Meet The Professor Current and Future Management of Myelofibrosis

Srdan Verstovsek, MD, PhD Professor of Medicine Director, Hanns A Pielenz Clinical Research Center for Myeloproliferative Neoplasms Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, Texas

Commercial Support

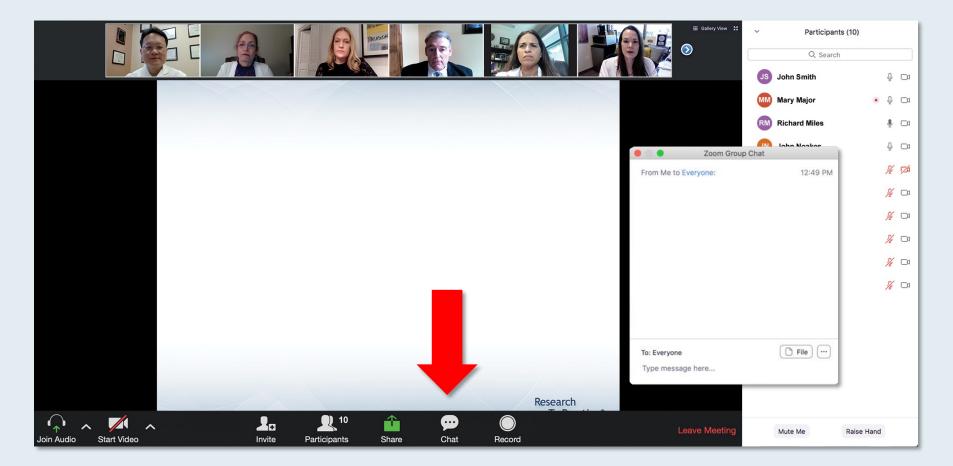
This activity is supported by educational grants from CTI BioPharma Corp and Incyte Corporation.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Mersana Therapeutics Inc, Natera Inc, Novartis, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

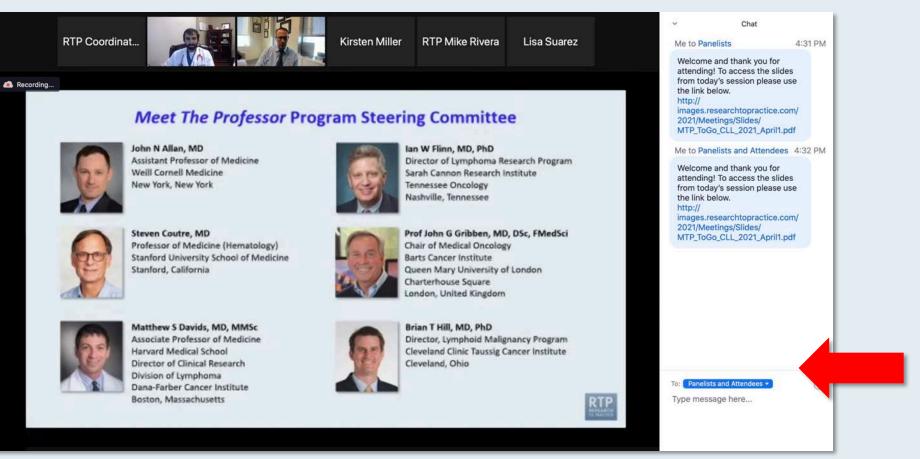
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Dr Verstovsek — Disclosures

No relevant conflicts of interest to disclose

We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY WITH DR NEIL LOVE

Key Presentations on Advances in Myeloproliferative Neoplasms from ASH 2021

DR PRITHVIRAJ BOSE THE UNIVERSITY OF TEXAS MD ANDERSON CANCER CENTER

Dr Prithviraj Bose – Key Presentations Oncology Today with Dr Neil Love —

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Tuesday, March 15, 2022 5:00 PM – 6:00 PM ET

> Faculty Sonali M Smith, MD

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

> Thursday, March 17, 2022 5:00 PM – 6:00 PM ET

Faculty Peter Hillmen, MB ChB, PhD

Data + Perspectives: Clinical Investigators Discuss the Current and Future Management of Ovarian Cancer Saturday, March 19, 2022 2:30 PM – 4:00 PM ET

