Cytogenetics: Normal, but FISH showed monosomy 7 in 7% of cells
- NGS: TP53 and SRSF2 mutations
- CPX-351→ bone marrow biopsies on d21 and d28 showed low cellularity and blast 10% 20%
- Reinduction with CPX-351, and treatment course complicated by neutropenic fevers, DVT and slow recovery counts
- Bone marrow biopsy on d48 showed remission \rightarrow allogeneic transplant

Questions

- Have you attempted to administer CPX-351 in the outpatient setting? What do you think is the future of CPX-351? Do you believe any of the novel combination trials with this agent are promising?
- What do you do when you encounter a positive nadir bone marrow biopsy result?

Survival by AML Diagnosis

Granfeldt Østgård LS et al. *J Clin Oncol* 2015;33:3641-49.

AML-MRC: AML with MDS-Related Changes

Definition: AML with a history of MDS or myelodysplasia-related cytogenetic findings, specifically ≥ 20% blasts in the peripheral blood or bone marrow and any of the following:

- Previously documented MDS or MDS/MPN
- Myelodysplasia-related cytogenetic abnormalities

- Morphologic detection of **multilineage** dysplasia

 Complex karyotype (3 or more abnormalities).
 Unbalanced abnormalities: -7/del(7q), del(5q)/t(5q), i(17q)/t(17p), -13/del(13q), del(11q), del(12p)/t(12p), idic(X)(q13).
 Balanced abnormalities: t(11;16)(q23.3;p13.3), t(3:21)(q26.2;q22.1), t(1;3)(p36.3;q21.2), t(2;11)(p21;q23.3), t(5;12)(q32;p13.2), t(5;7)(q32;q11.2), t(5;17)(q32;p13.2), t(5;10)(q32;q21.2), t(3;5)(q25.3;q35.1)

Footnote 1. The presence of 50% or more dysplastic cells in at least 2 cell lines, **excluding cases when a mutation** of NPM1 or biallelic mutation of CEBPA is present.

Therapy-Related AML

The WHO defines t-AML as AML that arises from prior cytotoxic therapy or ionizing radiotherapy for an unrelated disease. Estimated to account for 5-10% of all AML cases.

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML

<u>OS</u>

OS landmarked from time of HSCT

Lancet JE et al. J Clin Oncol 2018;36(26):2684-92.

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: Most Frequently Reported Adverse Events

Lancet JE et al. J Clin Oncol 2018;36(26):2684-92.

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: 5-Year Overall Survival Results

<u>OS</u>

OS landmarked from time of HSCT

Lancet JE et al. Lancet Haematol 2021;8:e481-91.

Agenda

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes

Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation

Module 3: Dr Olin — A 62-year-old man with therapy-related AML

Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations

Module 5: Dr Olin — A 63-year-old man with relapsed AML

Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Module 8: Appendix

Case Presentation – Dr Yang: A 71-year-old woman with AML and FLT3-ITD and WT1 mutations

- Presented to PCP with fatigue \rightarrow Severe anemia, high WBC and blast count
- Diagnosed with AML and FLT3-ITD and WT1 mutations
- 5/2021: Venetoclax/decitabine
 - Progressive cytopenias and increase in bone marrow blasts after cycle 2
- CPX-351 x 1, with bone marrow in CR
- Gilteritinib

Question

• Would you dose-reduce venetoclax to address cytopenias?

Dr John Yang

FLT3 Mutations (ITD and TKD) Occur in Approximately 30% to 35% of Patients with AML

Daver N et al. Leukemia 2019;33:299-312.

Characteristics of Select FLT3 Inhibitors

FLT3 inhibitor	Inhibitory type	FLT3 kinase inhibition IC50 (nmol/L)	Non-FLT3 targets	FLT3-TKD mutation activity	Major toxicities
Sorafenib 400 mg BID	II	58	c-KIT PDGFR RAF VEGFR	No	Rash Hemorrhage Myelosuppression
Midostaurin 50 mg BID	I	6.3	c-KIT PDGFR PKC VEGFR	Yes	GI toxicity Myelosuppression
Quizartinib 30 – 60 mg QD	II	1.6	c-KIT	No	QTc prolongation Myelosuppression
Gilteritinib 120 mg QD	I	0.29	AXL LTK ALK	Yes	Elevated transaminases Diarrhea

Key Clinical Trials of FLT3 Inhibitors

Study	Agents	FLT3 inhibitor generation	Inhibits	Ν	Population	OS hazard ratio
SORAML Ph II	Sorafenib Placebo	First	ITD	267	Treatment naïve	0.82, n.s.
RATIFY Ph III	Midostaurin Placebo	First	ITD, TKD	717	Treatment naïve	0.78
QuANTUM-First Ph III	Quizartinib Placebo	Second	ITD	NR	Treatment naïve	NR
QuANTUM-R Ph III	Quizartinib SC	—	—	—	R/R	0.76
ARO-021 Ph III	Crenolanib Placebo	Second	ITD, TKD	510	Treatment naïve	Not yet reported
ADMIRAL Ph III	Gilteritinib SC	Second	ITD, TKD	371	R/R	0.64

OS = overall survival; SC = salvage chemotherapy; R/R = relapsed/refractory

Novatcheva ED et al. *Clin Lymphoma, Myeloma & Leuk* 2021;[Online ahead of print]. Rollig C et al. *Leukemia* 2021;35:2517-25.

