Meet The Professor Current and Future Management of Myelofibrosis

Professor Claire Harrison

Professor of Myeloproliferative Neoplasms and Clinical Director Guy's and St Thomas' NHS Foundation Trust London, United Kingdom

Commercial Support

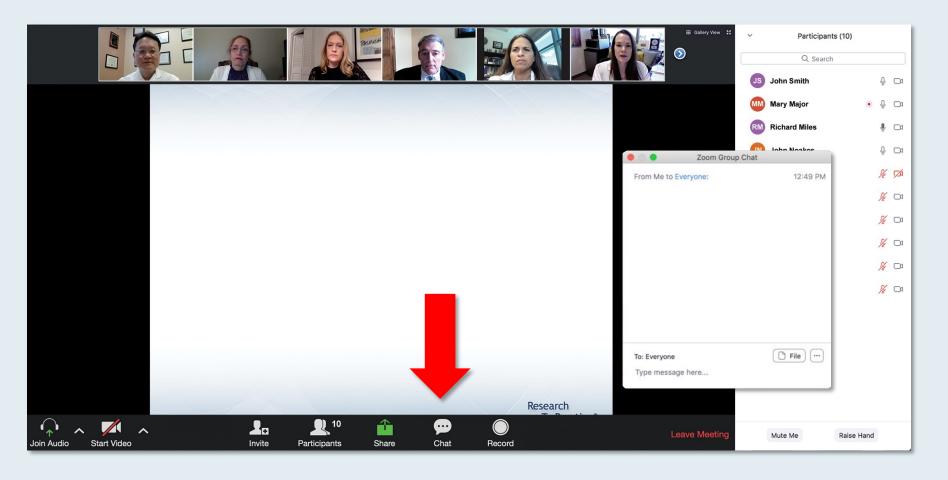
This activity is supported by educational grants from CTI BioPharma Corp and Incyte Corporation.

Dr Love — **Disclosures**

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Mersana Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

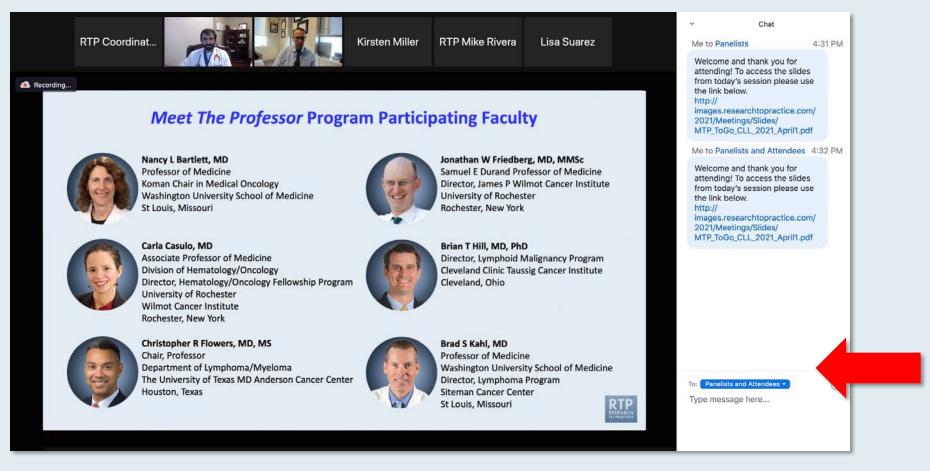
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Prof Harrison — Disclosures

Advisory Committee	AbbVie Inc, AOP Orphan Pharmaceuticals GmbH, Constellation Pharmaceuticals, CTI BioPharma Corp, Galecto, Keros Therapeutics, MorphoSys, Novartis, Roche Laboratories Inc, Sierra Oncology
Consulting Agreements	CTI BioPharma Corp, Galecto, Novartis
Contracted Research	AbbVie Inc, Constellation Pharmaceuticals, CTI BioPharma Corp, Novartis, Sierra Oncology
Data and Safety Monitoring Board/Committee	Galecto, Keros Therapeutics
Speakers Bureau	AbbVie Inc, AOP Orphan Pharmaceuticals GmbH, Bristol-Myers Squibb Company, CTI BioPharma Corp, Geron, Novartis

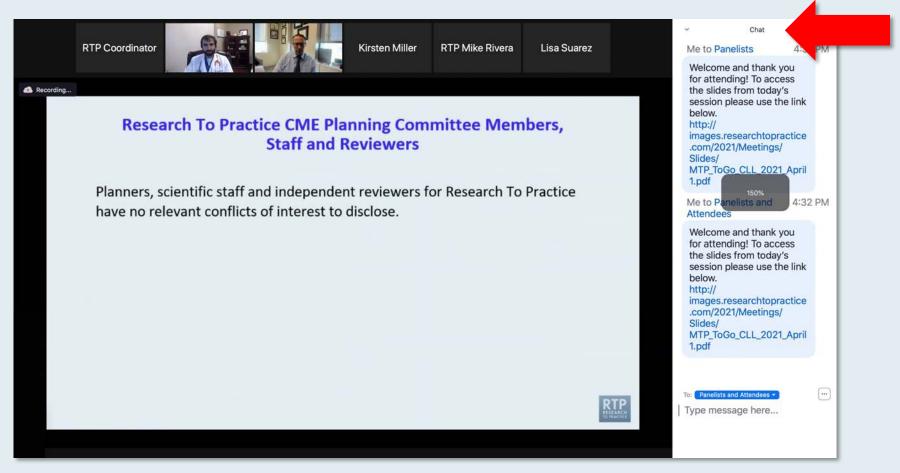
We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY

WITH DR NEIL LOVE

Key Presentations on Advances in Myeloproliferative Neoplasms from ASH 2021

DR PRITHVIRAJ BOSE

THE UNIVERSITY OF TEXAS

MD ANDERSON CANCER CENTER

Year in Review: Prostate Cancer

Tuesday, April 12, 2022 5:00 PM - 6:00 PM ET Faculty

Emmanuel S Antonarakis, MD Daniel P Petrylak, MD

Special Topics

ARASENS, PROPEL, MAGNITUDE trials

Year in Review: Hepatobiliary and Pancreatic Cancers

Wednesday, April 13, 2022 5:00 PM - 6:00 PM ET

Faculty

Tanios Bekaii-Saab, MD Philip A Philip, MD, PhD, FRCP

Special Topics

HIMALAYA, TOPAZ-1 trials

Meet The Professor Chronic Lymphocytic Leukemia

Thursday, April 14, 2022 5:00 PM - 6:00 PM ET

Faculty

Jennifer R Brown, MD, PhD

Special Topics

- Pirtobrutinib
- GLOW study

Meet The Professor Non-Small Cell Lung Cancer with an Actionable Target Beyond EGFR

Monday, April 18, 2022 5:00 PM - 6:00 PM ET

Faculty

D Ross Camidge, MD, PhD

Special Topics

 ALK+ NSCLC: First-line treatment, resistance mutations

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Prostate Cancer

Thursday, April 28, 2022

6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Kathy D Burns, RN, MSN, AGACNP-BC, OCN Robert Dreicer, MD, MS Sandy Srinivas, MD Ronald Stein, JD, MSN, NP-C, AOCNP

Ovarian Cancer

Thursday, April 28, 2022

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Jennifer Filipi, MSN, NP Kathleen N Moore, MD, MS Krishnansu S Tewari, MD Deborah Wright, MSN, APRN, AGCNS-BC

Non-Small Cell Lung Cancer

Thursday, April 28, 2022

6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET)

Faculty

Edward B Garon, MD, MS Kelly EH Goodwin, MSN, RN, ANP-BC Tara Plues, APRN, MSN Anne S Tsao, MD, MBA

Hepatobiliary Cancers

Thursday, April 28, 2022

8:20 PM - 9:20 PM PT (11:20 PM - 12:20 AM ET)

Faculty

Richard S Finn, MD Amanda K Wagner, APRN-CNP, AOCNP

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Small Cell Lung Cancer

Friday, April 29, 2022 6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Marianne J Davies, DNP, MSN, RN, APRN Matthew Gubens, MD, MS Lowell L Hart, MD Chaely J Medley, MSN, AGNP

Chronic Lymphocytic Leukemia

Friday, April 29, 2022 12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Lesley Camille Ballance, MSN, FNP-BC Amy Goodrich, CRNP Anthony R Mato, MD, MSCE Susan O'Brien, MD

Breast Cancer

Friday, April 29, 2022 6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET)

Faculty

Jamie Carroll, APRN, MSN, CNP Sara A Hurvitz, MD Kelly Leonard, MSN, FNP-BC Hope S Rugo, MD

Acute Myeloid Leukemia and Myelodysplastic Syndromes

Friday, April 29, 2022 8:20 PM – 9:20 PM PT (11:20 PM – 12:20 AM ET)

Faculty

Faculty to be announced

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Cervical and Endometrial Cancer

Saturday, April 30, 2022

6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Paula J Anastasia, MN, RN, AOCN Robert L Coleman, MD David M O'Malley, MD Jaclyn Shaver, MS, APRN, CNP, WHNP

Bladder Cancer

Saturday, April 30, 2022

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Monica Averia, MSN, AOCNP, NP-C Shilpa Gupta, MD Brenda Martone, MSN, NP-BC, AOCNP Sumanta Kumar Pal, MD

Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Prostate Cancer

Friday, May 13, 2022

8:00 AM - 10:00 AM CT (9:00 AM - 11:00 AM ET)

Faculty

Fred Saad, MD
Matthew R Smith, MD, PhD
Additional faculty to be announced.

Moderator

To be announced.

Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Urothelial Bladder Cancer

Friday, May 13, 2022 6:00 PM - 8:00 PM CT (7:00 PM - 9:00 PM ET)

Faculty
Ashish M Kamat, MD, MBBS
Additional faculty to be announced.

Moderator Sumanta Kumar Pal, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Current and Future Management of Myelofibrosis

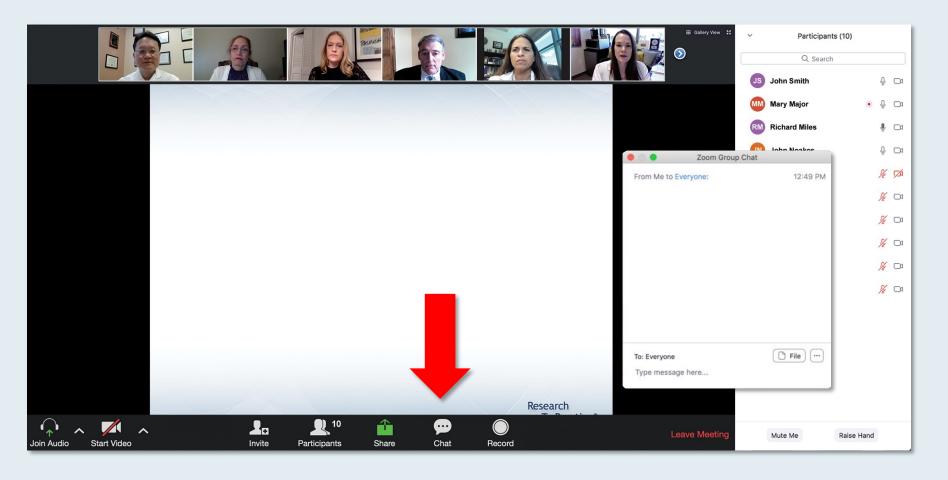
Professor Claire Harrison

Professor of Myeloproliferative Neoplasms and Clinical Director Guy's and St Thomas' NHS Foundation Trust London, United Kingdom

Meet The Professor Program Participating Faculty

Professor Claire Harrison
Professor of Myeloproliferative Neoplasms
and Clinical Director
Guy's and St Thomas' NHS Foundation Trust
London, United Kingdom

Srdan Verstovsek, MD, PhD
Professor of Medicine
Director, Hanns A Pielenz Clinical Research
Center for Myeloproliferative Neoplasms
Department of Leukemia
The University of Texas
MD Anderson Cancer Center
Houston, Texas


John Mascarenhas, MD
Director, Adult Leukemia Program
Professor of Medicine
Tisch Cancer Institute
Icahn School of Medicine at Mount Sinai
New York, New York

Moderator
Neil Love, MD
Research To Practice
Miami, Florida

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

ONCOLOGY TODAY

WITH DR NEIL LOVE

Key Presentations on Advances in Myeloproliferative Neoplasms from ASH 2021

DR PRITHVIRAJ BOSE

THE UNIVERSITY OF TEXAS

MD ANDERSON CANCER CENTER

Year in Review: Prostate Cancer

Tuesday, April 12, 2022 5:00 PM - 6:00 PM ET Faculty

Emmanuel S Antonarakis, MD Daniel P Petrylak, MD

Special Topics

ARASENS, PROPEL, MAGNITUDE trials

Year in Review: Hepatobiliary and Pancreatic Cancers

Wednesday, April 13, 2022 5:00 PM - 6:00 PM ET

Faculty

Tanios Bekaii-Saab, MD Philip A Philip, MD, PhD, FRCP

Special Topics

HIMALAYA, TOPAZ-1 trials

Meet The Professor Chronic Lymphocytic Leukemia

Thursday, April 14, 2022 5:00 PM - 6:00 PM ET

Faculty

Jennifer R Brown, MD, PhD

Special Topics

- Pirtobrutinib
- GLOW study

Meet The Professor Non-Small Cell Lung Cancer with an Actionable Target Beyond EGFR

Monday, April 18, 2022 5:00 PM - 6:00 PM ET

Faculty

D Ross Camidge, MD, PhD

Special Topics

 ALK+ NSCLC: First-line treatment, resistance mutations

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Prostate Cancer

Thursday, April 28, 2022

6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Kathy D Burns, RN, MSN, AGACNP-BC, OCN Robert Dreicer, MD, MS Sandy Srinivas, MD Ronald Stein, JD, MSN, NP-C, AOCNP

Ovarian Cancer

Thursday, April 28, 2022

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Jennifer Filipi, MSN, NP Kathleen N Moore, MD, MS Krishnansu S Tewari, MD Deborah Wright, MSN, APRN, AGCNS-BC

Non-Small Cell Lung Cancer

Thursday, April 28, 2022

6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET)

Faculty

Edward B Garon, MD, MS Kelly EH Goodwin, MSN, RN, ANP-BC Tara Plues, APRN, MSN Anne S Tsao, MD, MBA

Hepatobiliary Cancers

Thursday, April 28, 2022

8:20 PM - 9:20 PM PT (11:20 PM - 12:20 AM ET)

Faculty

Richard S Finn, MD Amanda K Wagner, APRN-CNP, AOCNP

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Small Cell Lung Cancer

Friday, April 29, 2022 6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Marianne J Davies, DNP, MSN, RN, APRN Matthew Gubens, MD, MS Lowell L Hart, MD Chaely J Medley, MSN, AGNP

Chronic Lymphocytic Leukemia

Friday, April 29, 2022 12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Lesley Camille Ballance, MSN, FNP-BC Amy Goodrich, CRNP Anthony R Mato, MD, MSCE Susan O'Brien, MD

Breast Cancer

Friday, April 29, 2022 6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET)

Faculty

Jamie Carroll, APRN, MSN, CNP Sara A Hurvitz, MD Kelly Leonard, MSN, FNP-BC Hope S Rugo, MD

Acute Myeloid Leukemia and Myelodysplastic Syndromes

Friday, April 29, 2022 8:20 PM – 9:20 PM PT (11:20 PM – 12:20 AM ET)

Faculty

Faculty to be announced

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Cervical and Endometrial Cancer

Saturday, April 30, 2022

6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Paula J Anastasia, MN, RN, AOCN Robert L Coleman, MD David M O'Malley, MD Jaclyn Shaver, MS, APRN, CNP, WHNP

Bladder Cancer

Saturday, April 30, 2022

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Monica Averia, MSN, AOCNP, NP-C Shilpa Gupta, MD Brenda Martone, MSN, NP-BC, AOCNP Sumanta Kumar Pal, MD

Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Prostate Cancer

Friday, May 13, 2022

8:00 AM - 10:00 AM CT (9:00 AM - 11:00 AM ET)

Faculty

Fred Saad, MD
Matthew R Smith, MD, PhD
Additional faculty to be announced.

Moderator

To be announced.

Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Urothelial Bladder Cancer

Friday, May 13, 2022 6:00 PM - 8:00 PM CT (7:00 PM - 9:00 PM ET)

Faculty
Ashish M Kamat, MD, MBBS
Additional faculty to be announced.

Moderator Sumanta Kumar Pal, MD

Meet The Professor Current and Future Management of Myelofibrosis

Professor Claire Harrison

Professor of Myeloproliferative Neoplasms and Clinical Director Guy's and St Thomas' NHS Foundation Trust London, United Kingdom

Commercial Support

This activity is supported by educational grants from CTI BioPharma Corp and Incyte Corporation.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Prof Harrison — Disclosures

Advisory Committee	AbbVie Inc, AOP Orphan Pharmaceuticals GmbH, Constellation Pharmaceuticals, CTI BioPharma Corp, Galecto, Keros Therapeutics, MorphoSys, Novartis, Roche Laboratories Inc, Sierra Oncology
Consulting Agreements	CTI BioPharma Corp, Galecto, Novartis
Contracted Research	AbbVie Inc, Constellation Pharmaceuticals, CTI BioPharma Corp, Novartis, Sierra Oncology
Data and Safety Monitoring Board/Committee	Galecto, Keros Therapeutics
Speakers Bureau	AbbVie Inc, AOP Orphan Pharmaceuticals GmbH, Bristol-Myers Squibb Company, CTI BioPharma Corp, Geron, Novartis

Bhavana (Tina) Bhatnagar, DO
West Virginia University
Cancer Institute Schiffler Cancer Center
Wheeling, West Virginia

Niyati A Nathwani, MD
Carolina Blood and Cancer Care
Associates
Charlotte, North Carolina

Warren S Brenner, MD Lynn Cancer Institute Boca Raton, Florida

Jeanne Palmer, MD Mayo Clinic in Arizona Phoenix, Arizona

Susannah Friemel, MD Iowa Cancer Specialists Bettendorf, Iowa

Rajni Sinha, MD, MRCP Piedmont Cancer Institute Atlanta, Georgia

Neil Morganstein, MDAtlantic Health System
Summit, New Jersey

Introduction

Module 1: Journal Club with Prof Harrison – Part 1

Module 2: Case Presentations – Part 1

- Dr Brenner: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia myelofibrosis (MF)
- Dr Palmer: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib
- Dr Morganstein: A 69-year-old woman with disease progression after multiple regimens for post-polycythemia vera MF (post-PV MF)
- Dr Bhatnagar: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence

Module 3: Faculty Survey

Module 4: Case Presentations – Part 2

- Dr Nathwani: A 66-year-old man with primary myelofibrosis (MF) with a JAK2 muation and recurrent herpes zoster reactivation on ruxolitinib
- Dr Friemel: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation
- Dr Sinha: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis
- Dr Brenner: An 85-year-old woman with primary MF and an MPL mutation

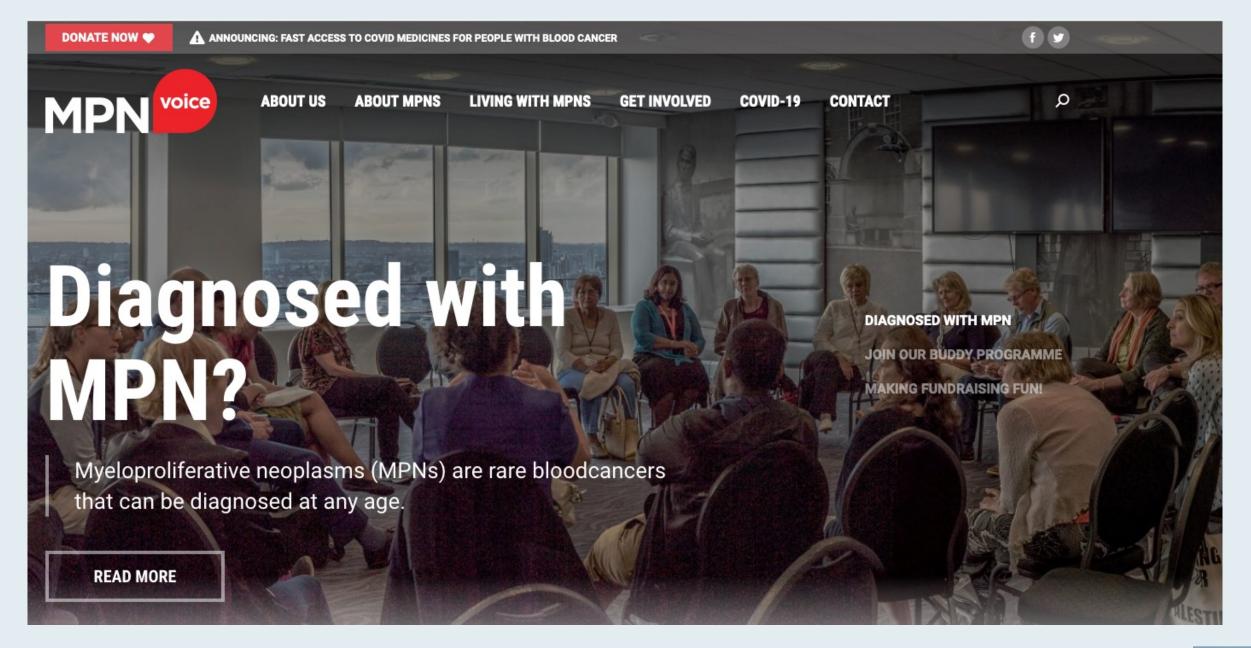
Module 5: Journal Club with Prof Harrison – Part 2