> Faculty Mansoor Raza Mirza, MD Kathleen N Moore, MD, MS David M O'Malley, MD

Moderator Robert L Coleman, MD

Meet The Professor Current and Future Role of Immunotherapy in the Management of Lung Cancer

> Wednesday, March 30, 2022 5:00 PM – 6:00 PM ET

Faculty Sarah B Goldberg, MD, MPH

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

> Thursday, March 31, 2022 5:00 PM – 6:00 PM ET

> > Faculty Kerry Rogers, MD

Meet The Professor Optimizing the Management of Myelodysplastic Syndromes

> Tuesday, April 5, 2022 5:00 PM – 6:00 PM ET

Faculty Rami Komrokji, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Current and Future Management of Myelofibrosis

Srdan Verstovsek, MD, PhD Professor of Medicine Director, Hanns A Pielenz Clinical Research Center for Myeloproliferative Neoplasms Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, Texas

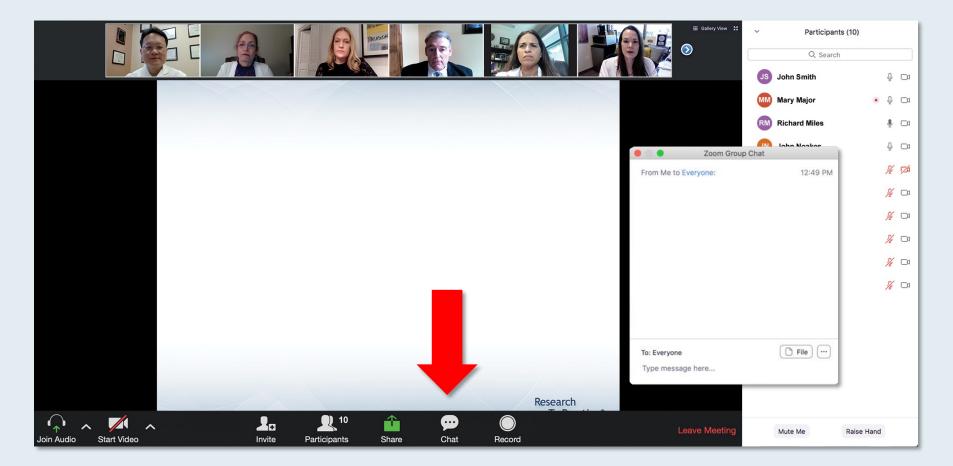
Meet The Professor Program Participating Faculty

Professor Claire Harrison

Professor of Myeloproliferative Neoplasms and Clinical Director Guy's and St Thomas' NHS Foundation Trust London, United Kingdom

Srdan Verstovsek, MD, PhD Professor of Medicine

Director, Hanns A Pielenz Clinical Research Center for Myeloproliferative Neoplasms Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, Texas


John Mascarenhas, MD Director, Adult Leukemia Program Professor of Medicine Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York, New York

Moderator Neil Love, MD Research To Practice Miami, Florida

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

ONCOLOGY TODAY WITH DR NEIL LOVE

Key Presentations on Advances in Myeloproliferative Neoplasms from ASH 2021

DR PRITHVIRAJ BOSE THE UNIVERSITY OF TEXAS MD ANDERSON CANCER CENTER

Dr Prithviraj Bose – Key Presentations Oncology Today with Dr Neil Love —

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Tuesday, March 15, 2022 5:00 PM – 6:00 PM ET

> Faculty Sonali M Smith, MD

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

> Thursday, March 17, 2022 5:00 PM – 6:00 PM ET

Faculty Peter Hillmen, MB ChB, PhD

Data + Perspectives: Clinical Investigators Discuss the Current and Future Management of Ovarian Cancer Saturday, March 19, 2022 2:30 PM – 4:00 PM ET

> Faculty Mansoor Raza Mirza, MD Kathleen N Moore, MD, MS David M O'Malley, MD

Moderator Robert L Coleman, MD

Meet The Professor Current and Future Role of Immunotherapy in the Management of Lung Cancer