ADMIRAL: Overall Survival

Agenda

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes

Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation

Module 3: Dr Olin — A 62-year-old man with therapy-related AML

Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations

Module 5: Dr Olin — A 63-year-old man with relapsed AML

Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Module 8: Appendix

Case Presentation – Dr Olin: A 63-year-old man with relapsed AML

Dr Rebecca Olin

- PMH: Diabetes, HTN, treated tuberculosis, chronic kidney disease, and psoriasis
- Follow-up labwork through tuberculosis clinic demonstrated new pancytopenia with some rare circulating blasts
- Bone marrow biopsy: 40% 50% blasts by morphology; diagnosis of AML-NOS
- Cytogenetics and FISH panel: Normal
- NGS: 2 different CEBPA alpha gene mutations; no allele frequency provided

Case Presentation – Dr Olin: A 63-year-old man with relapsed AML (continued)

Dr Rebecca Olin

- PMH: Diabetes, HTN, treated tuberculosis, chronic kidney disease, and psoriasis
- Follow-up labwork through tuberculosis clinic demonstrated new pancytopenia with some rare circulating blasts
- Bone marrow biopsy: 40% 50% blasts by morphology; diagnosis of AML-NOS
- Cytogenetics and FISH panel: Normal
- NGS: 2 different CEBPA alpha gene mutations; no allele frequency provided
- 7 + 3 induction \rightarrow CR \rightarrow 2 cycles of intermediate dose cytarabine consolidation
- Maintenance with oral azacitidine

Questions

- How quickly do you usually receive results from NGS assays that you order?
- Do you choose therapy without having the NGS information on hand?

Case Presentation – Dr Olin: A 63-year-old man with relapsed AML (continued)

Dr Rebecca Olin

- PMH: Diabetes, HTN, treated tuberculosis, chronic kidney disease, and psoriasis
- Bone marrow biopsy: 40% 50% blasts by morphology; diagnosis of AML-NOS
- Cytogenetics and FISH panel: Normal
- NGS: 2 different CEBPA alpha gene mutations; no allele frequency provided
- 7 + 3 induction \rightarrow CR \rightarrow 2 cycles of intermediate dose cytarabine consolidation
- Maintenance with oral azacitidine

Questions

- If this patient had completed his entire course of consolidation, would you have used oral azacitidine maintenance? Would you only use it if the patient did not complete their full course of consolidation?
- Would you consider using oral azacitidine for patients with good-risk disease or would you restrict it to patients with intermediate or poor risk?

QUAZAR AML-001: Oral Azacitidine Maintenance Therapy for AML in First Remission

Wei AH et al. N Engl J Med 2020;383:2526-37.

QUAZAR AML-001: Safety Summary and Select Adverse Events (AEs)

	CC-486 (N = 236)		Placebo (N = 233)	
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4
AEs leading to dose interruptions	43%	_	17%	—
AEs leading to dose reductions	16%	—	3%	_
AEs leading to discontinuation	13%	—	4%	_
Nausea	65%	3%	24%	<1%
Vomiting	60%	3%	10%	0
Diarrhea	50%	5%	21%	1%
Neutropenia	44%	41%	26%	24%
Thrombocytopenia	33%	22%	27%	21%
Anemia	20%	14%	18%	13%

Wei AH et al. N Engl J Med 2020;383:2526-37.

Agenda

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes

Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation

Module 3: Dr Olin — A 62-year-old man with therapy-related AML

Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations

Module 5: Dr Olin — A 63-year-old man with relapsed AML

Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Module 8: Appendix

Dr Pratz ASH 2021: Select Papers

- Minehart JC et al. Incidence and predictors of SARS-CoV-2 antibody responses following COVID-19 vaccination in allogeneic stem cell transplant recipients. ASH 2021;Abstract 2888.
- Pollyea DA et al. Outcomes in patients with poor-risk cytogenetics with or without TP53 mutations treated with venetoclax combined with hypomethylating agents. ASH 2021; Abstract 224.
- Pratz KW et al. Cost effectiveness analysis of venetoclax plus azacitidine versus azacitidine in newly diagnosed adult patients with acute myeloid leukemia who are ineligible for intensive chemotherapy from a United States payer perspective. ASH 2021; Abstract 112.
- Matthews A et al. Real world survival outcomes of CPX-351 versus venetoclax and azacitadine for initial therapy in adult acute myeloid leukemia. ASH 2021;Abstract 795.