Introduction

Module 1: Journal Club with Prof Harrison – Part 1

Module 2: Case Presentations – Part 1

- Dr Brenner: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia myelofibrosis (MF)
- Dr Palmer: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib
- Dr Morganstein: A 69-year-old woman with disease progression after multiple regimens for post-polycythemia vera MF (post-PV MF)
- Dr Bhatnagar: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence


Module 3: Faculty Survey

Module 4: Case Presentations – Part 2

- Dr Nathwani: A 66-year-old man with primary myelofibrosis (MF) with a JAK2 muation and recurrent herpes zoster reactivation on ruxolitinib
- Dr Friemel: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation
- Dr Sinha: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis
- Dr Brenner: An 85-year-old woman with primary MF and an MPL mutation

Module 5: Journal Club with Prof Harrison – Part 2

Introduction

Module 1: Journal Club with Prof Harrison – Part 1

Module 2: Case Presentations – Part 1

- Dr Brenner: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia myelofibrosis (MF)
- Dr Palmer: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib
- Dr Morganstein: A 69-year-old woman with disease progression after multiple regimens for post-polycythemia vera MF (post-PV MF)
- Dr Bhatnagar: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence

Module 3: Faculty Survey

Module 4: Case Presentations – Part 2

- Dr Nathwani: A 66-year-old man with primary myelofibrosis (MF) with a JAK2 muation and recurrent herpes zoster reactivation on ruxolitinib
- Dr Friemel: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation
- Dr Sinha: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis
- Dr Brenner: An 85-year-old woman with primary MF and an MPL mutation

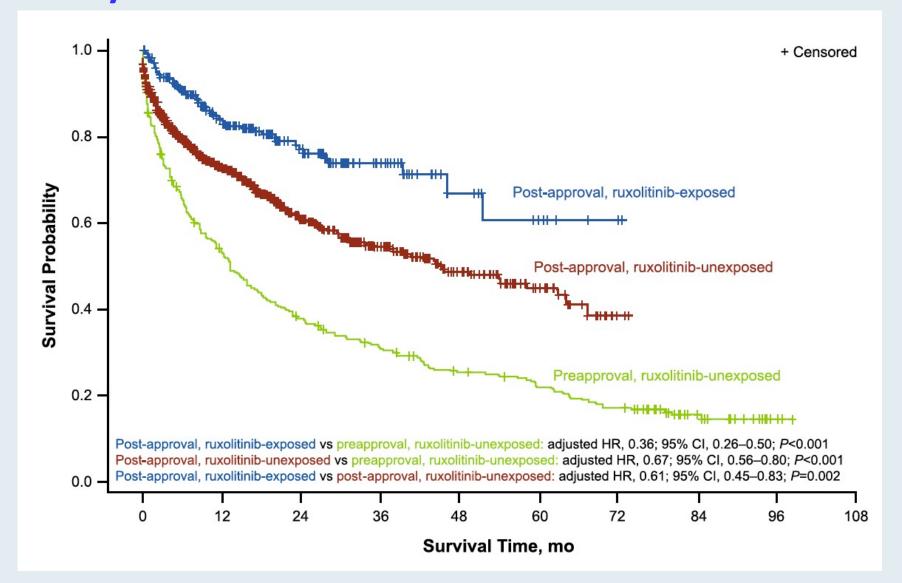
Module 5: Journal Club with Prof Harrison – Part 2

Addition of Navitoclax to Ruxolitinib Mediates Responses Suggestive of Disease Modification in Patients with Myelofibrosis Previously Treated with Ruxolitinib Monotherapy

Pemmaraju N et al.

AACR 2022; Abstract LB108.

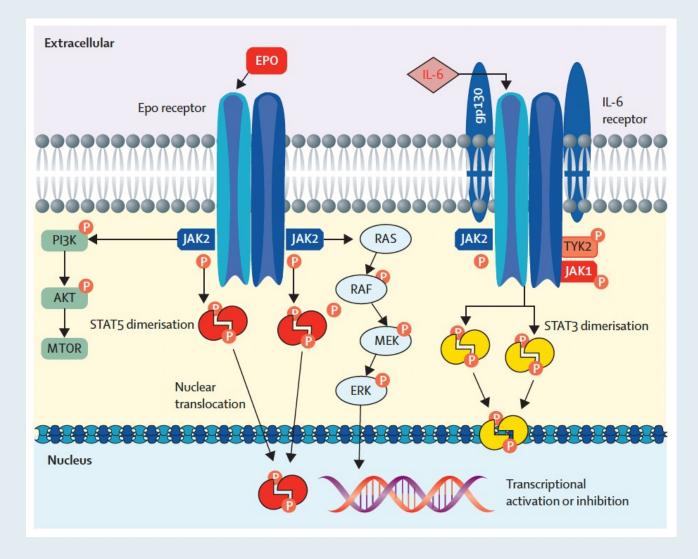
Annals of Hematology (2022) 101:131–137 https://doi.org/10.1007/s00277-021-04682-x


ORIGINAL ARTICLE

Real-world survival of US patients with intermediate- to high-risk myelofibrosis: impact of ruxolitinib approval

Srdan Verstovsek¹ · Shreekant Parasuraman² · Jingbo Yu² · Anne Shah³ · Shambhavi Kumar³ · Ann Xi³ · Claire Harrison⁴

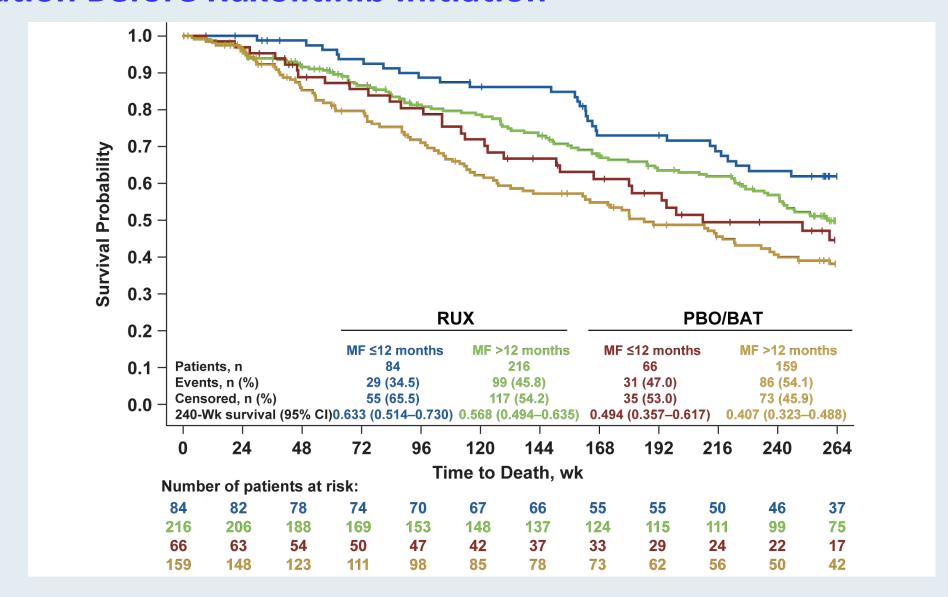
Overall Survival for Patients Newly Diagnosed with Intermediateto High-Risk Myelofibrosis


Lancet 2021;398(10302):803-16.

Current and future status of JAK inhibitors

Donal P McLornan, Janet E Pope, Jason Gotlib, Claire N Harrison

Simplified Overview of JAK-STAT Signalling via EPO Receptor and IL-6 Receptor Activation


Does Early Intervention in Myelofibrosis Impact Outcomes? A Pooled Analysis of the Comfort I and II Studies

Verstovsek S et al.

ASH 2021; Abstract 1505.

Overall Survival of Patients with MF Stratified by Disease Duration Before Ruxolitinib Initiation

Safety and tolerability of fedratinib, an oral inhibitor of Janus kinase 2, in patients with intermediate- or high-risk myelofibrosis previously treated with ruxolitinib: results from the phase 3b FREEDOM trial

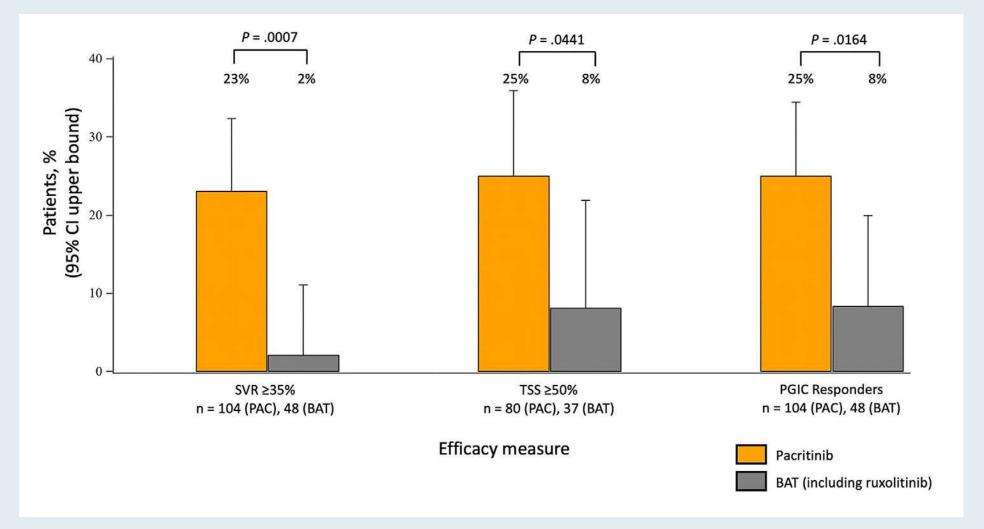
Vikas Gupta¹; Abdulraheem Yacoub²; Srdan Verstovsek³; Ruben Mesa⁴; Claire Harrison⁵; Giovanni Barosi⁶; Jean-Jacques Kiladjian⁷; H. Joachim Deeg⁸; Salman Fazal⁹; Lynda Foltz¹⁰; Ryan Mattison¹¹; Carole Miller¹²; Vinod Parameswaran¹³; Vishwanath Gharpure¹⁴; Christopher Hernandez¹⁴; Jun Zhang¹⁴; and Moshe Talpaz¹⁵

¹Princess Margaret Cancer Centre, Toronto, Canada; ²University of Kansas Medical Center, Kansas City, KS; ³The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX; ⁵Guy's and St Thomas' Hospital, London, United Kingdom; ⁶Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy; ⁷Hôpital Saint-Louis; Université de Paris, Inserm, Paris, France; ⁸Fred Hutchinson Cancer Center, Seattle, WA; ⁹Allegheny Health Network Cancer Institute, Pittsburgh, PA; ¹⁰St. Paul's Hospital, University of British Columbia, Vancouver, Canada; ¹¹University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI; ¹²Ascension Saint Agnes Hospital, Baltimore, MD; ¹³Avera Cancer Institute, Sioux Falls, SD; ¹⁴Bristol Myers Squibb, Princeton, NJ; ¹⁵University of Michigan Comprehensive Cancer Center, Ann Arbor, MI

Publication No. 389

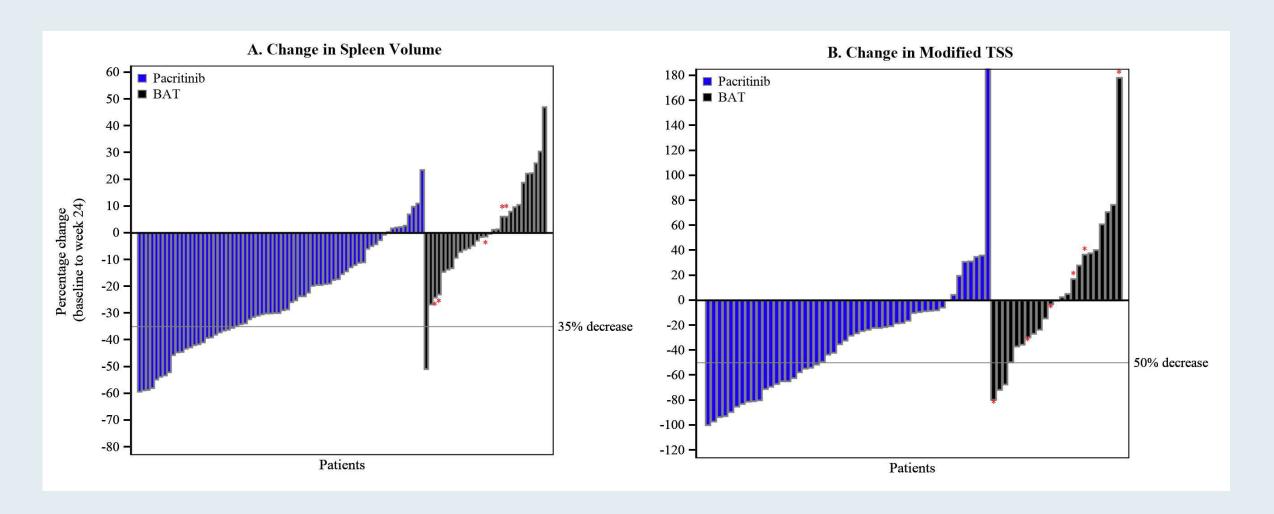
Conclusions

- Fedratinib was generally well tolerated in these older pts with MF, who had all received at least
 3 months of prior RUX Tx before study entry
- The frequency and severity of nausea, vomiting, and diarrhea were substantially lower in FREEDOM than in previous clinical trials of fedratinib, 1,2 suggesting these events can be prevented or mitigated by early implementation of GI prophylaxis
 - GI events were typically low-grade and decreased in frequency after cycle 1
 - Incidence of low-grade constipation in FREEDOM may be related to more frequent use of GI-directed therapies (eg, ondansetron, loperamide)
- Thiamine decreases were uncommon and easily managed with oral supplementation; there were no reported cases of encephalopathy (including WE)
 - Thiamine monitoring is recommended before and periodically during fedratinib Tx
- The open-label, randomized, phase 3 FREEDOM2 trial (NCT03952039)—the first controlled trial to compare fedratinib with other active MF therapies, including RUX—is currently enrolling pts with MF in the European Union, United Kingdom, China, Korea, and Australia

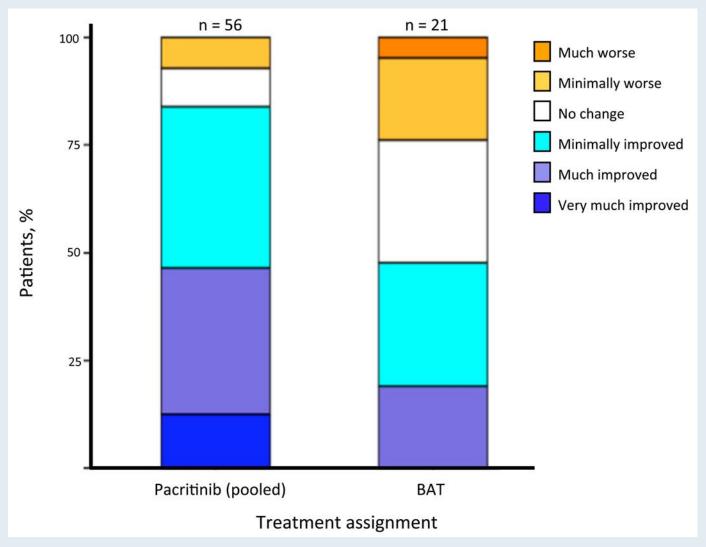

Journal of The Ferrata Storti Foundation Haematologica 2021;[Online ahead of print].

Retrospective analysis of pacritinib in patients with myelofibrosis and severe thrombocytopenia

by Srdan Verstovsek, Ruben Mesa, Moshe Talpaz, Jean-Jacques Kiladjian, Claire N. Harrison, Stephen T. Oh, Alessandro M. Vannucchi, Raajit Rampal, Bart L. Scott, Sarah A. Buckley, Adam R. Craig, Karisse Roman-Torres, and John O. Mascarenhas



Efficacy of Pacritinib versus BAT Based on 24-Week Response Rates in Patients with Severe Thrombocytopenia



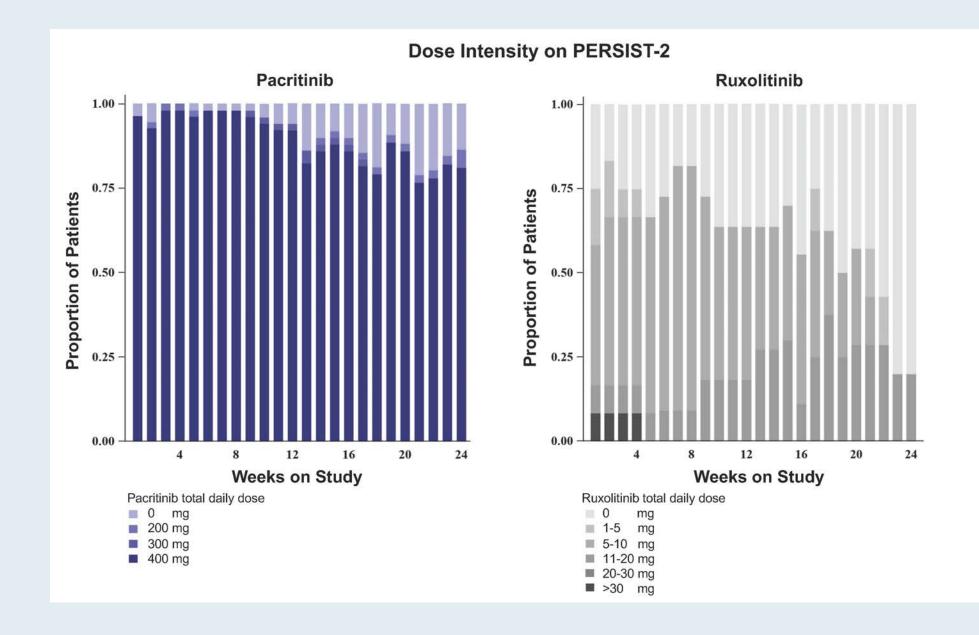
Waterfall Plots of Percent Change from Baseline

Self-Reported Symptoms in Patients Who Completed the Patient Global Impression of Change at Week 24 by Treatment Group

Long-Term Treatment with Pacritinib on a Compassionate Use Basis in Patients with Advanced Myelofibrosis

Harrison CN et al.

ASH 2021; Abstract 3649.



A Retrospective Head-to-Head Comparison between Pacritinib and Ruxolitinib in Patients with Myelofibrosis and Moderate to Severe Thrombocytopenia

Mascarahenas J et al.

ASH 2021; Abstract 3639.