> Wednesday, March 30, 2022 5:00 PM – 6:00 PM ET

Faculty Sarah B Goldberg, MD, MPH

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

> Thursday, March 31, 2022 5:00 PM – 6:00 PM ET

> > Faculty Kerry Rogers, MD

Meet The Professor Optimizing the Management of Myelodysplastic Syndromes

> Tuesday, April 5, 2022 5:00 PM – 6:00 PM ET

Faculty Rami Komrokji, MD

Meet The Professor Current and Future Management of Myelofibrosis

Srdan Verstovsek, MD, PhD Professor of Medicine Director, Hanns A Pielenz Clinical Research Center for Myeloproliferative Neoplasms Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, Texas

Commercial Support

This activity is supported by educational grants from CTI BioPharma Corp and Incyte Corporation.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Verstovsek — Disclosures

No relevant conflicts of interest to disclose

Bhavana (Tina) Bhatnagar, DO West Virginia University Cancer Institute Wheeling, West Virginia

Niyati A Nathwani, MD Carolina Blood and Cancer Care Associates Charlotte, North Carolina

Amany R Keruakous, MD, MS Georgia Cancer Center Augusta University Augusta, Georgia

Jeanne Palmer, MD Mayo Clinic, Arizona Phoenix, Arizona

Meet The Professor with Dr Verstovsek

Introduction

Module 1: Case Presentations

- Dr Keruakous: A 72-year-old man with JAK2-positive Intermediate-risk MF, a CALR mutation and multiple comorbidities
- Dr Bhatnagar: A 76-year-old woman with JAK2 V617F-positive primary myelofibrosis (MF) treated with ruxolitinib
- Dr Palmer: An 80-year-old woman with primary MF and pancytopenia (Hb 7.2 g/dL, platelets 38,000/uL)
- Dr Nathwani: A 66-year-old man with JAK2-positive primary MF and pancytopenia who develops recurrent herpes zoster on ruxolitinib
- Dr Bhatnagar: A 64-year-old man with an unspecified myeloproliferative neoplasm, pancytopenia and a JAK2 mutation
- Dr Palmer: A 65-year-old man with post-PV MF and ASXL1, SRSF2 mutations

Module 2: Journal Club with Dr Verstovsek

Module 3: Faculty Survey

Module 4: Appendix of Key Publications

Meet The Professor with Dr Verstovsek

Introduction

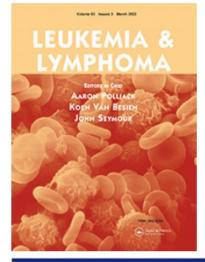
Module 1: Case Presentations

- Dr Keruakous: A 72-year-old man with JAK2-positive Intermediate-risk MF, a CALR mutation and multiple comorbidities
- Dr Bhatnagar: A 76-year-old woman with JAK2 V617F-positive primary myelofibrosis (MF) treated with ruxolitinib
- Dr Palmer: An 80-year-old woman with primary MF and pancytopenia (Hb 7.2 g/dL, platelets 38,000/uL)
- Dr Nathwani: A 66-year-old man with JAK2-positive primary MF and pancytopenia who develops recurrent herpes zoster on ruxolitinib
- Dr Bhatnagar: A 64-year-old man with an unspecified myeloproliferative neoplasm, pancytopenia and a JAK2 mutation
- Dr Palmer: A 65-year-old man with post-PV MF and ASXL1, SRSF2 mutations