- Montesinos P et al. AGILE: A global, randomized, double-blind, phase 3 study of ivosidenib + azacitidine versus placebo + azacitidine in patients with newly diagnosed acute myeloid leukemia with an IDH1 mutation. ASH 2021;Abstract 697.
- Grenet J et al. Comparing outcomes between liposomal daunorubicin/cytarabine (CPX-351) and HMA + venetoclax as frontline therapy in acute myeloid leukemia. ASH 2021;Abstract 32.
- Rautenberg C et al. Real-world experience of CPX-351 as first-line treatment in 188 patients with acute myeloid leukemia. ASH 2021;Abstract 33.
- Chen S et al. Venetoclax plus decitabine for young adults with newly diagnosed ELN adverse-risk acute myeloid leukemia: Interim analysis of a prospective, multicenter, single-arm, phase 2 trial. ASH 2021;Abstract 35.

- Pollyea DA et al. Outcomes in patients with poor-risk cytogenetics with or without TP53 mutations treated with venetoclax combined with hypomethylating agents. ASH 2021;Abstract 224.
- Yilmaz M et al. Quizartinib (Quiz) with decitabine (DAC) and venetoclax (VEN) is highly active in patients (pts) with FLT3-ITD mutated acute myeloid leukemia (AML) –
 RAS/MAPK mutations continue to drive primary and secondary resistance. ASH 2021;Abstract 370.
- Daver N et al. Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AM. ASH 2021;Abstract 371.

- Borate U et al. Comparative outcomes and molecular response predictors of IDH1/2mutated adult acute myeloid leukemia (AML) patients (Pts) after frontline treatment with intensive induction chemotherapy (IC), targeted inhibitors, or hypomethylating agents (HMA) (Alliance). ASH 2021; Abstract 226.
- Sekeres MA et al. Pevonedistat (PEV) + azacitidine (AZA) versus AZA alone as first-line treatment for patients with higher-risk myelodysplastic syndromes (MDS)/chronic myelomonocytic leukemia (CMML) or acute myeloid leukemia (AML) with 20-30% marrow blasts: The randomized phase 3 PANTHER trial (NCT03268954). ASH 2021;Abstract 370.
- Daver N et al. Venetoclax in combination with gilteritinib demonstrates molecular clearance of FLT3 mutation in relapsed/refractory FLT3-mutated acute myeloid leukemia. ASH 2021;Abstract 691.

- Short NJ et al. A triplet combination of azacitidine, venetoclax and gilteritinib for patients with FLT3-mutated acute myeloid leukemia: Results from a phase I/II study. ASH 2021;Abstract 696.
- Yilmaz M et al. Hypomethylating agent (HMA) therapy and venetoclax (VEN) with FLT3 inhibitor "triplet" therapy is highly active in older/unfit patients with FLT3 mutated AML. ASH 2021;Abstract 798.
- Patel P et al. Ivosidenib (IVO) in combination with azacitidine (AZA) in newly diagnosed (ND) older patients with IDH1 R132-mutated acute myeloid leukemia (AML) induces high response rates: A phase 2 sub-study of the Beat AML Master trial. ASH 2021;Abstract 875.

MYELOID NEOPLASIA

Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study

Eytan M. Stein,^{1,*} Courtney D. DiNardo,^{2,*} Amir T. Fathi,³ Alice S. Mims,⁴ Keith W. Pratz,⁵ Michael R. Savona,⁶ Anthony S. Stein,⁷ Richard M. Stone,⁸ Eric S. Winer,⁸ Christopher S. Seet,⁹ Hartmut Döhner,¹⁰ Daniel A. Pollyea,¹¹ James K. McCloskey,¹² Olatoyosi Odenike,¹³ Bob Löwenberg,¹⁴ Gert J. Ossenkoppele,¹⁵ Prapti A. Patel,¹⁶ Mikhail Roshal,¹⁷ Mark G. Frattini,¹⁸ Frederik Lersch,¹⁹ Aleksandra Franovic,²⁰ Salah Nabhan,²¹ Bin Fan,²¹ Sung Choe,²¹ Hongfang Wang,²¹ Bin Wu,²¹ Lei Hua,²¹ Caroline Almon,²¹ Michael Cooper,²¹ Hagop M. Kantarjian,^{2,†} and Martin S. Tallman^{1,†}

Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: Long term follow-up from a phase 1b study

Daniel A. Pollyea¹ | Keith Pratz² | Anthony Letai³ | Brian A. Jonas⁴ | Andrew H. Wei⁵ | Vinod Pullarkat⁶ | Marina Konopleva⁷ | | Marina Konopleva⁷ | | Marina Konopleva⁷ | | Marina⁸ | Martha Arellano⁹ | Pamela S. Becker^{10,11} | Brenda Chyla¹² | Wan-Jen Hong¹³ | Qi Jiang¹² | Jalaja Potluri¹² | Courtney D. DiNardo⁷ |