Introduction

Module 1: Journal Club with Prof Harrison – Part 1

Module 2: Case Presentations – Part 1

- Dr Brenner: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia myelofibrosis (MF)
- Dr Palmer: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib
- Dr Morganstein: A 69-year-old woman with disease progression after multiple regimens for post-polycythemia vera MF (post-PV MF)
- Dr Bhatnagar: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence

Module 3: Faculty Survey

Module 4: Case Presentations – Part 2

- Dr Nathwani: A 66-year-old man with primary myelofibrosis (MF) with a JAK2 muation and recurrent herpes zoster reactivation on ruxolitinib
- Dr Friemel: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation
- Dr Sinha: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis
- Dr Brenner: An 85-year-old woman with primary MF and an MPL mutation

Module 5: Journal Club with Prof Harrison – Part 2

Case Presentation: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia MF

Dr Warren Brenner (Boca Raton, Florida)

Case Presentation: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib

Dr Jeanne Palmer (Phoenix, Arizona)

Case Presentation: A 69-year-old woman with disease progression after multiple regimens for post-PV MF

Dr Neil Morganstein (Summit, New Jersey)

Case Presentation: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence

Dr Bhavana (Tina) Bhatnagar (Wheeling, West Virginia)

Introduction

Module 1: Journal Club with Prof Harrison – Part 1

Module 2: Case Presentations – Part 1

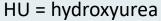
- Dr Brenner: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia myelofibrosis (MF)
- Dr Palmer: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib
- Dr Morganstein: A 69-year-old woman with disease progression after multiple regimens for post-polycythemia vera MF (post-PV MF)
- Dr Bhatnagar: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence

Module 3: Faculty Survey

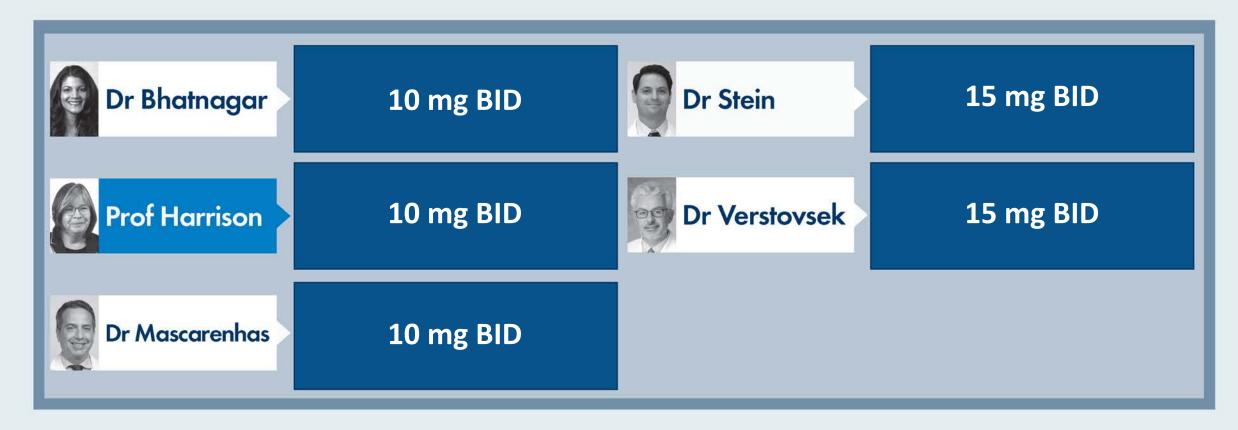
Module 4: Case Presentations – Part 2

- Dr Nathwani: A 66-year-old man with primary myelofibrosis (MF) with a JAK2 muation and recurrent herpes zoster reactivation on ruxolitinib
- Dr Friemel: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation
- Dr Sinha: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis
- Dr Brenner: An 85-year-old woman with primary MF and an MPL mutation

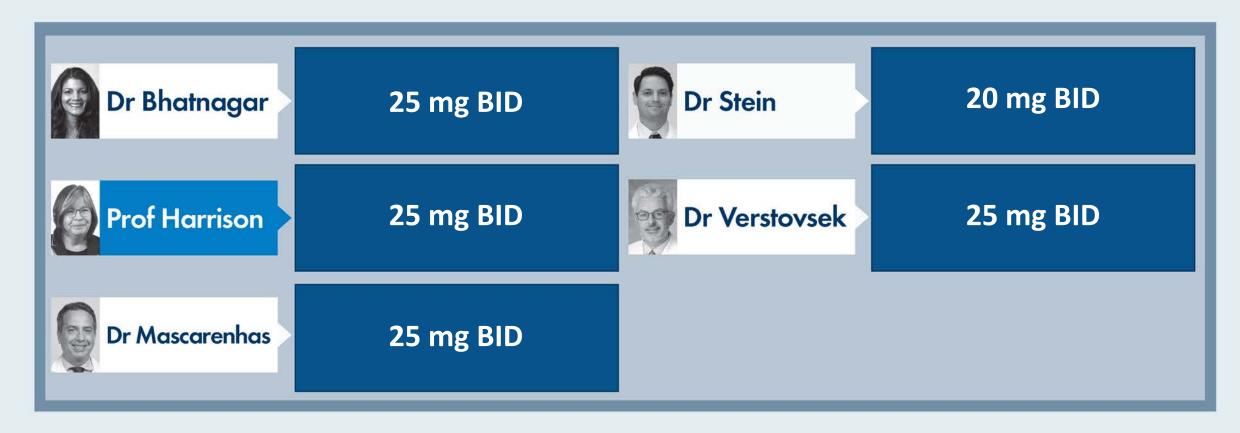
Module 5: Journal Club with Prof Harrison – Part 2


Which prognostic tool do you typically use for your patients with myelofibrosis (MF)?

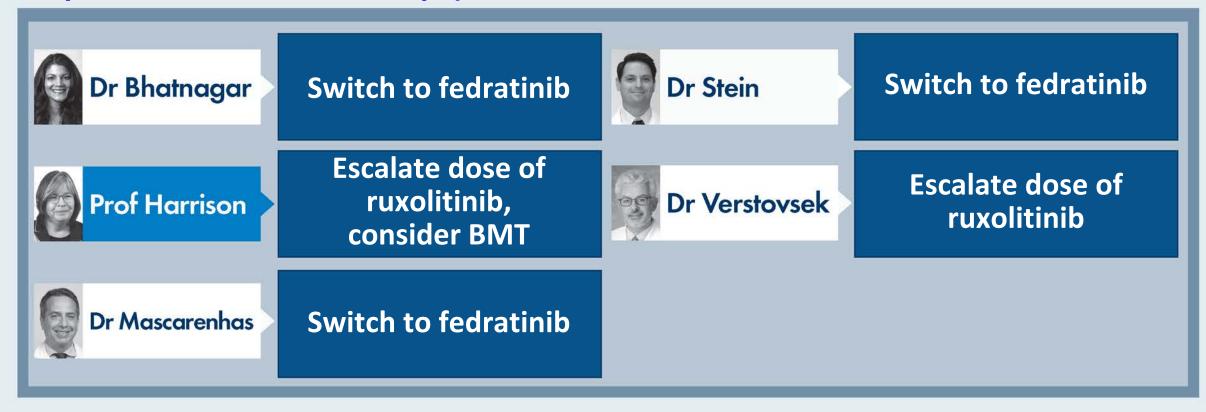
For a 65-year-old patient with <u>lower-risk</u>, symptomatic MF, which treatment would you generally recommend?

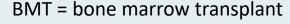


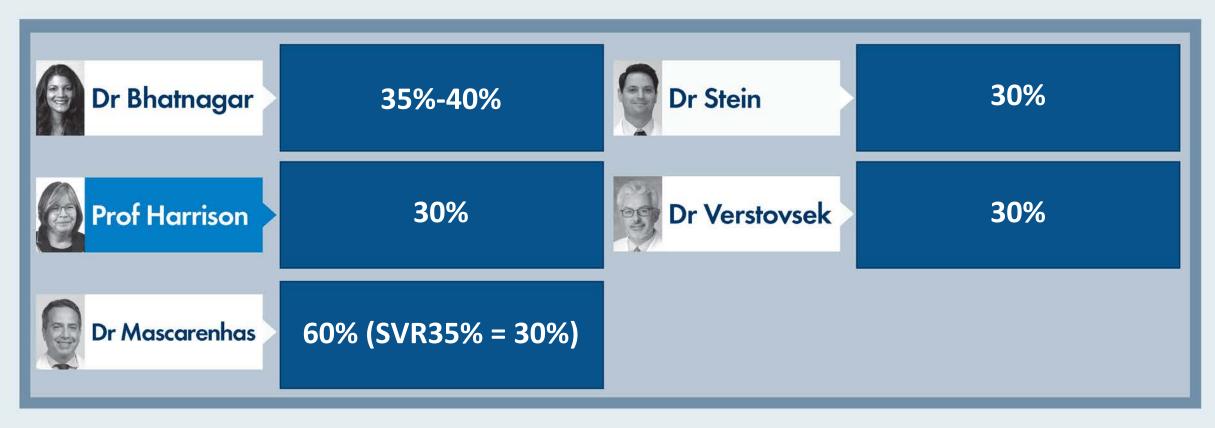
Regulatory and reimbursement issues aside and assuming you could access all these agents, for a 65-year-old patient with higher-risk, symptomatic MF, splenomegaly and a platelet count of $40,000/\mu L$, which treatment would you generally recommend (assuming the patient is not a transplant candidate)?

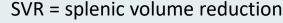


If treating a patient with higher-risk, symptomatic MF, splenomegaly and a platelet count of 150,000/µL with ruxolitinib, what starting dose would you generally use?




What is the maximum dose of ruxolitinib that you would use for a patient with MF?


Regulatory and reimbursement issues aside and assuming you could access all these agents, if a 65-year-old patient with higher-risk, symptomatic MF did not experience reduction in spleen size or improvement in symptoms after 3 months of standard-dose ruxolitinib, which of the following would you most likely attempt (assuming normal renal and hepatic function and a platelet count >200,000/ μ L)?



If you decided to switch to fedratinib for the patient in the previous scenario, what would you estimate is the likelihood that he or she would respond?

When discontinuing <u>ruxolitinib</u> due to insufficient response, intolerance or progressive disease, do you generally taper off or discontinue immediately?

Based on current clinical trial data and your personal experience, how would you compare the rapidity of splenic response with ruxolitinib to that with fedratinib?

A 65-year-old man with symptomatic, higher-risk MF and splenomegaly (baseline platelet count $110,000/\mu L$) receives ruxolitinib 15 mg BID and responds with significant clinical improvement. Approximately 3 years later, he presents with drenching night sweats, fatigue, abdominal discomfort and an increase in spleen size. Platelet count = $44,000/\mu L$, Hgb = 11.2 g/dL. Regulatory and reimbursement issues aside, what treatment would you most likely recommend next if the patient is transplant ineligible?

Do you believe pacritinib has real pharmacologic advantages over other available JAK inhibitors that make it a preferable treatment option for patients with MF and low platelet counts?

Do you believe that the risk of bleeding and/or cardiovascular toxicities is a significant concern for patients with MF receiving pacritinib?

Meet The Professor with Prof Harrison

Introduction

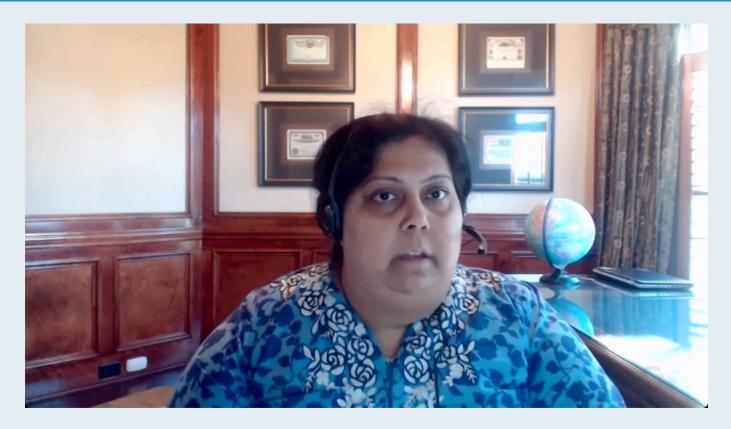
Module 1: Journal Club with Prof Harrison – Part 1

Module 2: Case Presentations – Part 1

- Dr Brenner: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia myelofibrosis (MF)
- Dr Palmer: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib
- Dr Morganstein: A 69-year-old woman with disease progression after multiple regimens for post-polycythemia vera MF (post-PV MF)
- Dr Bhatnagar: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence

Module 3: Faculty Survey

Module 4: Case Presentations – Part 2


- Dr Nathwani: A 66-year-old man with primary myelofibrosis (MF) with a JAK2 muation and recurrent herpes zoster reactivation on ruxolitinib
- Dr Friemel: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation
- Dr Sinha: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis
- Dr Brenner: An 85-year-old woman with primary MF and an MPL mutation

Module 5: Journal Club with Prof Harrison – Part 2

Module 6: Appendix of Key Publications

Case Presentation: A 66-year-old man with primary MF with a JAK2 mutation and recurrent herpes zoster reactivation on ruxolitinib

Dr Niyati Nathwani (Charlotte, North Carolina)

Case Presentation: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation

Dr Susannah Friemel (Bettendorf, Iowa)

Case Presentation: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis

Dr Rajni Sinha (Atlanta, Georgia)

Case Presentation: An 85-year-old woman with primary MF and an MPL mutation

Dr Warren Brenner (Boca Raton, Florida)

Meet The Professor with Prof Harrison

Introduction

Module 1: Journal Club with Prof Harrison – Part 1

Module 2: Case Presentations – Part 1

- Dr Brenner: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia myelofibrosis (MF)
- Dr Palmer: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib
- Dr Morganstein: A 69-year-old woman with disease progression after multiple regimens for post-polycythemia vera MF (post-PV MF)
- Dr Bhatnagar: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence

Module 3: Faculty Survey

Module 4: Case Presentations – Part 2

- Dr Nathwani: A 66-year-old man with primary myelofibrosis (MF) with a JAK2 muation and recurrent herpes zoster reactivation on ruxolitinib
- Dr Friemel: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation
- Dr Sinha: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis
- Dr Brenner: An 85-year-old woman with primary MF and an MPL mutation

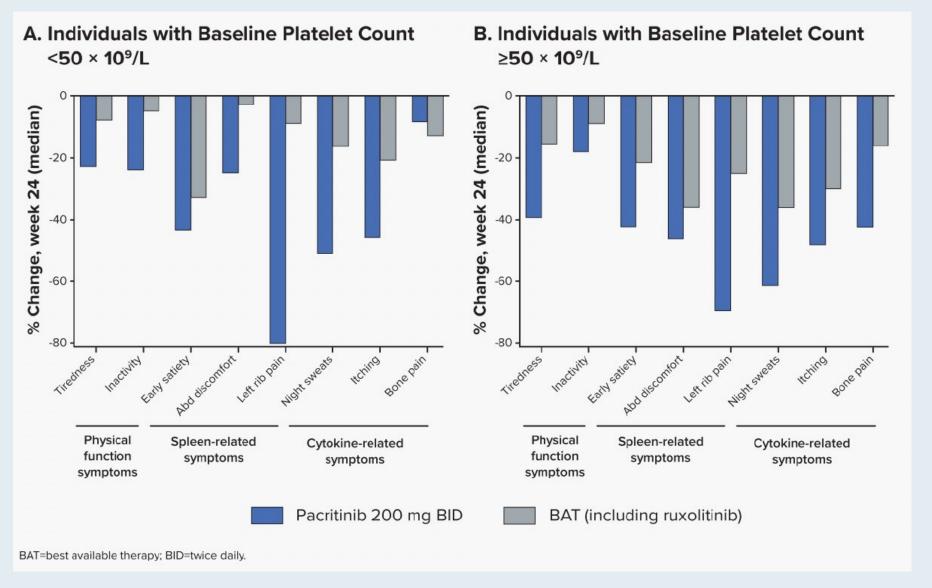
Module 5: Journal Club with Prof Harrison – Part 2

Module 6: Appendix of Key Publications

Safety Analysis of Pacritinib in Patients with Myelofibrosis and Severe Thrombocytopenia

Mascarahenas J et al.

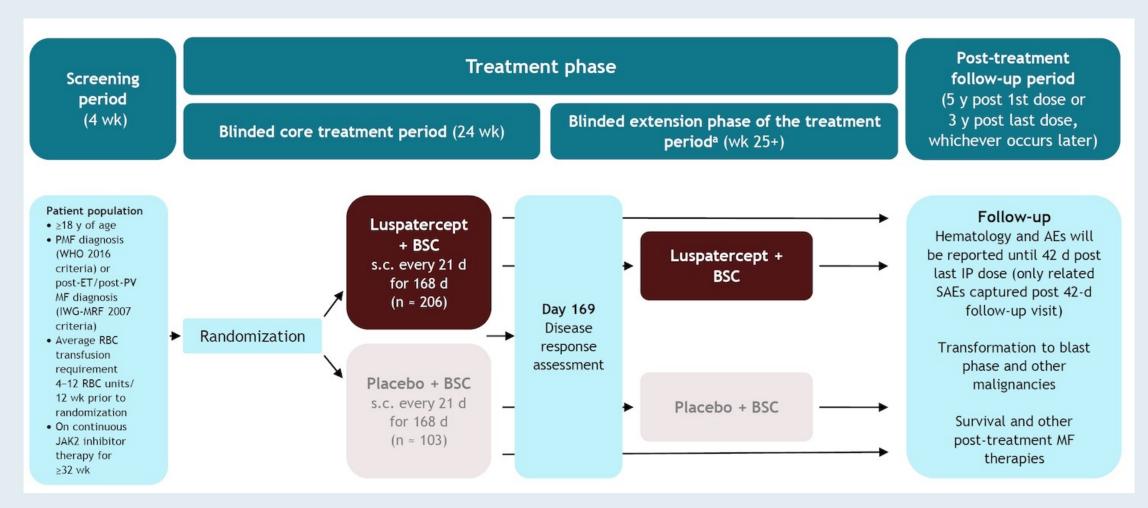
ASH 2021; Abstract 3640.


The Impact of Pacritinib on Myelofibrosis Symptoms in Patients with Moderate and Severe Thrombocytopenia: A Retrospective Analysis of Patients in the Persist-2 Study

Palmer JM et al.

ASH 2021; Abstract 3628.

Percent Change in Individual Symptom Score


INDEPENDENCE: A Phase 3 Study of Efficacy and Safety of Luspatercept versus Placebo in Patients with Myeloproliferative Neoplasm-Associated Myelofibrosis on JAK2 Inhibitor Therapy and Requiring Red Blood Cell Transfusions

Mesa RA et al.

ASH 2021; Abstract 1490.

INDEPENDENCE Trial Design

Br J Haematol 2022;[Online ahead of print].

REVIEW

How I manage myeloproliferative neoplasm-unclassifiable: Practical approaches for 2022 and beyond

Donal P. McLornan^{1,2} | Rupen Hargreaves² | Juan Carlos Hernández-Boluda³ | Claire N. Harrison¹

How I manage myeloproliferative neoplasm unclassifiable (MPN-U): Practical approaches for 2022 and beyond

- Case 1: Obstetric management for MPN-U
- Case 2: Thrombotic complications in MPN-U
- Case 3: Role of intensified therapy and allogeneic stem cell transplantation for MPN-U
- Case 4: To cytoreduce or not in MPN-U?

Curr Res Transl Med 2022; [Online ahead of print].

Available online at

ScienceDirect

www.sciencedirect.com

Elsevier Masson France

www.em-consulte.com

Original article

Diagnostic and management strategies for Myeloproliferative Neoplasm-Unclassifiable (MPN-U): An international survey of contemporary practice

Rupen Hargreaves^a, Claire N Harrison^b, Donal P McLornan^{a,b,*}

Hemasphere 2021;5(7):e611.

Low-dose Splenic Irradiation in Conjunction With Ruxolitinib to Provide Symptomatic Relief in Heavily Treated, Advanced Stage Myelofibrosis: A Case Series From a UK Tertiary Referral Center

Alesia Khan^{1,2}, Claire Woodley¹, Deepti Radia¹, George N. Mikhaeel³, Jessica Brady³, Natalia Curto Garcia¹, Patrick Harrington¹, Jennifer O'Sullivan¹, Shahram Kordasti^{1,4}, Yvonne Francis¹, Susan Asirvatham¹, Sahra Ali¹, Priya Sriskandarajah¹, Jamie Saunders¹, Hugues de Lavallade¹, Donal P. McLornan¹, Claire N. Harrison¹

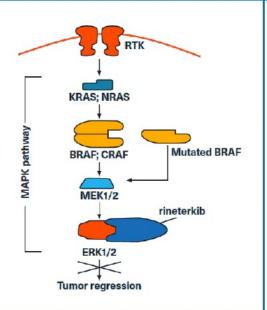
Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients W Myelofibrosis With Progression or **Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal** Response: Phase II Safety and Efficacy

Claire N. Harrison, MD¹; Jacqueline S. Garcia, MD²; Tim C. P. Somervaille, MBBS, PhD^{3,4}; James M. Foran, MD⁵; Srdan Verstovsek, MD, PhD⁶; Catriona Jamieson, MD, PhD⁷; Ruben Mesa, MD⁸; Ellen K. Ritchie, MD⁹; Srinivas K. Tantravahi, MBBS¹⁰; Pankit Vachhani, MD¹¹; Casey L. O'Connell, MD¹²; Rami S. Komrokji, MD¹³; Jason Harb, PhD¹⁴; Jessica E. Hutti, PhD¹⁴; Leanne Holes, MBA¹⁴; Abdullah A. Masud, MS, PhD¹⁴; Silpa Nuthalapati, PhD¹⁴; Jalaja Potluri, MD¹⁴; and Naveen Pemmaraju, MD⁶

J Clin Oncol 2022; [Online ahead of print].

Adore: A Randomized, Open-Label, Phase 1/2 Open-Platform Study Evaluating Safety and Efficacy of Novel Ruxolitinib Combinations in Patients with Myelofibrosis

Ross DM et al.


ASH 2021; Abstract 1489.