Am J Hematol 2021;96(2):208-17

Summary of Rate and Duration of Response

All patients	N	CR n (%)	CR/CRi n (%)	DOR mos. (95% CI)			
400 mg venetoclax - Venetoclax + Azacitidine Patient Subgroups							
Mutation subgroup							
TP53	17	5 (29)	9 (53)	6.5 (1.9-17.3)			
FLT3	12	6 (50)	7 (58)	NR (2.8-NR)			
IDH1/2	22	10 (46)	19 (86)	29.5 (17.9-NR)			
NPM1	14	8 (57)	11 (79)	NR (15.1-NR)			

VENETOCLAX AND AZACITIDINE COMBINATION IN CHEMOTHERAPY INELIGIBLE UNTREATED PATIENTS WITH THERAPY-RELATED ACUTE MYELOID LEUKEMIA, ANTECEDENT MYELODYSPLASTIC SYNDROMES OR CHRONIC MYELOMONOCYTIC LEUKEMIA

Abstract 7011

2021 ASCO

ANNUAL MEETING

Vinod Pullarkat M.D.¹, Keith W. Pratz M.D.², Hartmut Döhner M.D.³, Christian Recher M.D.⁴, Michael J. Thirman M.D.⁵, Courtney D. DiNardo M.D.⁶, Pierre Fenaux M.D.⁷, Andre C. Schuh M.D.⁸, Andrew H. Wei M.D.⁹, Arnaud Pigneux M.D.¹⁰, Jun-Ho Jang M.D.¹¹, Gunnar Juliusson M.D.¹², Yasushi Miyazaki M.D.¹³, Dominik Selleslag M.D.¹⁴, Martha L. Arellano M.D.¹⁵, Kiran Naqvi M.D.¹⁶ Jun Yu Ph.D¹⁷, Jean A. Ridgeway DNP, NP-C¹⁷, Jalaja Potluri M.D.¹⁷, Marina Konopleva M.D.⁶

¹Department of Hematology and Hematopoietic Cell Transplantation and Gehr Family Center for Leukemia Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ²Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ³ Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany; ⁴ Centre Hospitalier Universitaire de Toulouse, Toulouse, France; ⁵ Section of Hematology/Oncology, Department of Medicine, The University of Chicago Medicine, Chicago, IL, USA; ⁶ Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁷ Hôpital St. Louis /Assistance Publique- Hôpitaux de Paris and Université de Paris, France; ⁸ Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; ⁹ Australian Center for Blood Diseases, The Alfred Hospital and Monash University, Melbourne, Australia, ¹⁰ Department of Hematology, CHU de Bordeaux, France; ¹¹Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; ¹⁴ Algemeen Ziekenhuis Sint-Jan, Brugge, Belgium; ¹⁵ Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA; ¹⁶ Genentech Inc., South San Francisco, CA, USA; ¹⁷AbbVie Inc., North Chicago, IL, USA

MEASURABLE RESIDUAL DISEASE RESPONSE AND PROGNOSIS IN ACUTE MYELOID LEUKEMIA WITH VENETOCLAX AND AZACITIDINE

Keith W. Pratz¹, Brian A. Jonas², Vinod Pullarkat³, Christian Recher⁴, Andre C. Schuh⁵, Michael J. Thirman⁶, Jacqueline S. Garcia⁷, Courtney D. DiNardo⁸, Vladimir Vorobyev⁹, Nicola S. Fracchiolla¹⁰, Su-Peng Yeh¹¹, Jun Ho Jang¹², Muhit Ozcan¹³, Kazuhito Yamamoto¹⁴, Arpad Illes¹⁵, Ying Zhou¹⁶, Monique Dail¹⁷, Brenda Chyla¹⁶, Jalaja Potluri¹⁶, Hartmut Döhner¹⁸

Abstract 7018

2021 ASCO

ANNUAL MEETING

¹Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA, ²Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, USA, ³Department of Hematology and Hematopoietic Cell Transplantation and Gehr Family Center for Leukemia Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA ⁴Centre Hospitalier Universitaire de Toulouse, Toulouse, France, ⁵Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Ontario, Canada, ⁶Section of Hematology/Oncology, Department of Medicine, The University of Chicago Medicine, Chicago, IL, USA, ⁷Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA, ⁸Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, ⁹Department of Hematology, S. P. Botkin City Clinical Hospital, Moscow, Russia, ¹⁰UOC Ematologia, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy, ¹¹Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, ¹²Department of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, ¹³Department of Hematology, Ankara University School of Medicine, Ankara, Turkey, ¹⁴Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Nagoya, Japan, ¹⁵University of Debrecen, Faculty of Medicine, Department of Hematology, Debrecen, Hungary, ¹⁶AbbVie Inc., North Chicago, IL, USA, ¹⁷Genentech Inc., South San Francisco, CA, USA, ¹⁸Department of Internal Medicine III, University Hospital, Ulm, Germany

Agenda

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes

Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation

Module 3: Dr Olin — A 62-year-old man with therapy-related AML

Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations

Module 5: Dr Olin — A 63-year-old man with relapsed AML

Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Module 8: Appendix

At what age of an otherwise fit patient with AML would you not recommend intensive chemotherapy as initial treatment?