Study Compounds

RUX + rineterkib

- Constitutive JAK2
 signaling results in
 activation of MEK/ERK
 signaling, which may
 limit the efficacy of JAK2
 inhibition¹
- Rineterkib is a small molecule inhibitor of ERK1/2²

p53 degradation CDKN2A P14ARF P53 P53 P53 P54 PUMA GDF-15 Cell cycle arrest

RUX + siremadlin

- JAK2 mutations are thought to induce the expression of HDM2, which acts to degrade p53^{3,4}
- Siremadlin is a small molecule inhibitor of the p53/HDM2 interaction, protecting p53 from degradation⁵

RUX + crizanlizumab

- In patients with MF, impaired megakaryocytes express high levels of P selectin, which leads to increased TGF-β release and disease progression⁶
- Crizanlizumab is a mAb that binds to and inhibits Pselectin⁷

RUX + sabatolimab

- Sabatolimab is a mAb that blocks the binding of TIM-3 to its ligand PtdSer⁸
- TIM-3 blockade restores activity of exhausted T cells, and may diminish suppressor activity of regulatory T cells⁹

RUX + NIS793

- TGF-β is a pro-inflammatory cytokine that promotes bone marrow fibrosis^{10,11}
- NIS793 is a mAb that binds to TGF-β1 and TGF-β2 and displays TGF-β1- and TGF-β2-neutralizing activity¹²

1. Stivala S, et al. *J Clin Invest.* 2019;129(4):1596–1611. 2. Janku F, et al. *Journa of Clinical Oncology*. 38(15_suppl):3640-3640. 3. Saha MN, et al. *J Hematol Onco*. 2013;6:23. 4. Nakatake M, et al. *Oncogene*. 2012;31:1323–1333. 5. Stachyra-Valat T, et al. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1239. 6. Spangrude GJ, et al. *Stem Cells*. 2016;34:67–82. 7. Ataga KI, et al. *N Engl J Med*. 2017;376:429–439. 8. Sabatos-Peyton CA, et al. Poster presented at the European School of Hematology (ESH), 2021. 9. Sakuishi K, et al. *Trends Immunol*. 2011;32(8):345–349. 10. Zingariello M, et al. *Blood*. 2013;121:3345–3363. 11. Agarwal A, et al. *Stem Cell Investig*. 2016;3:5. 12. Derynck R, et al. *Nat Rev Clin Oncol*. 2021;18(1):9–34.

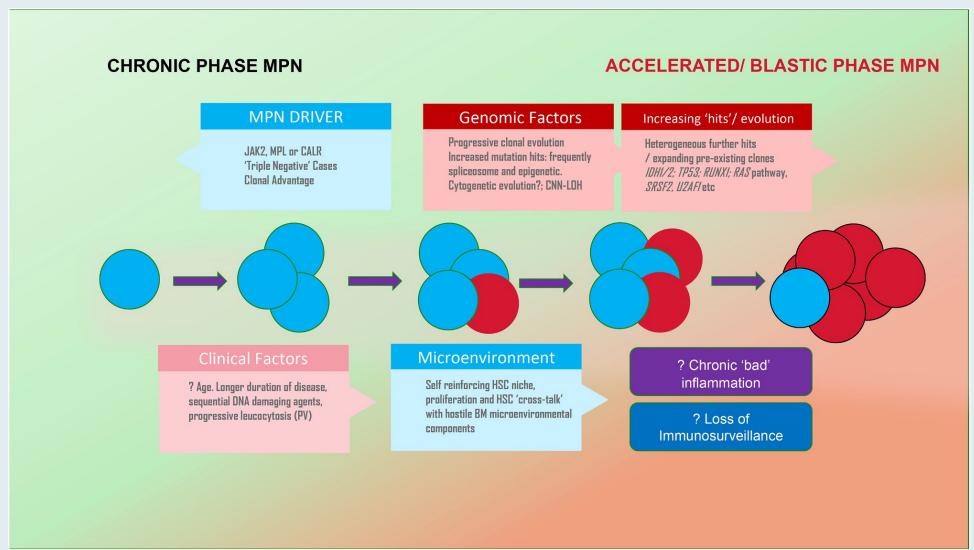
Poster presented at the American Society of Hematology (ASH) Annual Meeting & Exposition, held in-person in Atlanta, GA, USA, and virtually, December 11-14, 2021,

JC

Contents lists available at ScienceDirect

Blood Reviews Blood Rev 2022;[Online ahead of print].

journal homepage: www.elsevier.com/locate/issn/0268960X


Review

Addressing the challenges of accelerated and blast phase myeloproliferative neoplasms in 2022 and beyond

Chandan Saha^{a,1}, Luke Attwell^{b,1}, Claire N. Harrison^a, Donal P. McLornan^{a,c,*}

Underlying Pathogenetic Features Promoting Disease Progression

Leukemia www.nature.com/leu

CORRESPONDENCE

CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Second versus first wave of COVID-19 in patients with MPN

Barbui T et al. *Leukemia* 2022;36(3):897-900.

Cancer Cell 2021;39(12):1654.

Cancer Cell

Letter

Repeated vaccination against SARS-CoV-2 elicits robust polyfunctional T cell response in allogeneic stem cell transplantation recipients

Patrick Harrington,^{1,2} Katie J. Doores,³ Chandan Saha,¹ Jamie Saunders,¹ Fiona Child,¹ Richard Dillon,^{1,4} Sukran Saglam,¹ Kavita Raj,¹ Donal McLornan,¹ Daniele Avenoso,⁵ Shahram Kordasti,^{1,2} Amy O'Reilly,¹ Andreas Espehana,¹ Thomas Lechmere,³ Hataf Khan,³ Michael H. Malim,³ Claire Harrison,^{1,2} Varun Mehra,⁵ and Hugues de Lavallade^{1,2,*}

Meet The Professor with Prof Harrison

Introduction

Module 1: Journal Club with Prof Harrison – Part 1

Module 2: Case Presentations – Part 1

- Dr Brenner: A 70-year-old man with DIPSS low- to intermediate-risk post-essential thrombocythemia myelofibrosis (MF)
- Dr Palmer: A 69-year-old woman with primary MF progressing after 3 years of ruxolitinib
- Dr Morganstein: A 69-year-old woman with disease progression after multiple regimens for post-polycythemia vera MF (post-PV MF)
- Dr Bhatnagar: A 79-year-old woman with post-PV MF with a JAK2 V617F mutation and transfusion dependence

Module 3: Faculty Survey

Module 4: Case Presentations – Part 2

- Dr Nathwani: A 66-year-old man with primary myelofibrosis (MF) with a JAK2 muation and recurrent herpes zoster reactivation on ruxolitinib
- Dr Friemel: A 71-year-old man with prefibrotic primary MF with a JAK2 mutation and ruxolitinib-associated HPV reactivation
- Dr Sinha: A 23-year-old man with myeloproliferative neoplasm with a JAK2 V617F mutation and thrombocytosis
- Dr Brenner: An 85-year-old woman with primary MF and an MPL mutation

Module 5: Journal Club with Prof Harrison – Part 2

Module 6: Appendix of Key Publications

Disease Modification in Myelofibrosis: An Elusive Goal?

Pankit Vachhani, MD1; Srdan Verstovsek, MD, PhD2; and Prithviraj Bose, MD2

J Clin Oncol 2022;40(11):1147-55.

N Engl J Med 2012;366:799-807

The NEW ENGLAND JOURNAL of MEDICINE

COMFORT-I

ORIGINAL ARTICLE

A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis

Srdan Verstovsek, M.D., Ph.D., Ruben A. Mesa, M.D., Jason Gotlib, M.D.,

)., Vikas Gupta, M.D., John F. DiPersio, M.D., Ph.D.,
., Michael Deininger, M.D., Ph.D., Carole Miller, M.D.,
M.D., Moshe Talpaz, M.D., Elliott F. Winton, M.D.,
W.D., Murat O. Arcasoy, M.D., Elizabeth Hexner, M.D.,
M.D., Ronald Paquette, M.D., Azra Raza, M.D.,
1 Erickson-Viitanen, Ph.D., Iphigenia L. Koumenis, M.S.,
Victor Sandor, M.D., and Hagop M. Kantarjian, M.D.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MARCH 1, 2012

VOL. 366 NO. 9

COMFORT-II

JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis

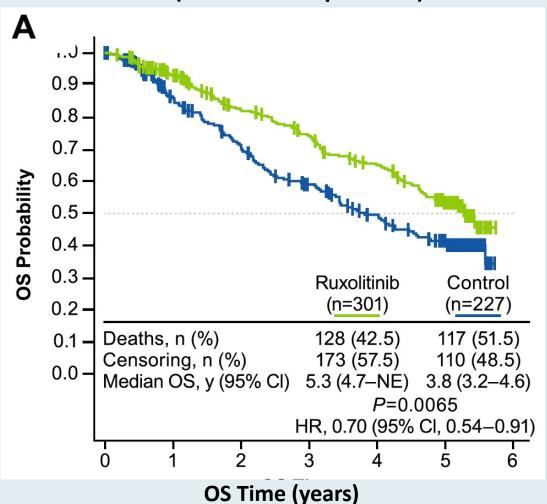
Claire Harrison, D.M., Jean-Jacques Kiladjian, M.D., Ph.D., Haifa Kathrin Al-Ali, M.D., Heinz Gisslinger, M.D., Roger Waltzman, M.D., M.B.A., Viktoriya Stalbovskaya, Ph.D., Mari McQuitty, R.N., M.P.H., Deborah S. Hunter, Ph.D., Richard Levy, M.D., Laurent Knoops, M.D., Ph.D., Francisco Cervantes, M.D., Ph.D., Alessandro M. Vannucchi, M.D., Tiziano Barbui, M.D., and Giovanni Barosi, M.D.

COMFORT-I and COMFORT-II: Ruxolitinib for Intermediate-2- or High-Risk MF

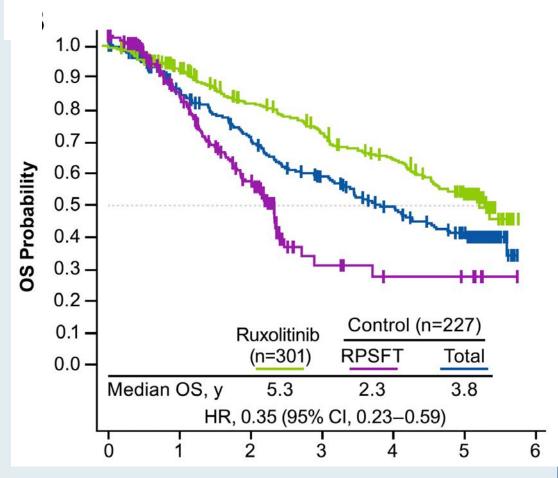
 Randomized Phase III studies in which patients with intermediate 2- or high-risk MF received ruxolitinib (15 or 20 mg BID) versus placebo (COMFORT-I, N = 309) or best available therapy (COMFORT-II, N = 149)

	COMFORT-I, Wk 24 ¹			COMFORT-II, Wk 48 ²		
Efficacy outcomes	Ruxolitinib (n = 155)	Placebo (n = 154)	<i>p</i> -value	Ruxolitinib (n = 144)	BAT (n = 72)	<i>p</i> -value
Spleen volume reduction ≥35%	41.9%	0.7%	< 0.001	28%	0	< 0.001
≥50% reduction in MF-SAF TSS	45.9%	5.3%	< 0.001	NR	NR	NR
Safety outcomes						
Discontinued due to AEs	11.0%	10.6%	NR	8%	5%	NR
Grade 3/4 anemia	45%	19%		NR	NR	
Grade 3/4 thrombocytopenia	13%	1%		NR	NR	
Grade 3/4 neutropenia	7%	2%		NR	NR	

RESEARCH Open Access


Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses

Srdan Verstovsek^{1*}, Jason Gotlib², Ruben A. Mesa³, Alessandro M. Vannucchi⁴, Jean-Jacques Kiladjian⁵, Francisco Cervantes⁶, Claire N. Harrison⁷, Ronald Paquette⁸, William Sun⁹, Ahmad Naim⁹, Peter Langmuir⁹, Tuochuan Dong¹⁰, Prashanth Gopalakrishna¹¹ and Vikas Gupta¹²




COMFORT-I and COMFORT-II Pooled Analyses: Long-Term Survival with Ruxolitinib

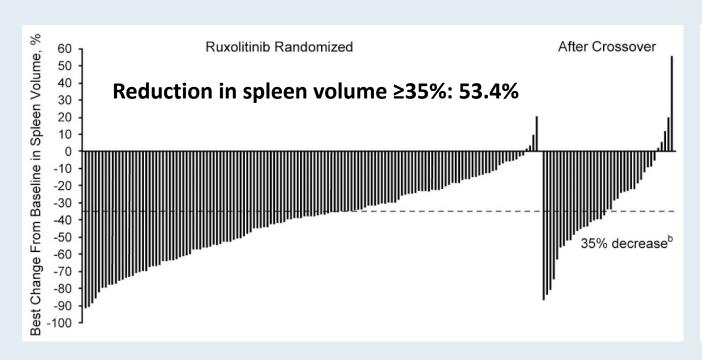
OS (5-Year ITT Population)

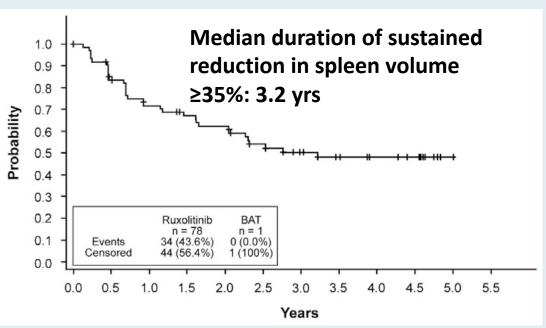
OS (Corrected for Crossover)

OPEN

Leukemia (2016) 30, 1701-1707

www.nature.com/leu


ORIGINAL ARTICLE


Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis

CN Harrison¹, AM Vannucchi², J-J Kiladjian³, HK Al-Ali⁴, H Gisslinger⁵, L Knoops⁶, F Cervantes⁷, MM Jones⁸, K Sun⁸, M McQuitty⁹, V Stalbovskaya⁹, P Gopalakrishna⁹ and T Barbui¹⁰ on behalf of the COMFORT-II Investigators¹¹

COMFORT-II Final 5-Year Analysis: Rates and Duration of Splenic Reduction

COMFORT-II Final 5-Year Analysis: Exposure-Adjusted Rates of Grade 3/4 Adverse Events

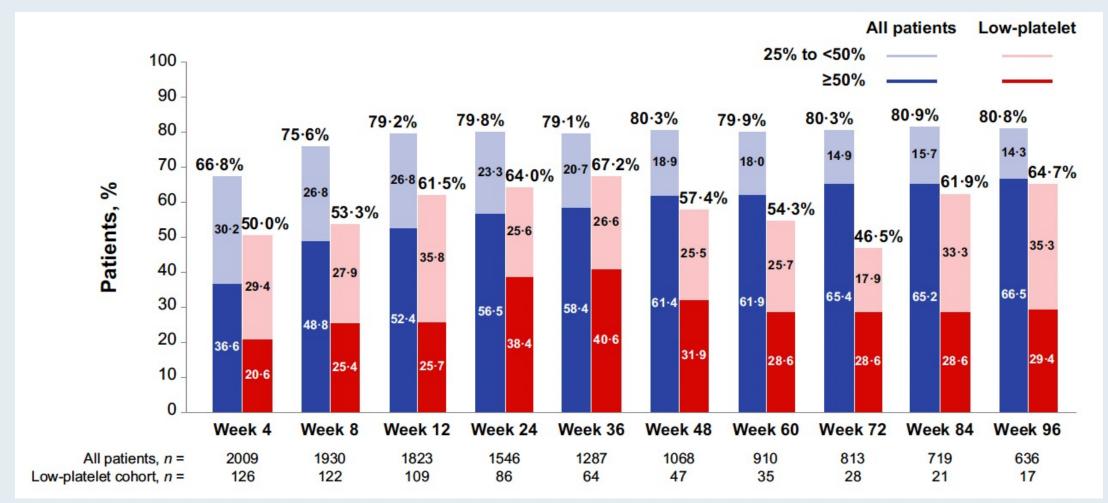
	BAT (n = 73)	Ruxolitinib (n = 191)
Any AE	36%	275
Anemia	8%	9%
Thrombocytopenia	6%	6%
Pneumonia	6%	2%
General physical health deterioration	5%	2%
Acute renal failure	0	1%

bjh research paper

Primary analysis of JUMP, a phase 3b, expanded-access study evaluating the safety and efficacy of ruxolitinib in patients with myelofibrosis, including those with low platelet counts

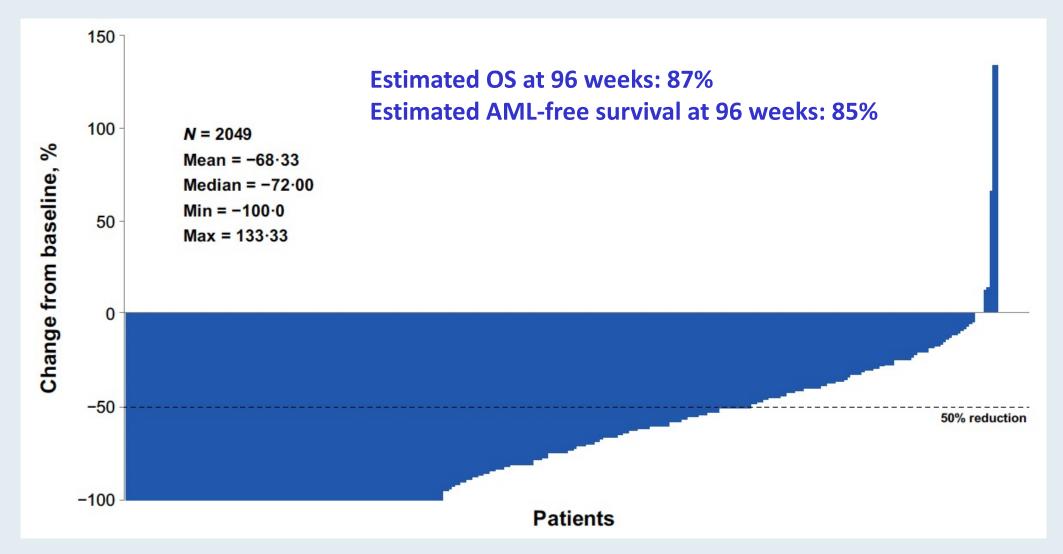
Haifa Kathrin Al-Ali, 1,† D Martin Griesshammer, 2,† D Lynda Foltz, 3
Giuseppe A. Palumbo, Bruno Martino, 5
Francesca Palandri, Anna Marina Liberati, Philipp le Coutre, Carmen García-Hernández, Andrey Zaritskey, 10
Renato Tavares, 11 Vikas Gupta, 12 Pia Raanani, 13 Pilar Giraldo, 14 Mathias
Hänel, 15 Daniela Damiani, 16 D Tomasz Sacha, 17 D Catherine Bouard, Carole Paley, 19 Ranjan Tiwari, 20 Francesco Mannelli 21 and Alessandro M.