At what age of an otherwise fit patient with AML would you not recommend allogeneic transplant?

In what clinical situations, if any, do you recommend HMA/ venetoclax for a patient with AML who is eligible for intensive chemotherapy (eg, adverse cytogenetics)?

Regulatory and reimbursement issues aside, in general, what is your preferred initial treatment for a patient with AML with no actionable mutations who is not eligible for intensive chemotherapy?

What prophylaxis, if any, do you generally administer to patients with AML receiving venetoclax in combination with azacitidine?

Do you generally admit to the hospital all patients with AML who are receiving venetoclax in combination with a hypomethylating agent?

You are about to administer venetoclax/azacitidine to an older patient with AML, a PS of 0, WBC = 15K and 50% blasts who is receiving no medications other than allopurinol. What would be your approach to venetoclax dosing?

For a patient with AML who is pancytopenic and is receiving venetoclax in combination with an HMA or low-dose cytarabine(LDAC), when do you perform the first bone marrow evaluation?

For a patient with AML who is receiving venetoclax in combination with an HMA and is responding to and tolerating treatment, for how long do you generally continue therapy?

A 65-year-old patient with intermediate-risk AML, no actionable mutations, PS 0, receives 7 + 3 induction therapy, achieves a complete remission after 2 cycles and then receives 2 cycles of high-dose cytarabine consolidation but declines transplant. Would you offer this patient maintenance therapy?

Have you substituted or would you substitute CC-486 (oral azacitidine) for standard-administration azacitidine under any circumstances?

Have you administered or would you administer CC-486 (oral azacitidine) as maintenance therapy to a patient who has undergone stem cell transplant?

In what clinical situations, if any, do you administer CPX-351?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is</u> <u>not eligible for intensive chemotherapy</u> who develops AML with no actionable mutations while receiving an erythropoietin stimulating agent (ESA) for lower-risk MDS?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is eligible for</u> <u>intensive chemotherapy</u> who develops AML with no actionable mutations while receiving an ESA for lower-risk MDS?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is</u> <u>not eligible for intensive chemotherapy</u> who develops AML with no actionable mutations while receiving azacitidine for higher-risk MDS?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who</u> <u>is eligible for intensive chemotherapy</u> who develops AML with no actionable mutations while receiving azacitidine for higher-risk MDS?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older woman who is not eligible for</u> <u>intensive chemotherapy</u>, who has a history of breast cancer for which she received adjuvant anthracycline chemotherapy and who now presents with AML with no actionable mutations?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger woman who is eligible for</u> <u>intensive chemotherapy</u>, who has a history of breast cancer for which she received adjuvant anthracycline chemotherapy and who now presents with AML with no actionable mutations?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not</u> <u>eligible for intensive chemotherapy</u> who presents with AML and a <u>FLT3-ITD mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is</u> <u>eligible for intensive chemotherapy</u> who presents with AML and a <u>FLT3-ITD mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not</u> <u>eligible for intensive chemotherapy</u> who presents with AML and a <u>FLT3-TKD mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is</u> <u>eligible for intensive chemotherapy</u> who presents with AML and a <u>FLT3-TKD mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not</u> <u>eligible for intensive chemotherapy</u> who presents with AML and an <u>IDH1 mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is</u> <u>eligible for intensive chemotherapy</u> who presents with AML and an <u>IDH1 mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not</u> <u>eligible for intensive chemotherapy</u> who presents with AML and an <u>IDH2 mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is</u> <u>eligible for intensive chemotherapy</u> who presents with AML and an <u>IDH2 mutation</u>?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for an older patient with AML and a <u>FLT3-ITD mutation who is not eligible for intensive chemotherapy</u> and has experienced disease progression after 7 + 3 with midostaurin?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for a younger patient with AML and a <u>FLT3-ITD mutation who is eligible for</u> <u>intensive chemotherapy</u> and has experienced disease progression after 7 + 3 with midostaurin?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for an older patient with AML and a <u>FLT3-TKD mutation who is not eligible for intensive chemotherapy</u> and has experienced disease progression after 7 + 3 with midostaurin?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for a <u>younger</u> <u>patient</u> with AML and a <u>FLT3-TKD mutation who is eligible for</u> <u>intensive chemotherapy</u> and has experienced disease progression after 7 + 3 with midostaurin?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for an <u>older</u> <u>patient</u> with AML and an <u>IDH1 mutation who is not eligible for</u> <u>intensive chemotherapy</u> and has experienced disease progression after venetoclax/azacitidine?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for a younger patient with AML and an <u>IDH1 mutation who is eligible for</u> <u>intensive chemotherapy</u> and has experienced disease progression after venetoclax/azacitidine?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for an <u>older</u> <u>patient</u> with AML and an <u>IDH2 mutation who is not eligible for</u> <u>intensive chemotherapy</u> and has experienced disease progression after venetoclax/azacitidine?

Regulatory and reimbursement issues aside, what would you generally recommend as the next line of treatment for a <u>younger</u> <u>patient</u> with AML and an <u>IDH2 mutation who is eligible for</u> <u>intensive chemotherapy</u> and has experienced disease progression after venetoclax/azacitidine?

In what clinical situations, if any, do you administer glasdegib to your patients with AML?

Agenda

Introduction: AML Molecular Workup

Module 1: Dr Peles — A 71-year-old woman with AML with MDS-related changes Module 2: Dr Shameem — A 77-year-old man with AML and an IDH1 mutation Module 3: Dr Olin — A 62-year-old man with therapy-related AML Module 4: Dr Yang — A 71-year-old woman with AML and FLT3-ITD and WT1 mutations Module 5: Dr Olin — A 63-year-old man with relapsed AML

Module 6: Journal Club with Dr Pratz

Module 7: Faculty Survey

Module 8: Appendix

Optimal Management of Newly Diagnosed Acute Myeloid Leukemia (AML) Not Eligible for Intensive Therapy

VIALE-A: Overall Survival Subgroup Analysis

Subgroup	Azacitidine plus Venetoclax	Azacitidine plus Placebo	Hazard Ratio for Death (95% CI)	
	no. of events/	total no. (%)		
All patients	161/286 (56.3)	109/145 (75.2)	⊢ ∎-4	0.64 (0.50-0.82)
Type of AML				
De novo	120/214 (56.1)	80/110 (72.7)	F-8-4	0.67 (0.51-0.90)
Secondary	41/72 (56.9)	29/35 (82.9)	F	0.56 (0.35-0.91)
Cytogenetic risk				
Intermediate	84/182 (46.2)	62/89 (69.7)	F-8-1	0.57 (0.41-0.79)
Poor	77/104 (74.0)	47/56 (83.9)	⊢_æ .∔1	0.78 (0.54-1.12)
Molecular marker				
FLT3	19/29 (65.5)	19/22 (86.4)	⊢ ∎¦-1	0.66 (0.35-1.26)
IDH1	15/23 (65.2)	11/11 (100.0)		0.28 (0.12-0.65)
IDH2	15/40 (37.5)	14/18 (77.8)	H	0.34 (0.16-0.71)
IDH1 or IDH2	29/61 (47.5)	24/28 (85.7)	F	0.34 (0.20-0.60)
TP53	34/38 (89.5)	13/14 (92.9)	► 	0.76 (0.40-1.45)
NPM1	16/27 (59.3)	14/17 (82.4)		0.73 (0.36-1.51)
		0.1	1.0	10.0
		-	Azacitidine plus Venetoclax Better Azacitidine plus Placebo Better	

VIALE-A: Patients with ≥8 Weeks Transfusion-Free Interval

DiNardo C et al. EHA 2020; Abstract LB2601.

VIALE-A: Selected Adverse Events

Event	Azacitidine–Venetoclax Group (N=283)		Azacitidine–Placebo Group (N=144)		
	All Grades†	≥Grade 3‡	All Grades†	≥Grade 3 <u>‡</u>	
		number of patient	rs (percent)		
Hematologic adverse events	236 (83)	233 (82)	100 (69)	98 (68)	
Thrombocytopenia	130 (46)	126 (45)	58 (40)	55 (38)	
Neutropenia	119 (42)	119 (42)	42 (29)	41 (28)	
Febrile neutropenia	118 (42)	118 (42)	27 (19)	27 (19)	
Anemia	78 (28)	74 (26)	30 (21)	29 (20)	
Leukopenia	58 (21)	58 (21)	20 (14)	17 (12)	
Serious adverse events∬	235 (83)	232 (82)	105 (73)	102 (71)	
Febrile neutropenia	84 (30)	84 (30)	15 (10)	15 (10)	
Anemia	14 (5)	14 (5)	6 (4)	6 (4)	
Neutropenia	13 (5)	13 (5)	3 (2)	3 (2)	
Atrial fibrillation	13 (5)	10 (4)	2 (1)	2 (1)	
Pneumonia	47 (17)	46 (16)	32 (22)	31 (22)	
Sepsis	16 (6)	16 (6)	12 (8)	12 (8)	