Br J Haematol 2020;189(5):888-903



JUMP: Baseline Characteristics

Parameter	All patients (N = 2,233)	Plt count (<100 x 10 ⁹ /l) (n = 138)	Plt count (≥100 x 10 ⁹ /l) (n = 2,087)
Median age	67.0	67.5	67.0
Time since initial diagnosis	25.8 mo	36.1 mo	25.1 mo
DIPSS risk status			
Low	2.7%	0	2.9%
Intermediate-1	37.4%	23.9%	38.4%
Intermediate-2	33.8%	43.5%	33.3%
High	8.7%	8.7%	8.7%
Platelet count, x 10 ⁹ /l			
<50	<0.1%	0.7%	0
≥50 to <75	1.3%	20.3%	0
≥100 to <200	4.9%	79.0%	0
≥200	62.6%	0	67.0%

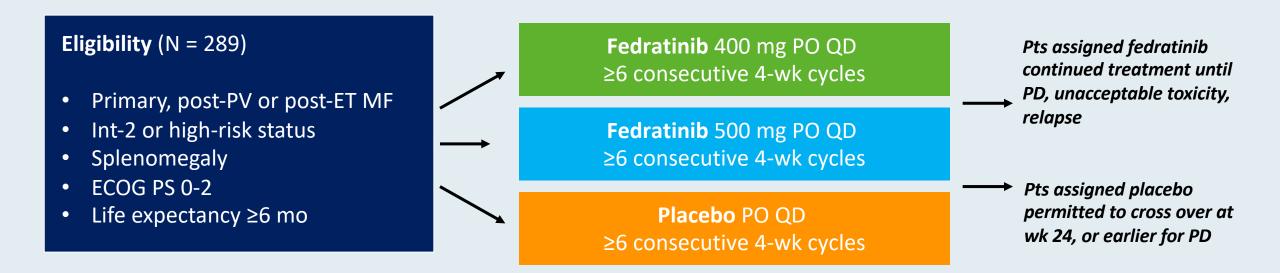


JUMP: Patients with a ≥25% and a ≥50% Decrease from Baseline in Spleen Length

JUMP: Best Percent Change from Baseline in Palpable Spleen Length at Any Time in the Overall Patient Population

bjh short report

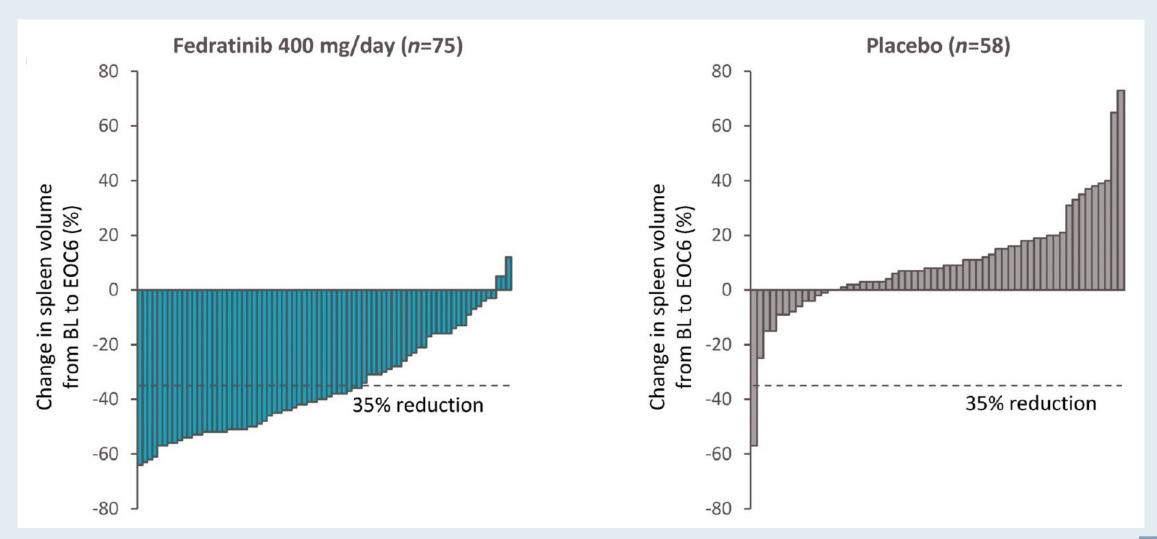
Updated results of the placebo-controlled, phase III JAKARTA trial of fedratinib in patients with intermediate-2 or high-risk myelofibrosis


Animesh Pardanani,¹ D

Ayalew Tefferi,¹ D Tamás Masszi,²
Elena Mishchenko,³ Mark Drummond,⁴
Eric Jourdan,⁵ Alessandro Vannucchi,⁶
Mindaugas Jurgutis,⁷ Vincent Ribrag,⁸
Alessandro Rambaldi,^{9,10}
Liang Piu Koh,¹¹ Shelonitda Rose,¹²
Jun Zhang¹² and Claire Harrison¹³

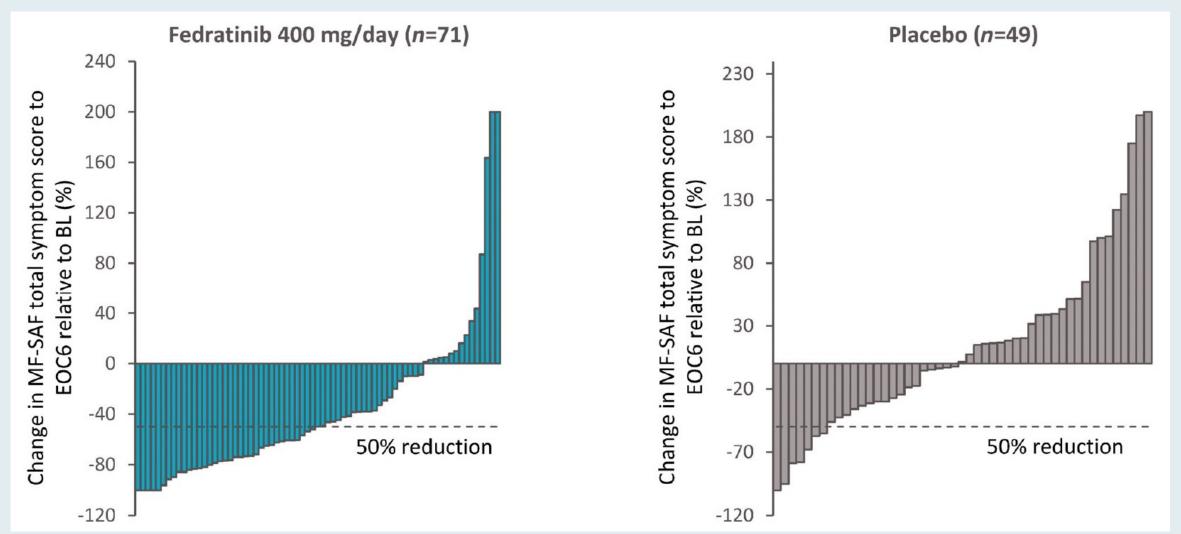
Br J Haematol 2021;195:244-8.

JAKARTA Phase III Study Design



Primary endpoint: Spleen response (≥35% reduction in spleen volume vs BL) at Wk 24, and confirmed 4 wks later

Secondary endpoints: Symptom response (≥50% reduction in TSS), safety

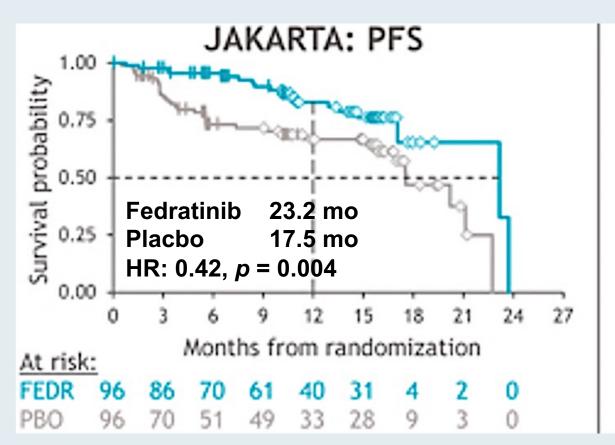


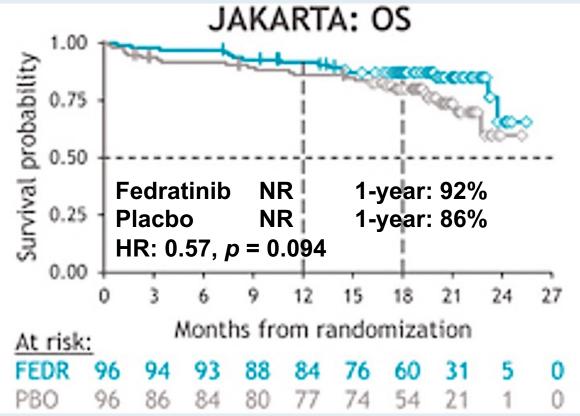
JAKARTA: Change in Spleen Volume from Baseline to End of Cycle 6

JAKARTA: Change in Total Symptom Scores from Baseline to End of Cycle 6

JAKARTA: Selected Adverse Events

	Fedratinib 400 mg (n = 96)		Placebo (n = 95)				
Adverse events	All grades	Grade ≥3	All grades	Grade ≥3			
Diarrhea	66%	5%	16%	0			
Nausea	62%	0	15%	0			
Anemia	40%	30%	14%	7%			
Vomiting	39%	3.1%	5%	0			
Fatigue	19%	5%	16%	1.1%			
Laboratory parameters							
Anemia	74%	34%	32%	10%			
Thrombocytopenia	47%	12%	26%	10%			
Neutropenia	23%	5%	13%	3.3%			
Biochemistry							
Lipase increased	35%	10%	7%	2.2%			


Overall and Progression-Free Survival in Patients Treated with Fedratinib as First-Line Myelofibrosis (MF) Therapy and After Prior Ruxoltinib (RUX): Results from the JAKARTA and JAKARTA2 Trials


Harrison C et al.

EHA 2021; Abstract S203.

JAKARTA: Survival Analysis

New Option for the Management of MF in Patients with Thrombocytopenia: Pacritinib

Pacritinib Granted Accelerated Approval for MF with Severe Thrombocytopenia

Press Release: February 28, 2022

"Pacritinib received accelerated approval from the FDA at a twice daily, 200-mg dose for patients with intermediate- or high-risk primary or secondary myelofibrosis who are experiencing severe thrombocytopenia with a platelet count below 50×10^9 /L. The agency's decision comes from results of the phase 3 PERSIST-2 study (NCT02055781).

Treatment with pacritinib at 200 mg resulted in a reduction in spleen volume of at least 35% for 29% of patients, vs 3% of patients who received the best available therapy, including ruxolitinib (Jakafi). As part of the post-approval plans for pacritinib, the phase 3 PACIFICA trial (NCT03165734) will be completed with results estimated in 2025.

The PERSIST-2 study, which assessed the use of pacritinib compared with best available therapy in patients with myelofibrosis and thrombocytopenia, enrolled 311 patients. Those who enrolled were randomized into 1 of 3 treatment regimens, including pacritinib once daily (n = 104), pacritinib twice daily (n = 107), or a best alternative treatment (n = 100). Best alternative treatments included ruxolitinib (45%), hydroxyurea (19%), and prednisone and/or prednisolone (13%)."

Phase III PERSIST-1 and PERSIST-2 Study Designs

PERSIST-1

Key Eligibility

- Primary or secondary MF
- Any platelet count
- No prior treatment with JAK2 inhibitors

Randomization

- 2:1 pacritinib vs.
 BAT
- N=327

Pacritinib 400mg QD

BAT (excluding ruxolitinib)

Primary Endpoint

• ≥35% SVR at Week 24

PERSIST-2

Key Eligibility

- Primary or secondary MF
- Platelet count <100,000/µL
- Prior JAK2 inhibitor therapy allowed

Randomization

- 1:1:1 pacritinib vs. pacritinib vs. BAT
- N=311 (211 completed 24 weeks on study)

Pacritinib 400mg QD

Pacritinib 200mg BID

BAT (including ruxolitinib)

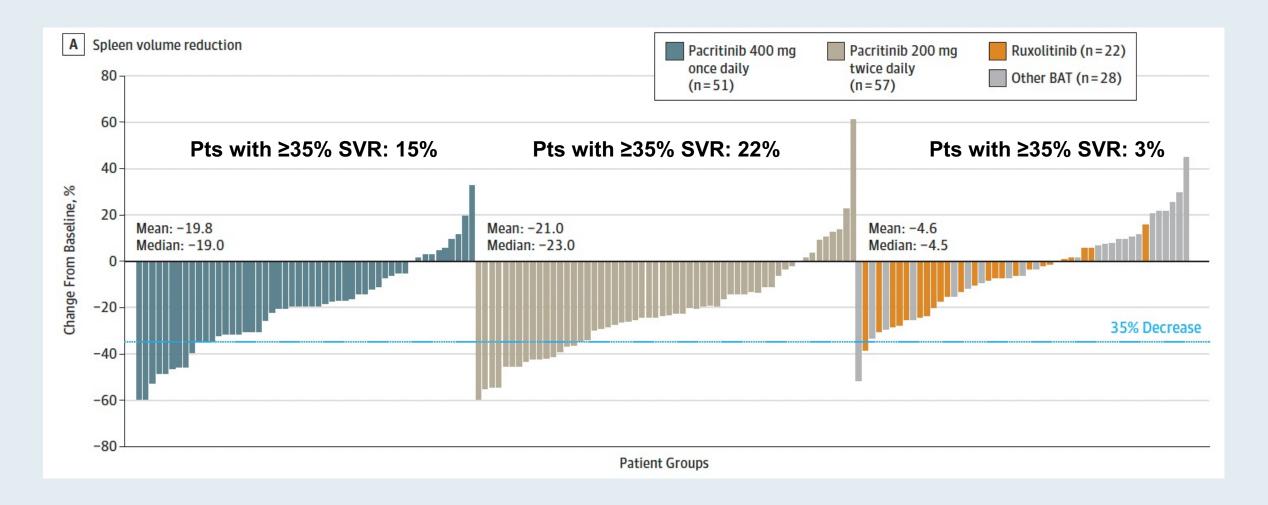
Co-Primary Endpoints*

- ≥35% SVR at Week 24
- ≥50% TSS reduction at Week 24

BAT, best available therapy; **SVR**, spleen volume response; **TSS**, total symptom score * Primary analysis compared pooled pacritinib (400mg QD and 200mg BID) vs. BAT

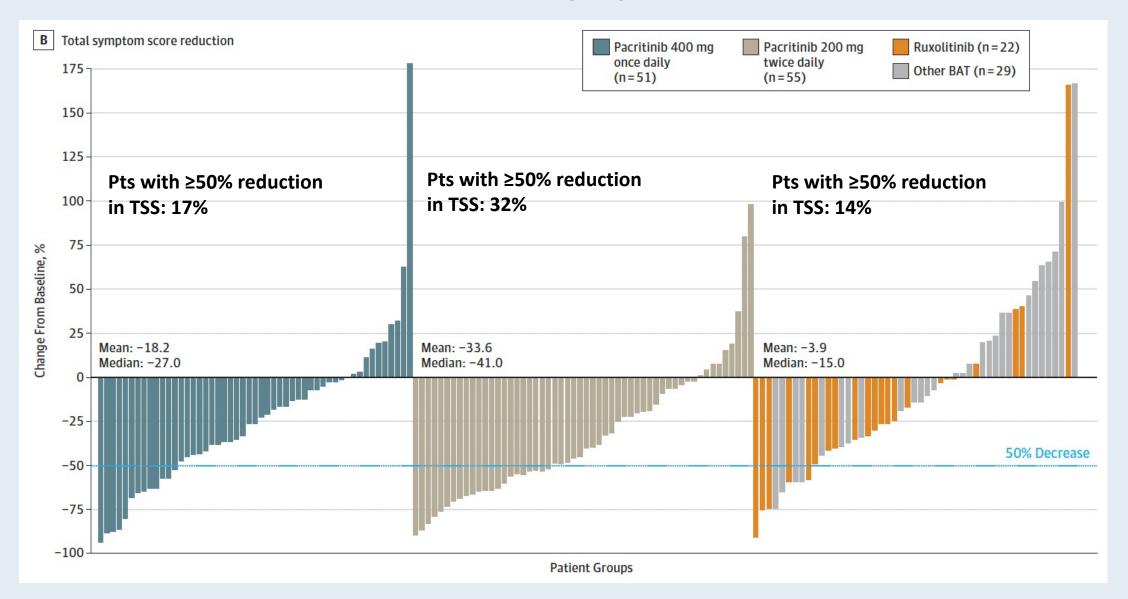
Research

JAMA Oncol 2018;4(5):652-9.


JAMA Oncology | Original Investigation

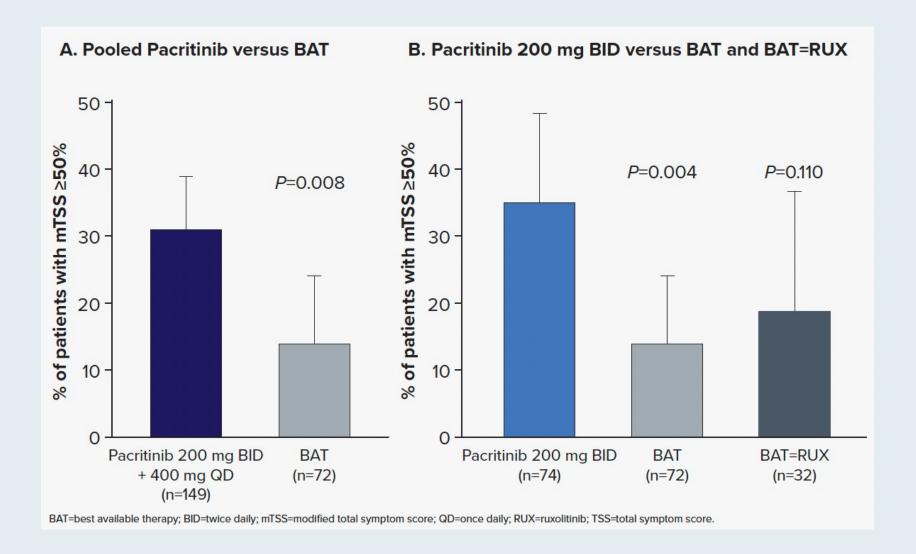
Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis A Randomized Clinical Trial

John Mascarenhas, MD; Ronald Hoffman, MD; Moshe Talpaz, MD; Aaron T. Gerds, MD; Brady Stein, MD; Vikas Gupta, MD, FRCP, FRCPath; Anita Szoke, MD; Mark Drummond, MBChB, PhD, FRCPath; Alexander Pristupa, MD; Tanya Granston, PhD; Robert Daly, PhD; Suliman Al-Fayoumi, PhD; Jennifer A. Callahan, MS; Jack W. Singer, MD; Jason Gotlib, MD; Catriona Jamieson, MD, PhD; Claire Harrison, MD, DM, FRCP, PRCPath; Ruben Mesa, MD, FACP; Srdan Verstovsek, MD, PhD



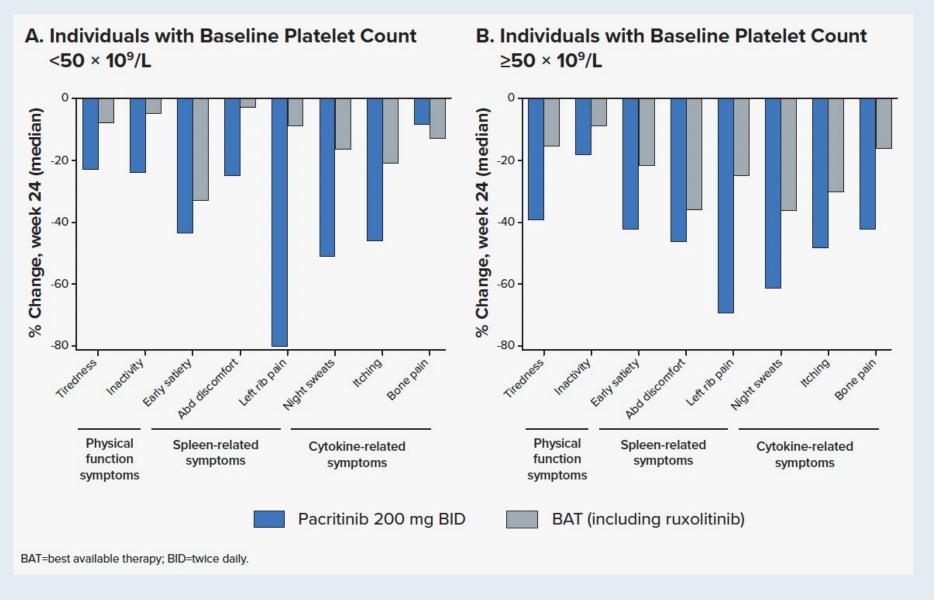
PERSIST-2: Spleen Volume Reduction

PERSIST-2: Reduction in Total Symptom Score

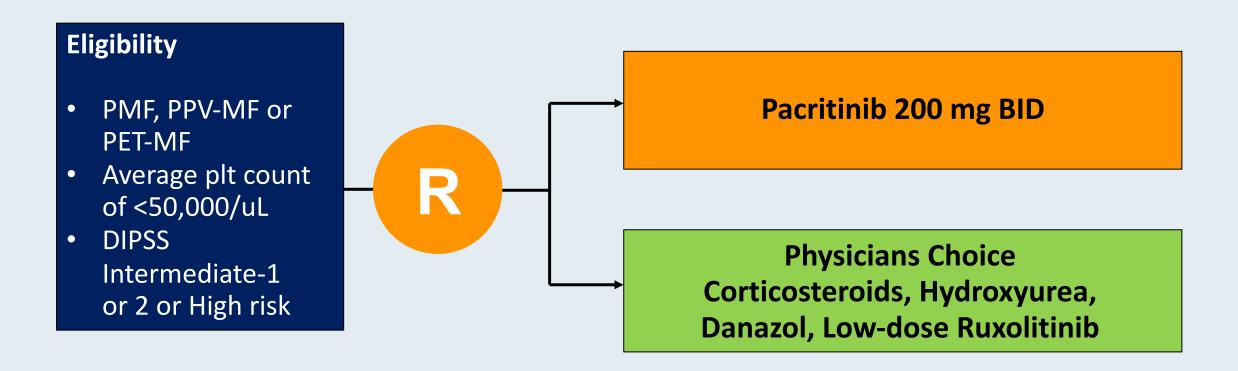

The Impact of Pacritinib on Myelofibrosis Symptoms

Palmer J et al.

ASH 2021; Abstract 3628.



Modified TSS Response Rates (Week 24) in PERSIST-2

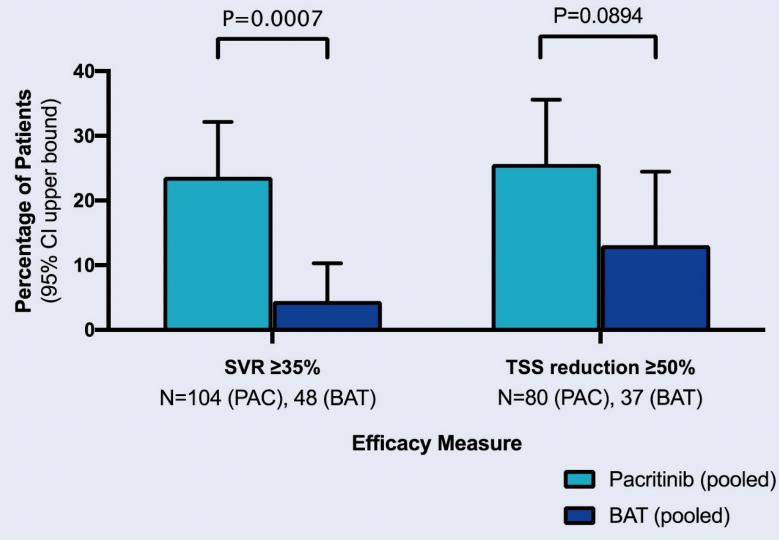


Percent Change in Individual Symptom Scores in PERSIST-2

PACIFICA (PAC303) Study Design

Primary Endpoint: Spleen volume

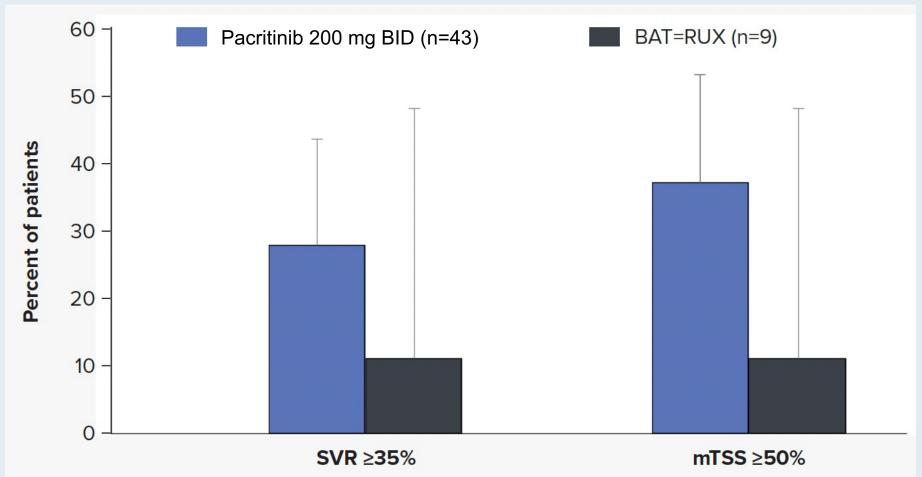
Secondary Endpoints: Total Symptom Score, OS, Patient Global Impression of Change


Pacritinib Demonstrates Efficacy Versus Best Available Therapy in Myelofibrosis Patients with Severe Thrombocytopenia in Two Phase 3 Studies

Mesa RA et al.

ASH 2019; Abstract 4195.

PERSIST-1 and PERSIST-2: Pacritinib versus BAT Efficacy Outcomes (Week 24) in Patients with Baseline Platelet Counts <50,000/μL


A Retrospective Head-to-Head Comparison Between Pacritinib and Ruxolitinib in Patients with Myelofibrosis and Moderate-to-Severe Thrombocytopenia

Mascarenhas J et al.

ASH 2021; Abstract 3639.

Proportion of Patients Meeting SVR and Modified TSS Thresholds in a Retrospective Analysis of PERSIST-2

Data in patients randomized prior to September 7, 2015, based on ITT truncated on the day of the FDA clinical hold. Differences between groups were not significant. Error bars are the 95% confidence interval upper bound. BAT=best available therapy; BID=twice daily; FDA=US Food and Drug Administration; ITT=intention-to-treat; mTSS=modified total symptom score; RUX=ruxolitinib; SVR=spleen volume reduction.

Safety Analysis of Pacritinib in Patients with Myelofibrosis and Severe Thrombocytopenia

Mascarenhas J et al.

ASH 2021; Abstract 3640.

Overview of Adverse Events in the Target Population in PERSIST-2 and PAC203

	PERSIST-2		PAC203	Total (pooled)	
AE, n (%)	Pacritinib 200 mg BID (n=47)	BAT ^a (n=42)	pacritinib 200 mg BID (n=24)	pacritinib 200 mg BID (N=71)	
TEAE (all grades)	46 (98)	38 (91)	24 (100)	70 (99)	
Grade ≥3 TEAE	39 (83)	26 (62)	23 (96)	62 (87)	
Treatment-emergent serious AE	28 (60)	16 (38)	16 (67)	44 (62)	
Grade ≥3 treatment-emergent serious AE	25 (53)	15 (36)	14 (58)	39 (55)	
TEAE leading to study drug discontinuation	10 (21)	7 (17)	4 (17)	14 (20)	
TEAE with an outcome of death	6 (13)	8 (19)	3 (13)	9 (13)	

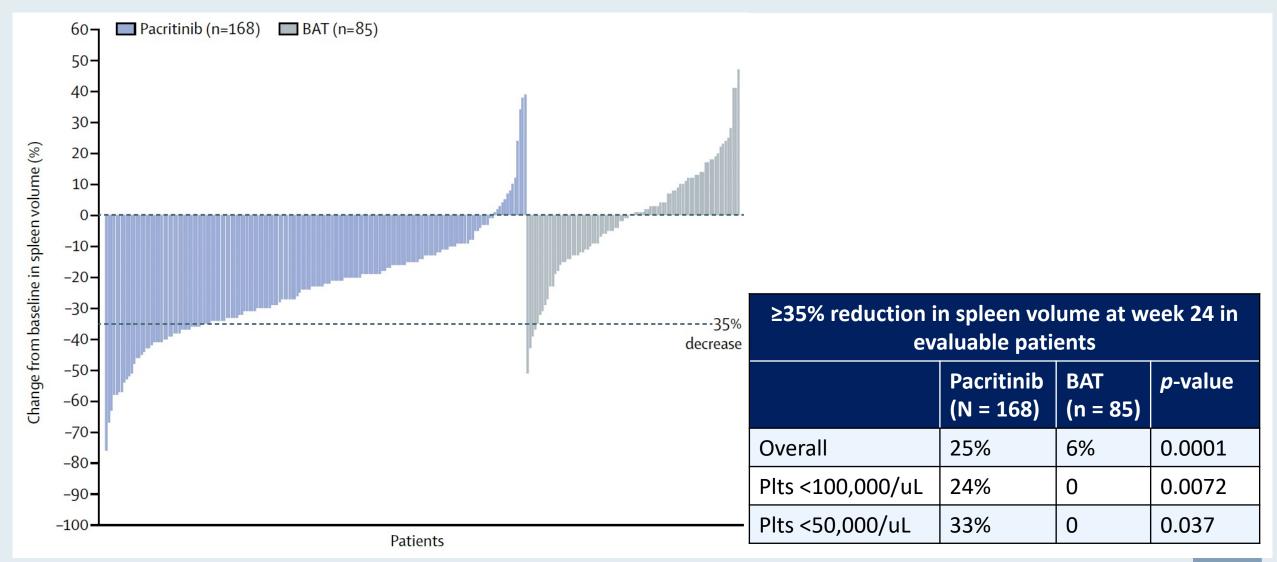
^aThe most common BAT was ruxolitinib (40%) and watch and wait (31%).
AE=adverse event; BAT=best available therapy; BID=twice daily; TEAE=treatment-emergent adverse event.

Summary of Hemorrhage AEs, Cardiac AEs and MACE in the Target Population in PERSIST-2 and PAC203

	PERSIST-2		PAC203	Total (pooled)			
AE, n (%)	Pacritinib 200 mg BID (n=47)	BAT ^a (n=42)	pacritinib 200 mg BID (n=24)	pacritinib 200 mg BID (N=71)			
Treatment-emergent hemorrhage AEs (SMQ) ^b							
Any-grade bleeding AEs	23 (49)	26 (62)	18 (75)	41 (58)			
Serious bleeding AEs	6 (13)	4 (10)	2 (8)	8 (11)			
Grade ≥3 bleeding AEs	8 (17)	5 (12)	3 (13)	11 (16)			
Treatment-emergent card	iac AEs (SMQ)b						
Any-grade cardiac AEs	16 (34)	19 (45)	13 (54)	29 (41)			
Serious cardiac AEs	4 (9)	9 (21)	3 (13)	7 (10)			
Grade ≥3 cardiac AEs	4 (9)	8 (19)	2 (8)	6 (9)			
MACE category ^c							
MACE	O (O)	2 (5)	O (O)	O (O)			
MACE death (Grade 5)	O (O)	1 (2)	O (O)	0 (0)			

^aThe most common BAT agents were ruxolitinib and watch and wait. ^bBleeding and cardiac events defined by SMQ include the preferred terms in hemorrhage and cardiac arrhythmias, cardiac failure, ischemic heart disease, and embolic and thrombotic events, respectively.

Lancet Haematol 2017;4:e225-36


Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial

Ruben A Mesa, Alessandro M Vannucchi, Adam Mead, Miklos Egyed, Anita Szoke, Aleksandr Suvorov, Janos Jakucs, Andrew Perkins, Ritam Prasad, Jiri Mayer, Judit Demeter, Peter Ganly, Jack W Singer, Huafeng Zhou, James P Dean, Peter A te Boekhorst, Jyoti Nangalia, Jean-Jacques Kiladjian, Claire N Harrison

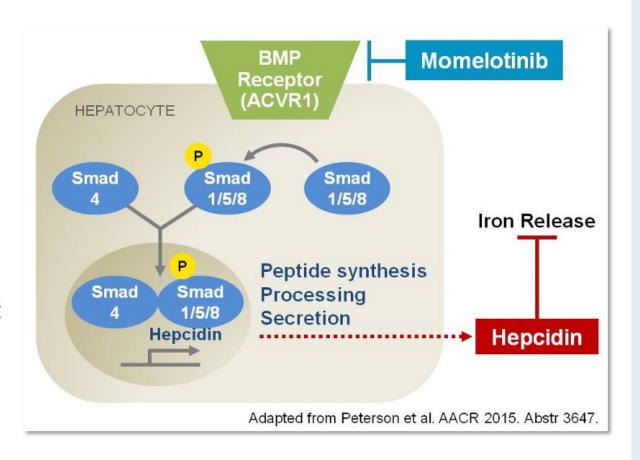
PERSIST-1: Reduction in Spleen Volume at Week 24

PERSIST-1: Patients Achieving ≥50% Reduction in Total Symptom Score 2.0 at weeks 24 and 48

	Week 24			Week 48	Week 48		
	Pacritinib	BAT	p value	Pacritinib	BAT	p value	
Overall	19/100 (19%)	5/48 (10%)	0.24	15/100 (15%)	0/48	0.0027	
Platelets							
<100 000/μL	7/28 (25%)	1/13 (8%)	0.40	3/28 (11%)	0/13	0.54	
<50 000/μL	3/11 (27%)	0/5	0.51	2/11 (18%)	0/5	1.0	
Data are n/N (%).							

PERSIST-1: Select Adverse Events

	Pacritinib (N = 220)		BAT (N = 106)		
	Any grade	Grade 3/4	Any grade	Grade 3/4	
Diarrhea	55%	5%	10%	0	
Nausea	27%	1%	7%	0	
Anemia	24%	17%	20%	15%	
Thrombocytopenia	17%	11%	14%	11%	
Vomiting	16%	1%	6%	0	
Fatigue	10%	2%	9%	1%	



Potential Front-Line Option for Patients with MF and Significant Anemia and/or Transfusion Dependence: Momelotinib

Momelotinib Mechanism of Action

- MMB also inhibits activin A receptor, Type 1 (ACVR1)
- ACVR1 activation leads to increased hepcidin gene expression¹
- Hepcidin decreases plasma iron and hepcidin is elevated in MF²
- MMB ameliorates anemia in a rodent ACD model¹

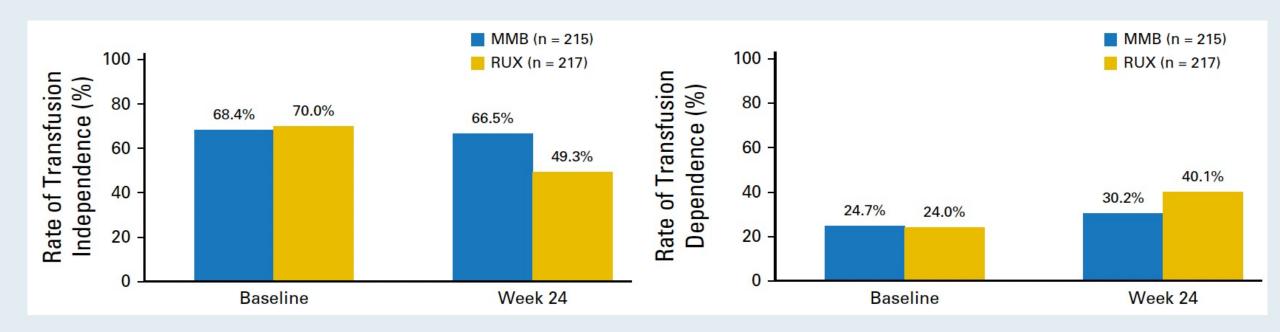
1. Asshoff M, et al. Blood 2017;129:1823-30; 2. Pardanani A, et al. Am J Hematology 2013;88:312-6. ACVR1: Activin A Receptor, Type 1; BMP, bone morphogenic protein.

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor–Naïve Patients With Myelofibrosis

Ruben A. Mesa, Jean-Jacques Kiladjian, John V. Catalano, Timothy Devos, Miklos Egyed, Andrzei Hellmann, Donal McLornan, Kazuya Shimoda, Elliott F. Winton, Wei Deng, Ronald L. Dubowy, Julia D. Maltzman, Francisco Cervantes, and Jason Gotlib



SIMPLIFY-1 Trial of Momelotinib (MMB) in Patients with Treatment-Naïve MF

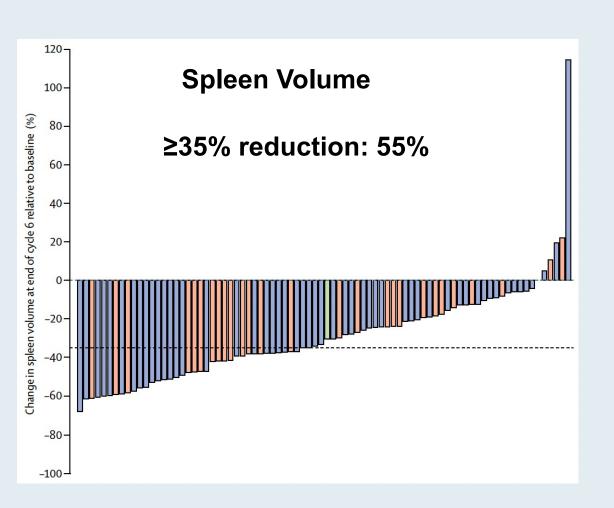
	SIMPLIFY-1, Wk 24 ¹					
Efficacy outcomes	MMB (n = 215)	RUX (n = 217)	<i>p</i> -value			
Spleen volume reduction ≥ 35%	26.5%	29.0%	0.011			
≥50% reduction in MF-SAF TSS	28.4%	42.2%	0.98			
Transfusion independence at week 24	66.5%	49.3%	<0.001			
Safety outcomes						
Discontinued due to AEs	13.1%	5.6%	NR			
Grade 3/4 anemia	5.6%	23.1%				
Grade 3/4 thrombocytopenia	7.0%	4.6%				
Grade 3/4 neutropenia	2.8%	4.6%				

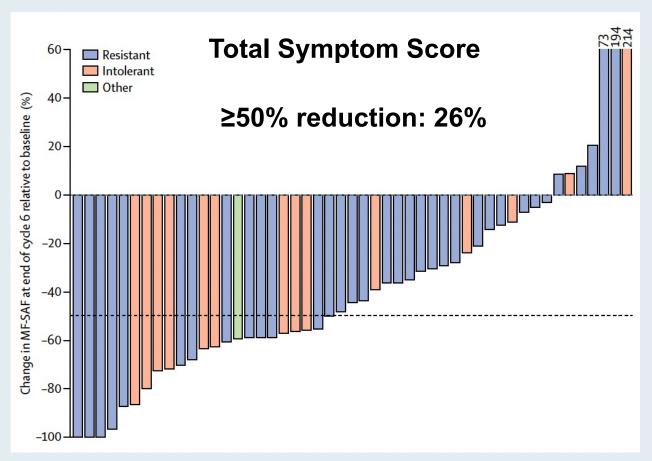
SIMPLIFY-1: Momelotinib versus Ruxolitinib Effects on Transfusion Requirements at Week 24

Evolving Therapeutic Landscape for Individuals with MF Progressing on or Intolerant to Initial JAK Inhibitor Therapy

- JAKARTA-2: Fedratinib in patients with intermediate- or high-risk MF resistant or intolerant to ruxolitinib
- Ongoing FREEDOM and FREEDOM2 trials of fedratinib after ruxolitinib
- SIMPLIFY-2: Momelotinib

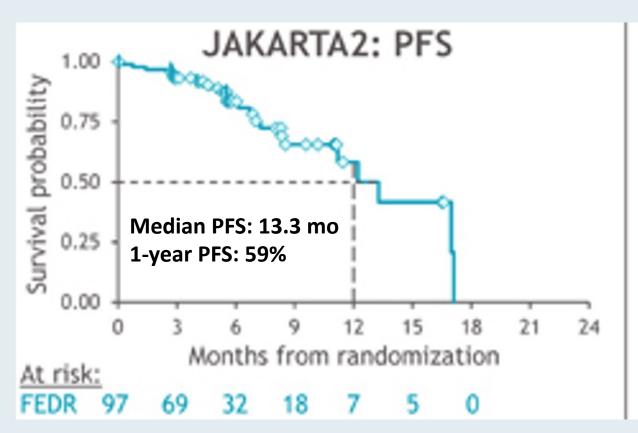
Lancet Haematol 2017;4:e317-24.

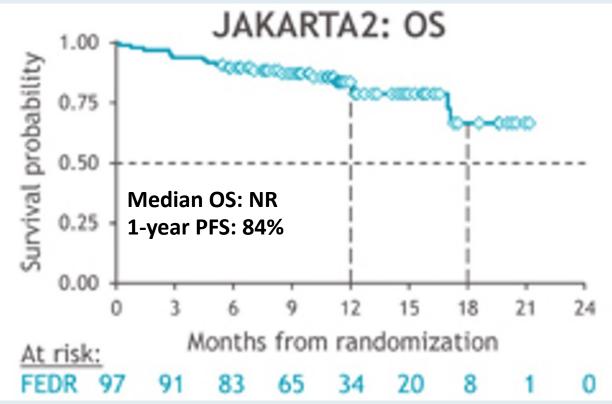

Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study



Claire N Harrison, Nicolaas Schaap, Alessandro M Vannucchi, Jean-Jacques Kiladjian, Ramon V Tiu, Pierre Zachee, Eric Jourdan, Elliott Winton, Richard T Silver, Harry C Schouten, Francesco Passamonti, Sonja Zweegman, Moshe Talpaz, Joanne Lager, Zhenming Shun, Ruben A Mesa

JAKARTA-2: Change in Total Symptom Score and Spleen Volume from Baseline to End of Cycle 6


Overall and Progression-Free Survival in Patients Treated with Fedratinib as First-Line Myelofibrosis (MF) Therapy and After Prior Ruxoltinib (RUX): Results from the JAKARTA and JAKARTA2 Trials


Harrison C et al.

EHA 2021; Abstract S203.