VIALE-C: Overall Survival Subgroup Analysis

	Venetoc	lax + LDAC	Plac	ebo + LDAC			
	n/N (%)	Median months (95% CI)	n/N (%)	Median months (95% CI)			HR (95% CI)
All Subjects	99/143 (69.2)	8.4 (5.9, 10.1)	54/68 (79.4)	4.1 (3.1, 8.1)	⊢ ∎i		0.72 (0.51 1.00)
Age (years)							0.72 (0.51, 1.00)
18 - < 75	41/61 (67.2)	9.8 (5.6, 11.2)	20/28 (71.4)	6.5 (2.0, 9.7)			
≥ 75	58/82 (70.7)	6.6 (4.6, 9.7)	34/40 (85.0)	3.6 (3.0, 8.9)	⊢ ∎		0.80 (0.47, 1.37)
AML Status							0.67 (0.44, 1.03)
De novo	53/85 (62.4)	9.2 (7.2, 11.3)	36/45 (80.0)	6.5 (3.1, 9.8)			0.65 (0.42 0.99)
Secondary	46/58 (79.3)	5.6 (3.4, 9.8)	18/23 (78.3)	3.2 (1.8, 7.9)	⊢ ■+		0.77 (0.45, 1.34)
Prior HMA							0.11 (0.40, 1.04)
Yes	24/28 (85.7)	5.6 (3.4, 9.6)	11/14 (78.6)	4.1 (2.2, 9.7)			0.91 (0.44, 1.86)
No	75/115 (65.2)	8.9 (6.6, 10.9)	43/54 (79.6)	4.7 (2.2, 8.8)	⊢ ∎]		0.67 (0.46, 0.98)
Cytogenetic Risk							
Favorable	1/1 (100.0)	NA	2/3 (66.7)	NA			NA
Intermediate	54/90 (60.0)	10.9 (7.9, 16.4)	36/43 (83.7)	6.5 (2.2, 8.9)	⊢_∎ î		0.57 (0.37, 0.87)
Poor	40/47 (85.1)	4.4 (3.0, 6.4)	15/20 (75.0)	3.6 (1.2, 9.7)	H		1.04 (0.58, 1.89)
					Favors	Favors	
					Venetoclax + LDAC	Placebo + LDAC	
				Г	· · · · · · · · · · · · · · · · · · ·		-
				0.1	1 1		10

Novel Induction and Maintenance Strategies for Younger Patients with AML; Promising Agents and Strategies Under Investigation

QUAZAR AML-001: Overall Survival Subgroup Analysis

Subgroup	No. of	Patients	2-Yr S	urvival		2-Yr Survival Difference (959	% CI)
	CC-486	Placebo	CC-486	Placebo			
			9	%		percentage points	
Overall	238	234	50.6	37.1		_ _	13.5 (4.5 to 22.5)
Age							
≥55 to <65 yr	66	68	61.3	45.1	-	•	16.2 (-0.9 to 33.4)
≥65 yr	172	166	46.7	33.9		_	12.8 (2.3 to 23.3)
≥75 yr	28	24	51.9	24.8		• • • • • • • • • • • • • • • • • • •	27.1 (0.7 to 53.4)
Cytogenetic risk at induction						1	
Intermediate	203	203	54.1	40.4		——	13.6 (3.9 to 23.4)
Poor	35	31	30.3	15.5	-	•	14.8 (-5.6 to 35.2)
Consolidation after induction							
Yes	186	192	50.8	39.2			11.6 (1.4 to 21.7)
No	52	42	50.0	27.4			22.6 (3.2 to 42.0)
Consolidation cycles							
1 or 2	180	179	50.8	37.6			13.3 (2.9 to 23.7)
3	6	13	50.0	61.5	•		-11.5 (-59.5 to 36.4)
Response at randomization							
Complete remission	183	177	49.7	36.7		—• —	13.0 (2.7 to 23.3)
Complete remission with incomplete blood count recovery	50	44	55.1	38.6	-	<u>i</u>	16.5 (-3.8 to 36.8)
MRD status at randomization							
Positive	103	116	39.5	22.0		_	17.5 (5.3 to 29.8)
Negative	133	111	58.6	51.7		•	6.9 (-5.8 to 19.5)
					-80 -60 -40 -20 (0 20 40 60 80	
					Placebo Better	CC-486 Better	

Current Management Approaches for Patients with AML and a FLT3 and/or IDH Mutation