JAKARTA2: Survival Analysis

FREEDOM: Trial Design and Key Eligibility Criteria

International, single-arm, open-label, phase 3b trial (NCT03755518)

Key eligibility criteria

- Age ≥ 18 years
- Primary, post-PV, or post- ANC ≥ 1 × 10⁹/L **ET MF**
- Prior Tx with RUXa
- DIPSS Int/High risk
- ECOG PS score ≤ 2

- Platelets ≥ 50 × 10⁹/L
- Spleen volume ≥ 450 cm³ or palpable spleen ≥ 5 cm below LCM
- PB blasts ≤ 5%

Treatment phase

Fedratinib 400 mg/d (Continuous 28d Tx cycles)

Total enrollment: N = 38

Follow-up

Continue fedratinib until lack of efficacy, intolerance, disease progression or withdrawal of consent

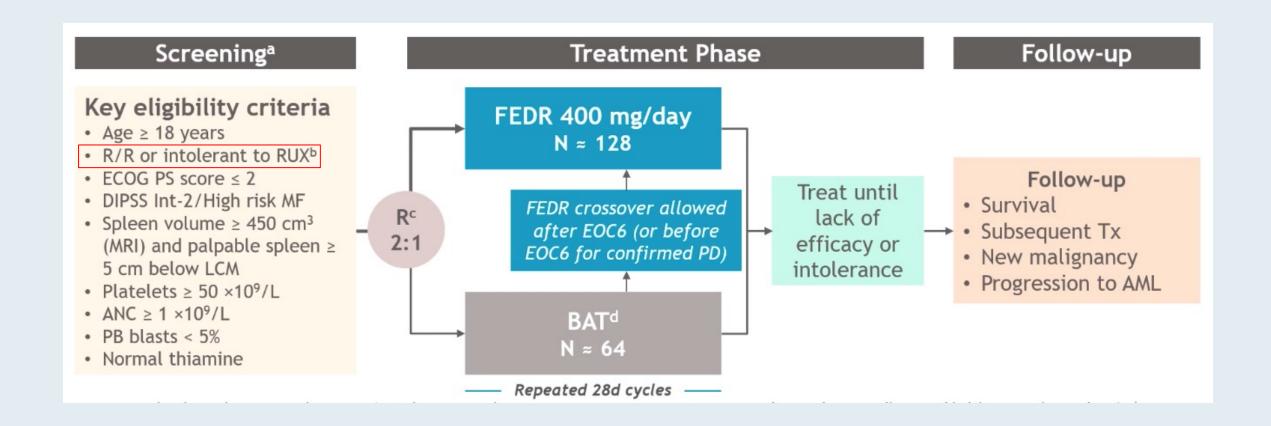
Follow-up for 12 months after end of Tx

Primary endpoint:

 SVRR at EOC6: Proportion of pts with ≥ 35% spleen volume reduction from baseline (BL)

Key secondary endpoints:

- Symptom RR at EOC6: Proportion of pts with ≥ 50% improvement in MFSAF TSS from BL
- Safety; assess risk mitigation for GI AEs and potential WE
- Spleen response by palpation
- Durability of spleen and symptom responses


AE mitigation strategies:

- · Prophylactic/symptomatic use of anti-emetic/vomiting and anti-diarrheal Tx
- Administration of fedratinib with food
- Fedratinib dosing modifications
- Thiamine supplementation

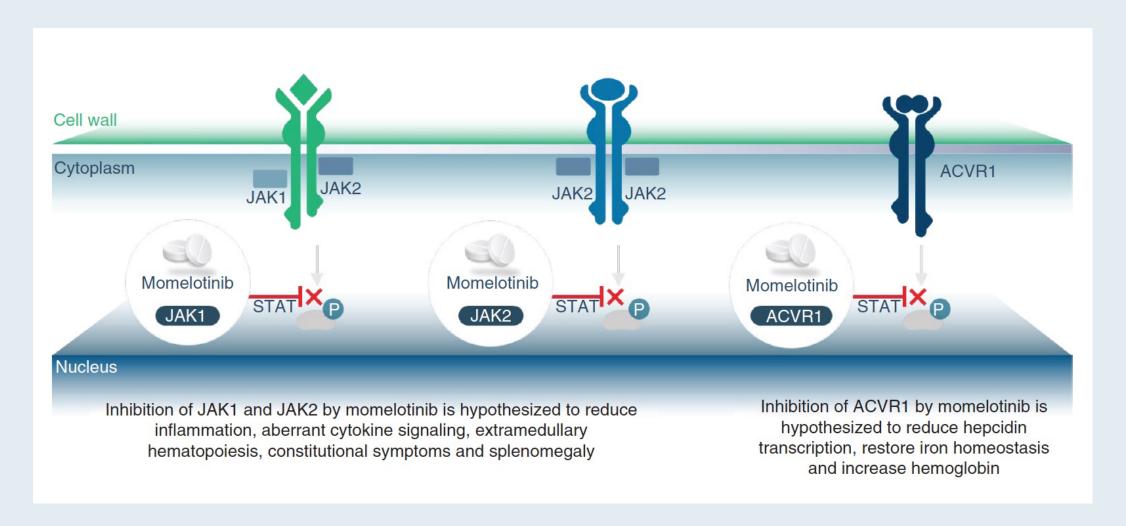
^aPts must have received RUX for ≥3 mo, or for ≥28 d with development of RBC transfusion requirement (≥2 units/mo for 2 mo) or Grade ≥3 thrombocytopenia, anemia, hematoma or hemorrhage.

FREEDOM2 Phase III Study Design

Momelotinib Yields Statistically Significant Improvement in Symptoms for Myelofibrosis

Press Release: January 27, 2022

"Topline findings from the phase 3 MOMENTUM study indicated that patients with myelofibrosis experienced a statistically significant reduction in symptoms following treatment with momelotinib.


Treatment with momelotinib resulted in a statistically significant reduction in symptoms for patients with myelofibrosis, according to a press release of the topline findings from the pivotal phase 3 MOMENTUM trial (NCT04173494).

In a population of 195 patients, specifically 130 who received momelotinib and 65 who received danazol, 25% and 9% of patients, respectively, had a total symptom score of more than 50% (P = .0095). Additionally, 31% of patients in the momelotinib arm and 20% in the control arm were transfusion independent following treatment (one-sided P = .0064), indicating non-inferiority. Investigators also reported a splenic response rate of over 35% in 23% of patients in the experimental arm compared with 3% of patients in the control arm (P = .0006).

The full data are set to be presented at an upcoming medical meeting and plans have been put in place to submit a new drug application for the agent in the second quarter of 2022."

Momelotinib Therapy May Decrease Inflammation, Improve Splenomegaly and Normalize Hemoglobin

Articles

Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial

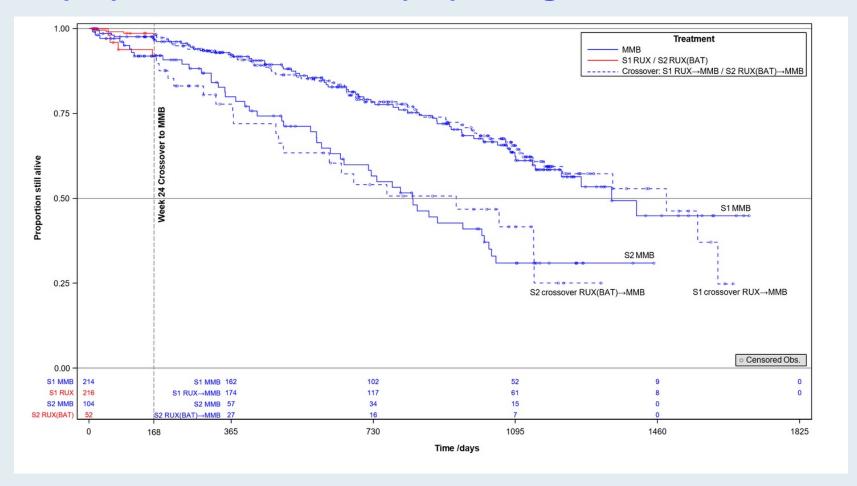
Claire N Harrison, Alessandro M Vannucchi, Uwe Platzbecker, Francisco Cervantes, Vikas Gupta, David Lavie, Francesco Passamonti,

Elliott F Winton, Hua Dong, Jun Kawashima, Julia D Maltzman, Jean-Jacques Kiladjian, Srdan Verstovsek

Lancet Haematol 2018;5(2):e73-81.

SIMPLIFY-2 Trial of Momelotinib (MMB) in Patients with MF Previously Treated with Ruxolitinib

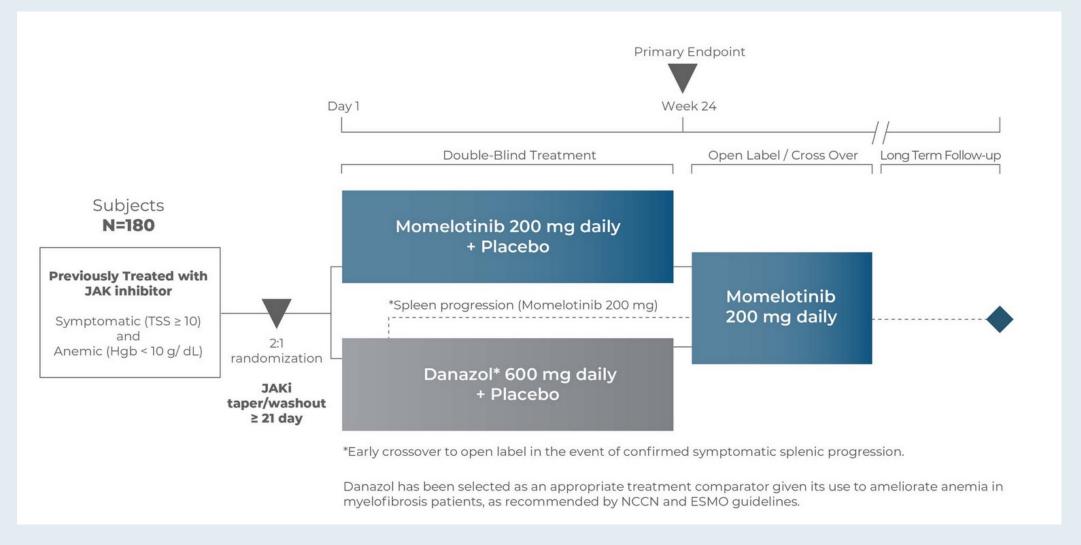
	SIMPLIFY-2, Wk 24			
Efficacy outcomes	MMB (n = 104)	BAT (n = 52)	<i>p</i> -value	
Spleen volume reduction ≥35%	7%	6%	0.90	
≥50% reduction in MF-SAF TSS	26%	6%	0.0006	
Transfusion independence	43%	26%	0.0012	
Safety outcomes				
Discontinued due to AEs	21%	16%	NR	
Grade 3/4 anemia	14%	14%		
Grade 3/4 thrombocytopenia	7%	6%		
Grade 3/4 neutropenia	NR	NR		


Robust Overall Survival and Sustained Efficacy Outcomes during Long Term Exposure to Momelotinib in JAK Inhibitor Naïve and Previously JAK Inhibitor Treated Intermediate/High Risk Myelofibrosis Patients

Verstovsek S et al.

ASH 2020; Abstract 54.

SIMPLIFY-1 (S1) and SIMPLIFY-2 (S2): Long-Term Outcomes with MMB



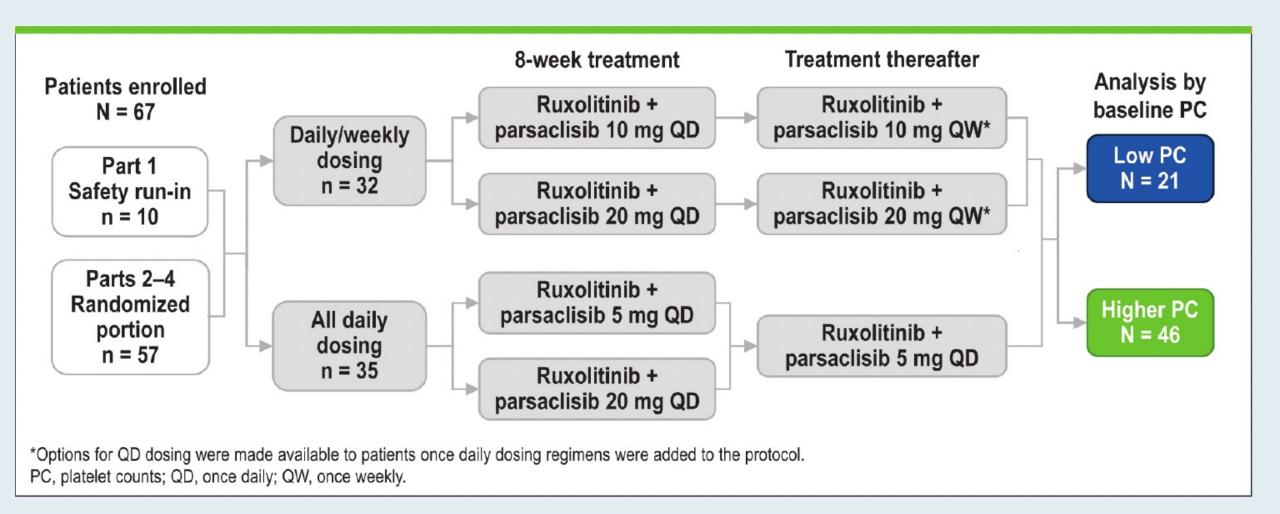
- S1 reduction in spleen volume of ≥35% from baseline at week 24 (MMB vs RUX): 26.5% vs 29.5%
- S1 transfusion independence at week 24 (MMB vs RUX): 70% vs 54%
- S2 transfusion independence at week 24 (MMB vs BAT/RUX): 44% vs 27%

MOMENTUM: Phase III Trial Schema of Momelotinib in MF

Trial Identifier: NCT04173494 (Closed)

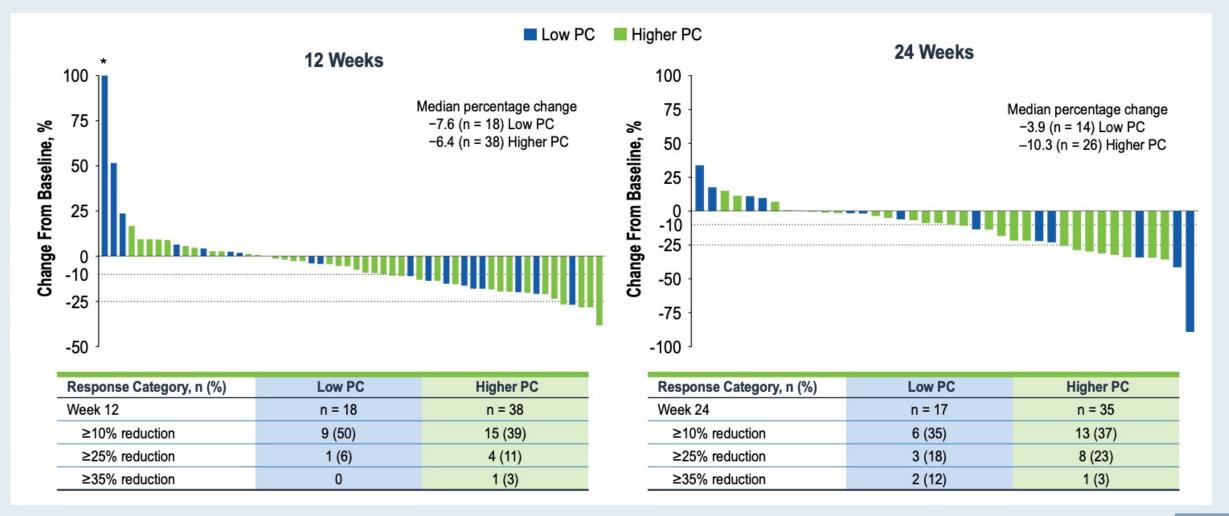
Novel Agents and Strategies Beyond JAK Inhibitors Under Investigation in MF

Subgroup Analysis From a Phase 2 Study of the Efficacy and Safety of Parsaclisib, a Selective PI3Kδ Inhibitor, in Combination With Ruxolitinib in Patients With Myelofibrosis

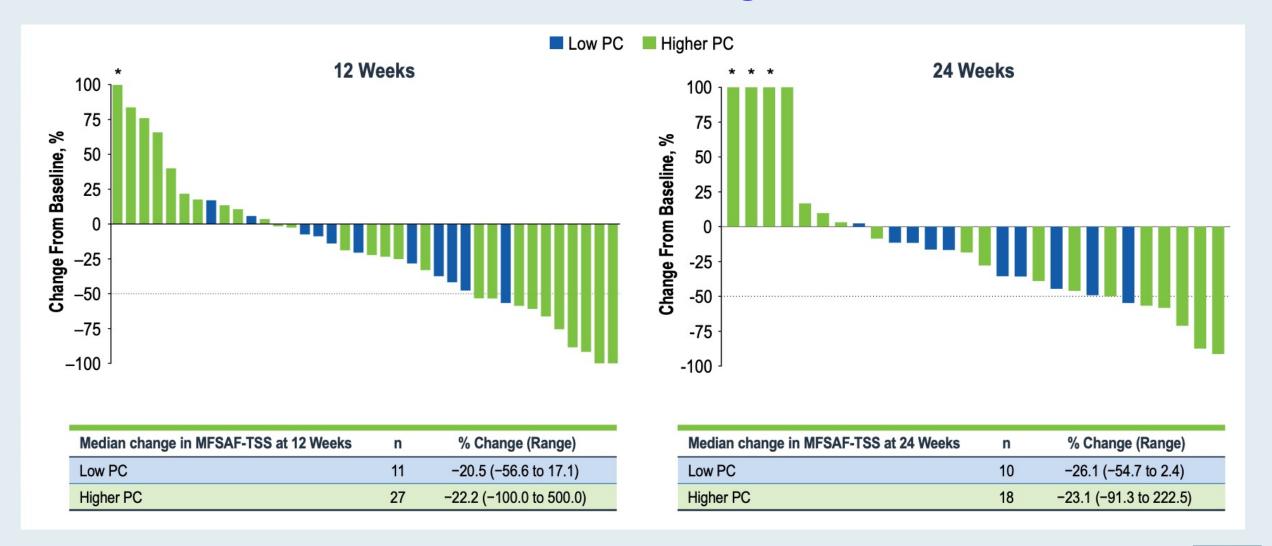

Abdulraheem Yacoub,¹ Uma Borate,² Raajit Rampal,³ Haris Ali,⁴ Eunice Wang,⁵ Aaron Gerds,⁶ Gabriela Hobbs,⁷ Marina Kremyanskaya,⁸ Elliott Winton,⁹ Casey O'Connell,¹⁰ Swati Goel,¹¹ Stephen Oh,¹² Gary Schiller,¹³ Albert Assad,¹⁴ Sue Erickson-Viitanen,¹⁴ Feng Zhou,¹⁴ Naval Daver¹⁵

¹University of Kansas Cancer Center, Westwood, KS, USA; ²Oregon Health & Science University, Portland, OR, USA; ³Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁴City of Hope National Medical Center, Duarte, CA, USA; ⁵Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ⁶Cleveland Clinic, Cleveland, OH, USA; ⁷Massachusetts General Hospital, Boston, MA, USA; ⁸Icahn School of Medicine at Mount Sinai, New York, NY, USA; ⁹Emory University, Atlanta, GA, USA; ¹⁰University of Southern California, Los Angeles, CA, USA; ¹¹Montefiore Medical Center, Bronx, NY, USA; ¹²Washington University School of Medicine, St. Louis, MO, USA; ¹³David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; ¹⁴Incyte Corporation, Wilmington, DE, USA; ¹⁵University of Texas MD Anderson Cancer Center, Houston, TX, USA

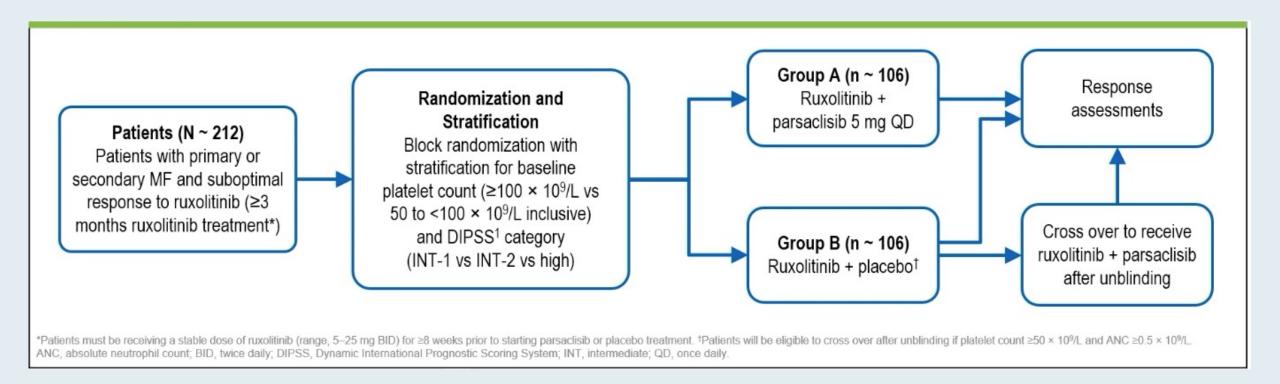
ASH 2021; Abstract 3647.



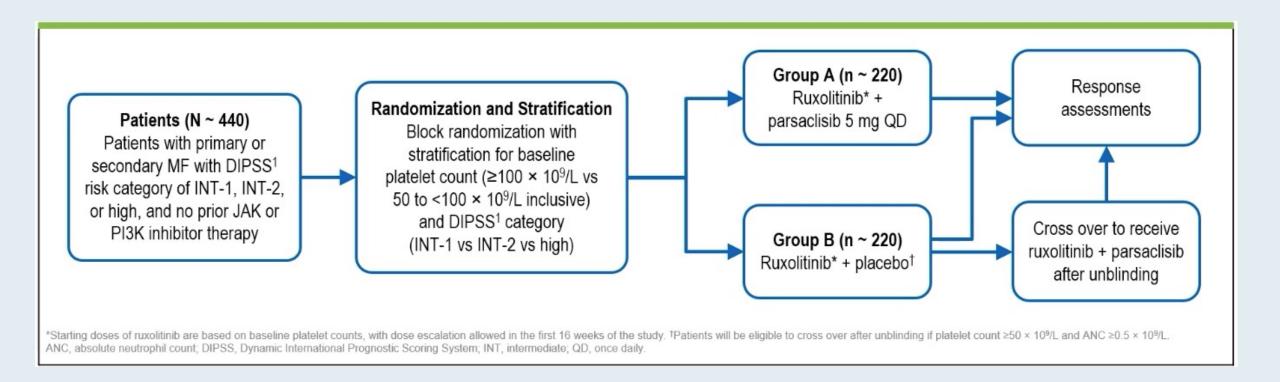
Phase II INCB 50465-201 Study of Adding Parsaclisib to Ruxolitinib



Phase II INCB 50465-201: Percent Change in Spleen Volume



Phase II INCB 50465-201: Percent Change in MFSAF-TSS



LIMBER-304 Phase III Study Design

LIMBER-313 Phase III First-Line Study Design

A Phase 2 Study of the LSD1 Inhibitor Img-7289 (Bomedemstat) for the Treatment of Advanced Myelofibrosis

Gill H et al.