ADMIRAL: Subgroup Analysis of Overall Survival

		Salvage		
Subgroup	Gilteritinib	Chemotherap	y Hazard Ratio for Death	
no.	of events/to	tal no. of patien	ts	
All patients	171/247	90/124		0.64
FLT3 mutation type				
FLT3 ITD alone	145/215	81/113		0.62
FLT3 TKD alone	16/21	8/10		0.69
FLT3 ITD and FLT3 TKD	6/7	0		NE
Other	4/4	1/1	-	0.70
Previous use of FLT3 inhibitor				
Yes	26/32	11/14		0.70
No	145/215	79/110		0.62
Cytogenetic risk status				
Favorable	3/4	1/1	<	0.70
Intermediate	119/182	63/89		0.60
Unfavorable	22/26	7/11		1.63
Unknown	27/35	19/23	_	0.46
Response to first-line therapy per IRT				
Relapse ≤6 mo after allogeneic HSCT	24/31	16/17		0.38
Relapse >6 mo after allogeneic HSCT	10/17	4/8		0.86
Primary refractory disease without HSCT	70/98	28/48	· · · · · · · · · · · · · · · · · · ·	0.99
Relapse ≤6 mo after composite complete remission and no HSCT	47/67	28/34		0.49
Relapse >6 mo after composite complete remission and no HSCT	20/34	14/17		0.49
Preselected chemotherapy per IRT				
High intensity	96/149	52/75		0.66
Low intensity	75/98	38/49		0.56
		0.	1 0.5 1.0 2.0	10.0

Gilteritinib Better Salvage Chemotherapy Better

ADMIRAL: Antileukemic Responses

	Gilteritinib (n = 247)	Salvage chemo (n = 124)	HR or risk difference
Complete remission (CR)	21.1%	10.5%	10.6
CR or CR with partial hematologic recovery	34.0%	15.3%	18.6
CR with partial hematologic recovery	13.0%	4.8%	Not determined
CR with incomplete hematologic recovery	25.5%	11.3%	Not determined
CR with incomplete platelet recovery	7.7%	0	Not determined
Composite CR*	54.3%	21.8%	32.5
Overall response	67.6%	25.8%	Not reported

*Composite complete remission was defined as the combination of CR, CR with incomplete hematologic recovery and CR with incomplete platelet recovery

Phase Ib Trial of Ivosidenib in Combination with Azacitidine for Newly Diagnosed AML

Clinical endpoint	N = 23
CR + CRh, n (%)	16 (70%)
CR	14 (61%)
CRh	2 (9%)
ORR, n (%)	18 (73%)
12-month survival estimate (%)	82%
Select Grade ≥3 treatment-emergent AEs	s, n (%)
Thrombocytopenia	14 (61%)
Anemia	10 (43.5%)
Febrile neutropenia	10 (43.5%)
ECG QT prolongation	3 (13%)
IDH differentiation syndrome	2 (9%)

CRh = CR with partial hematologic recovery

Phase Ib/II Study of Ivosidenib with Venetoclax with or without Azacitidine in Patients with Myeloid Cancer and an IDH1 Mutation

 3 x 3 dose escalation/de-escalation study exploring 4 dose levels in 25 patients with advanced MDS or MPN or newly diagnosed or R/R AML

Incidence and Management of Secondary AML (sAML)

Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: Overall Survival by Baseline Characteristics

В		CPX-351		7+3			
Subgroup	No.	Median OS, months	No.	Median OS, months		HR (95% CI) for Death	
Age							_
60-69 years	96	9.63	102	6.87	0.68 (0.49 to 0.95)	⊢	
70-75 years	57	8.87	54	5.62	0.55 (0.36 to 0.84)	▶ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
Type of AML							
Therapy-related AML	30	12.17	33	5.95	0.48 (0.26 to 0.86)	⊢	
AML with antecedent MDS or CMML	82	7.38	86	5.95	0.70 (0.50 to 0.99)		
MDS with prior HMA exposure	50	5.65	55	7.43	0.98 (0.64 to 1.51)	⊢−−−− 4	
MDS without prior HMA exposure	21	15.74	19	5.13	0.46 (0.21 to 0.97)	⊢	
CMML	11	9.33	12	2.28	0.37 (0.14 to 0.95)		
De novo AML with MDS karyotype	41	10.09	37	7.36	0.71 (0.42 to 1.20)		
Cytogenetic risk at screening							
Favorable/intermediate	71	14.72	63	8.41	0.64 (0.41 to 0.99)	⊢	
Unfavorable	72	6.60	83	5.16	0.73 (0.51 to 1.06)	F	
Baseline FLT3 mutation status							
<i>FLT3</i> wild type	116	9.33	120	5.98	0.64 (0.47 to 0.87)		
FLT3 mutation	22	10.25	21	4.60	0.76 (0.34 to 1.66)	⊢	
Overall HMA experience							
All patients with prior HMA exposure [*]	62	5.65	71	5.90	0.86 (0.59 to 1.26)		
					0.1 0.	.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6	1.8
						CPX-351 Better 7+3 Better	

Meet The Professor Optimizing the Management of Metastatic Castration-Resistant Prostate Cancer

> Tuesday, November 9, 2021 5:00 PM – 6:00 PM ET

> Faculty Simon Chowdhury, MD, PhD

> > Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