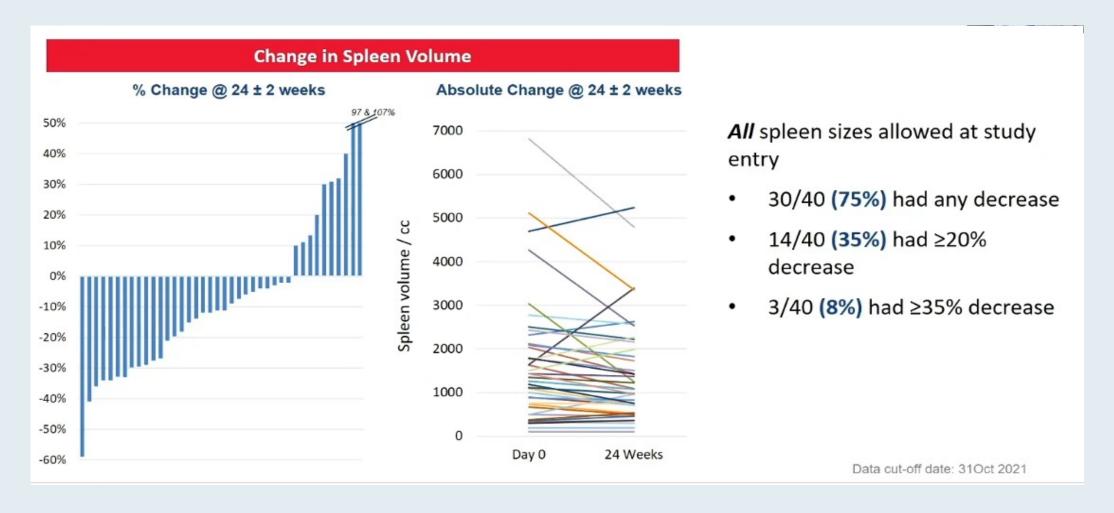
ASH 2021; Abstract 139.

Phase I/II Trial of Bomedemstat for Advanced MF

Primary Endpoints

- Safety and tolerability
- Pharmacokinetics in first 15 patients
- Spleen volume reduction

Secondary Endpoints


- Symptom reduction (MPN-SAF TSS)
- Changes in cytokine profiles
- Changes in mutant allele frequencies (MAF)
- Changes in bone marrow (BM) fibrosis

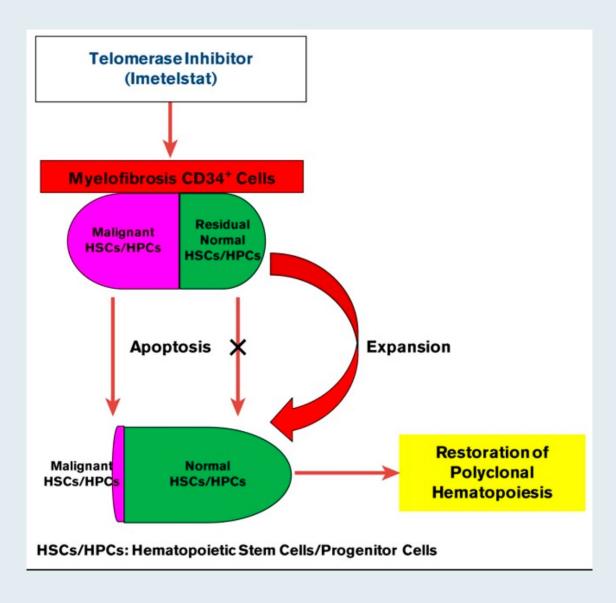
Key Eligibility Criteria

- Dx of PMF, PET-MF, or PPV-MF
- Refractory or resistant to, intolerant of, inadequate control by, or ineligible for, available approved therapies
- IPSS Intermediate-1, -2 or High-risk disease
- Platelets ≥100 x10⁹/L
- Peripheral blasts ≤10%
- Spleen of any size
- ECOG PS ≤2

Spleen Volume Reduction and Total Symptom Score at 24 Weeks with Bomedemstat

17/23 patients (74%) had a decrease in TSS and 6/23 patients (26%) had a decrease of ≥50%.

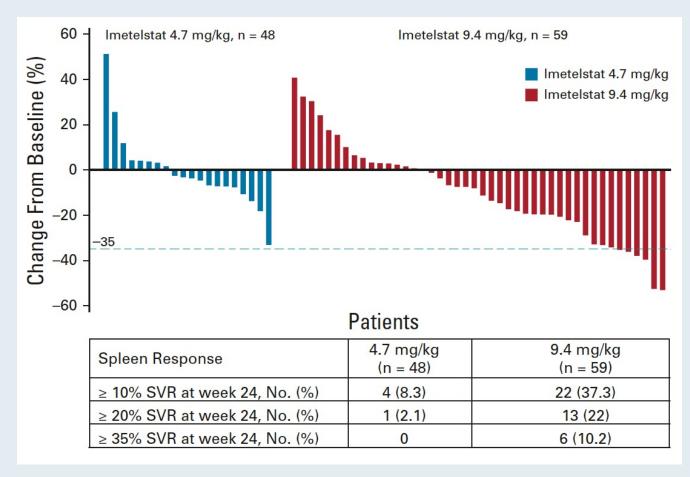
Safety and Tolerability of Bomedemstat


Preferred Term (N=90)	Any Grade AEs	Grade 3/4 AEs
Thrombocytopenia	42 (47%)	35 (39%)
Dysgeusia	29 (32%)	0
Anaemia	29 (32%)	20 (22%)
Diarrhoea	27 (30%)	0
Nausea	25 (28%)	2 (2%)
Fatigue	22 (24%)	4 (4%)
Constipation	21 (23%)	1 (1%)
Oedema peripheral	18 (20%)	1 (1%)
Arthralgia	16 (18%)	0
Abdominal pain	15 (17%)	1 (1%)
Decreased appetite	14 (16%)	2 (2%)
Pruritus	14 (16%)	2 (2%)

- Bomedemstat is generally well tolerated
- Most common hematologic AE, thrombocytopenia, is anticipated because dose titration rules target Grade 2 (50-75 x 10⁹/L)
- The most common non-hematologic
 AE related to bomedemstat was dysgeusia (n=27, 30% of patients) with 1 patient who discontinued

Any grade of AE occurring at a frequency of >15% included regardless of relatedness; total number of events = 1443

Telomerase Inhibitor Imetelstat: Mechanism of Action


Randomized, Single-Blind, Multicenter Phase II Study of Two Doses of Imetelstat in Relapsed or Refractory Myelofibrosis John Mascarenhas, MD¹; Rami S. Komrokji, MD²; Francesca Palandri, MD³; Bruno Martino, MD⁴; Dietger Niederwieser, MD, PhD⁵; Andreas Reiter, MD⁶; Bart L. Scott, MD⁷; Maria R. Baer, MD⁶; Ronald Hoffman, MD¹; Olatoyosi Odenike, MD⁰; Alessandro M. Vannucchi, MD¹⁰; Jacqueline Bussolari, PhD¹¹; Eugene Zhu, PhD¹¹; Esther Rose, MD¹¹; Laurie Sherman, BSN¹²; Souria Dougherty, BS, MBA¹²; Libo Sun. PhD¹²: Fei Huang, PhD¹². Ving Wan, PhD¹². Eave M. Feller, MD¹².

Souria Dougherty, BS, MBA¹²; Libo Sun, PhD¹²; Fei Huang, PhD¹²; Ying Wan, PhD¹²; Faye M. Feller, MD¹²; Aleksandra Rizo, MD, PhD¹²; and Jean-Jacques Kiladjian, MD, PhD¹³

J Clin Oncol 2021;39:2881-92.

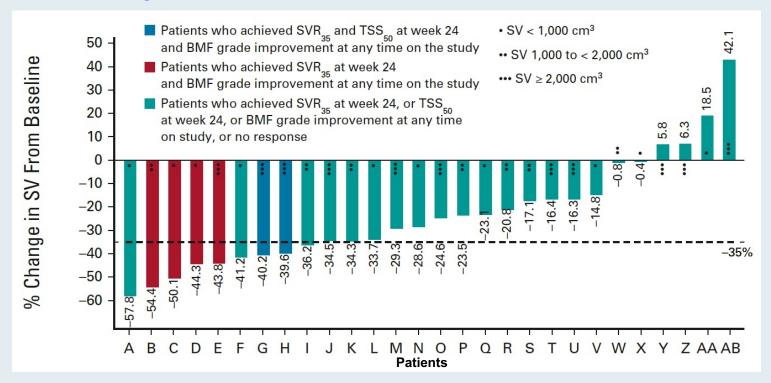
Phase II Trial of Imetelstat in Relapsed/Refractory Myelofibrosis

- At week 24, symptom response rates were 32.2% in the 9.4-mg/kg arm and 6.3% in the
 4.7-mg/kg arm.
- Most common adverse events on both arms were grade 3 or 4 reversible cytopenias.

A Randomized Open-Label, Phase 3 Study to Evaluate Imetelstat versus Best Available Therapy (BAT) in Patients with Intermediate-2 (Int-2) or High-Risk Myelofibrosis (MF) Refractory to Janus Kinase Inhibitor (JAKi)

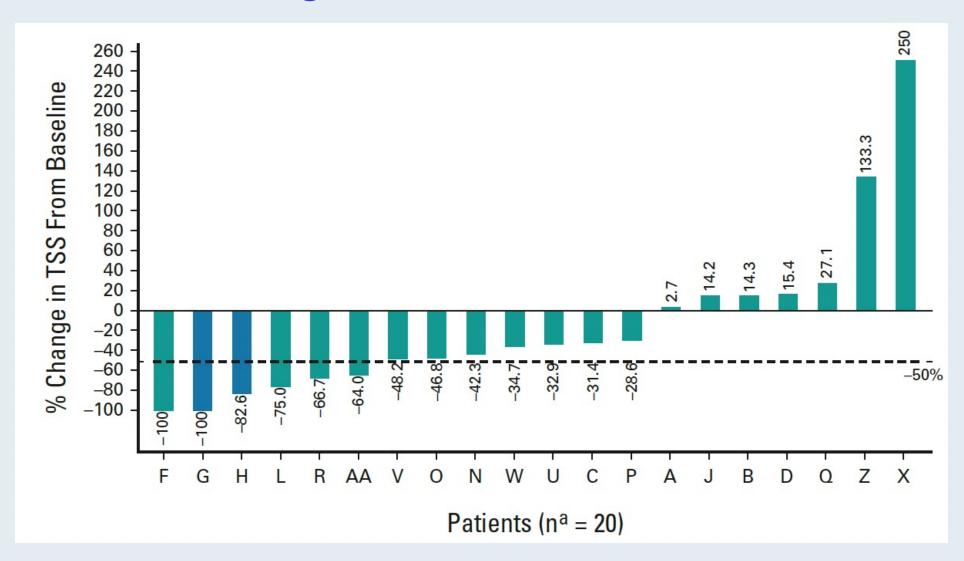
Mascarenhas J et al.

ASH 2021; Abstract 1503.


Addition of Navitoclax to Ongoing **Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal** Response: Phase II Safety and Efficacy

Claire N. Harrison, MD¹; Jacqueline S. Garcia, MD²; Tim C. P. Somervaille, MBBS, PhD^{3,4}; James M. Foran, MD⁵; Srdan Verstovsek, MD, PhD⁶; Catriona Jamieson, MD, PhD⁷; Ruben Mesa, MD⁸; Ellen K. Ritchie, MD⁹; Srinivas K. Tantravahi, MBBS¹⁰; Pankit Vachhani, MD¹¹; Casey L. O'Connell, MD¹²; Rami S. Komrokji, MD¹³; Jason Harb, PhD¹⁴; Jessica E. Hutti, PhD¹⁴; Leanne Holes, MBA¹⁴; Abdullah A. Masud, MS, PhD¹⁴; Silpa Nuthalapati, PhD¹⁴; Jalaja Potluri, MD¹⁴; and Naveen Pemmaraju, MD⁶

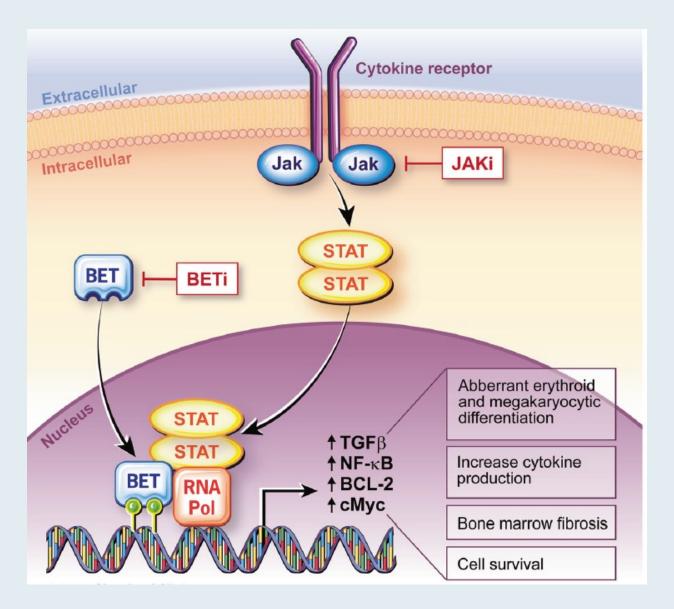
J Clin Oncol 2022; [Online ahead of print].


Phase II Trial of Adding the Bcl-XL/Bcl-2 Inhibitor Navitoclax to Ruxolitinib for Patients with MF and Disease Progression or a Suboptimal Response

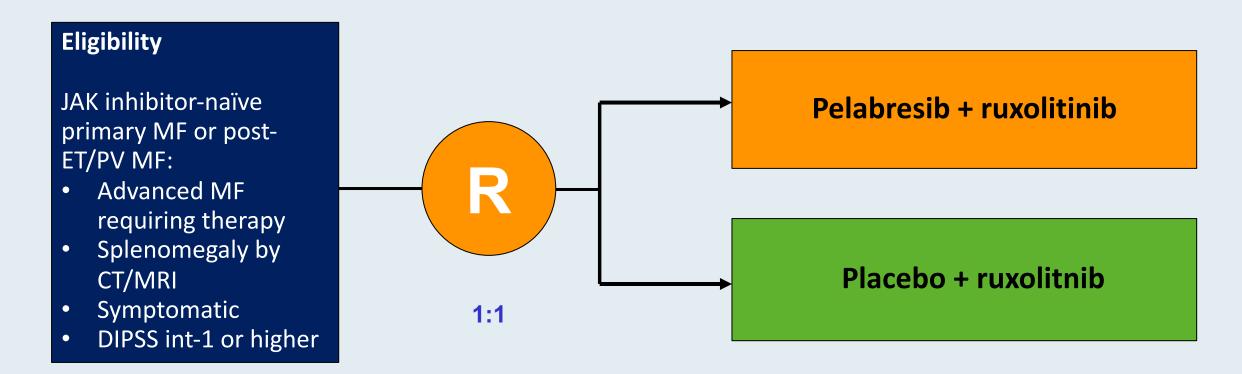
- ≥50% reduction in total symptom score (TSS50) was achieved by 30% (6 of 20) of patients at week 24, and bone marrow fibrosis improved by 1-2 grades.
- Reversible thrombocytopenia without clinically significant bleeding was the most common adverse event (88%) but was manageable with dose reductions and interruptions.



Percent Change in TSS from Baseline at Week 24



Percent Change in Bone Marrow Fibrosis (BMF) from Baseline

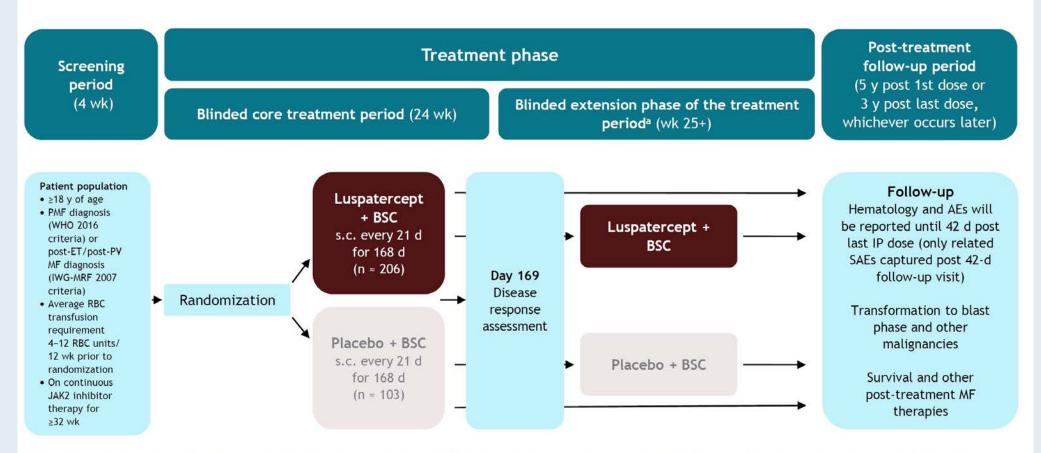


Mechanism of Action of BET Inhibitor Pelabresib

MANIFEST-2: Phase III Trial Design

Primary Endpoint: SVR35 at 24 weeks

Key Secondary Endpoint: TSS50 by at 24 weeks


INDEPENDENCE: A Phase 3 Study of Efficacy and Safety of Luspatercept versus Placebo in Patients with Myeloproliferative Neoplasm-Associated Myelofibrosis on JAK2 Inhibitor Therapy and Requiring Red Blood Cell Transfusions

Mesa RA et al.

ASH 2021; Abstract 1490.

Figure. The INDEPENDENCE trial design

^aPatients on study can be unblinded after analysis of the primary endpoint and with data monitoring committee consultation. Patients receiving placebo have the opportunity to receive luspatercept treatment and be treated for ≥ 24 wk in the open-label extension treatment period as long as they continue to demonstrate benefit from treatment, or they experience transformation to blast phase, unacceptable toxicities, or meet any other criteria for treatment discontinuation.

AE, adverse event; BSC, best supportive care; d, day; ET, essential thrombocythemia; IP, investigational product; IWG-MRF, International Working Group for Myelofibrosis Research and Treatment; MF, myelofibrosis; PMF, primary myelofibrosis; PV, polycythemia vera; RBC, red blood cell; SAE, serious adverse event; s.c., subcutaneously; WHO, World Health Organization; wk, week; y, year.

Year in Review: Prostate Cancer

Tuesday, April 12, 2022 5:00 PM - 6:00 PM ET Faculty

Emmanuel S Antonarakis, MD Daniel P Petrylak, MD

Special Topics

ARASENS, PROPEL, MAGNITUDE trials

What I Tell My Patients: Expert Insights into Patient Education on New Treatments and Clinical Trial Participation

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Prostate Cancer

Thursday, April 28, 2022

6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Kathy D Burns, RN, MSN, AGACNP-BC, OCN Robert Dreicer, MD, MS Sandy Srinivas, MD Ronald Stein, JD, MSN, NP-C, AOCNP

Ovarian Cancer

Thursday, April 28, 2022

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Jennifer Filipi, MSN, NP Kathleen N Moore, MD, MS Krishnansu S Tewari, MD Deborah Wright, MSN, APRN, AGCNS-BC

Non-Small Cell Lung Cancer

Thursday, April 28, 2022

6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET)

Faculty

Edward B Garon, MD, MS Kelly EH Goodwin, MSN, RN, ANP-BC Tara Plues, APRN, MSN Anne S Tsao, MD, MBA

Hepatobiliary Cancers

Thursday, April 28, 2022

8:20 PM - 9:20 PM PT (11:20 PM - 12:20 AM ET)

Faculty

Richard S Finn, MD Amanda K Wagner, APRN-CNP, AOCNP

What I Tell My Patients: Expert Insights into Patient Education on New Treatments and Clinical Trial Participation

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Small Cell Lung Cancer

Friday, April 29, 2022 6:00 AM – 7:30 AM PT (9:00 AM – 10:30 AM ET)

Faculty

Marianne J Davies, DNP, MSN, RN, APRN Matthew Gubens, MD, MS Lowell L Hart, MD Chaely J Medley, MSN, AGNP

Chronic Lymphocytic Leukemia

Friday, April 29, 2022 12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Lesley Camille Ballance, MSN, FNP-BC Amy Goodrich, CRNP Anthony R Mato, MD, MSCE Susan O'Brien, MD

Breast Cancer

Friday, April 29, 2022 6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET)

Faculty

Jamie Carroll, APRN, MSN, CNP Sara A Hurvitz, MD Kelly Leonard, MSN, FNP-BC Hope S Rugo, MD

Acute Myeloid Leukemia and Myelodysplastic Syndromes

Friday, April 29, 2022 8:20 PM – 9:20 PM PT (11:20 PM – 12:20 AM ET)

Faculty

Faculty to be announced

What I Tell My Patients: Expert Insights into Patient Education on New Treatments and Clinical Trial Participation

A Complimentary NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Cervical and Endometrial Cancer

Saturday, April 30, 2022

6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Paula J Anastasia, MN, RN, AOCN Robert L Coleman, MD David M O'Malley, MD Jaclyn Shaver, MS, APRN, CNP, WHNP

Bladder Cancer

Saturday, April 30, 2022

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Monica Averia, MSN, AOCNP, NP-C Shilpa Gupta, MD Brenda Martone, MSN, NP-BC, AOCNP Sumanta Kumar Pal, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