Module 2: Journal Club with Dr Verstovsek

Module 3: Faculty Survey

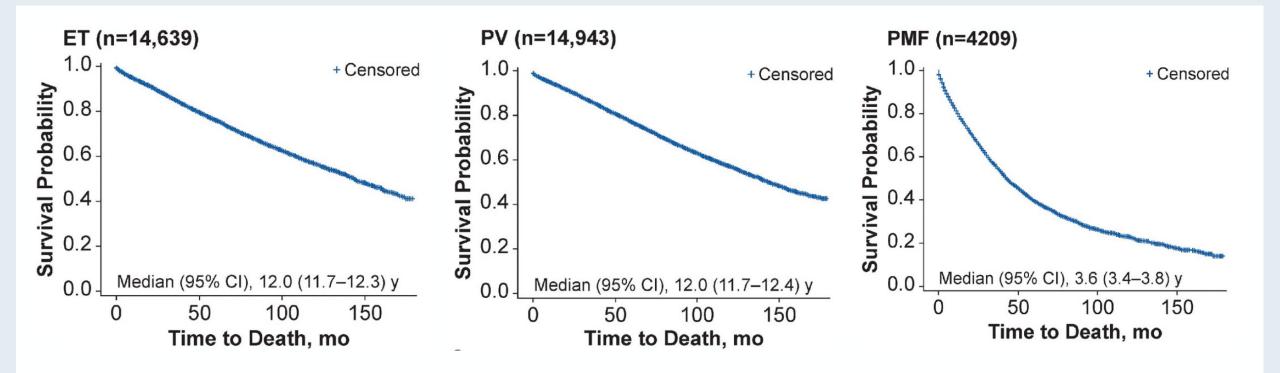
Module 4: Appendix of Key Publications


Blood Adv 2021;5(8):2156-64. **REGULAR ARTICLE**

Single-center experience with venetoclax combinations in patients with newly diagnosed and relapsed AML evolving from MPNs

Lucia Masarova, Courtney D. DiNardo, Prithviraj Bose, Naveen Pemmaraju, Naval G. Daver, Tapan M. Kadia, Helen T. Chifotides, Lingsha Zhou, Gautam Borthakur, Zeev Estrov, Marina Konopleva, and Srdan Verstovsek

Leukemia & Lymphoma Leuk Lymphoma 2021:1-9


ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ilal20

Changes in the incidence and overall survival of patients with myeloproliferative neoplasms between 2002 and 2016 in the United States

Srdan Verstovsek, Jingbo Yu, Robyn M. Scherber, Sumit Verma, Christopher Dieyi, Chien-Cheng Chen & Shreekant Parasuraman

Overall Survival for Essential Thrombocytothemia (ET), Polycythemia Vera (PV) and Primary MF (PMF) in the United States Between 2002 and 2016

Meet The Professor with Dr Verstovsek

Introduction

Module 1: Case Presentations

- Dr Keruakous: A 72-year-old man with JAK2-positive Intermediate-risk MF, a CALR mutation and multiple comorbidities
- Dr Bhatnagar: A 76-year-old woman with JAK2 V617F-positive primary myelofibrosis (MF) treated with ruxolitinib
- Dr Palmer: An 80-year-old woman with primary MF and pancytopenia (Hb 7.2 g/dL, platelets 38,000/uL)
- Dr Nathwani: A 66-year-old man with JAK2-positive primary MF and pancytopenia who develops recurrent herpes zoster on ruxolitinib
- Dr Bhatnagar: A 64-year-old man with an unspecified myeloproliferative neoplasm, pancytopenia and a JAK2 mutation
- Dr Palmer: A 65-year-old man with post-PV MF and ASXL1, SRSF2 mutations

Module 2: Journal Club with Dr Verstovsek

Module 3: Faculty Survey

Module 4: Appendix of Key Publications

Case Presentation: A 72-year-old man with JAK2-positive Intermediate-risk MF, a CALR mutation and multiple comorbidities

Dr Amany Keruakous (Augusta, Georgia)

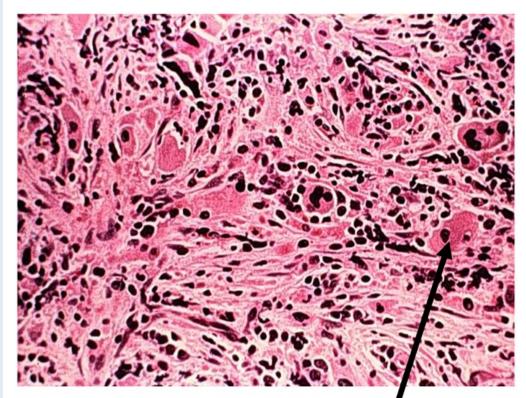
Case Presentation: A 72-year-old man with JAK2-positive Intermediate-risk MF, a CALR mutation and multiple comorbidities (continued)

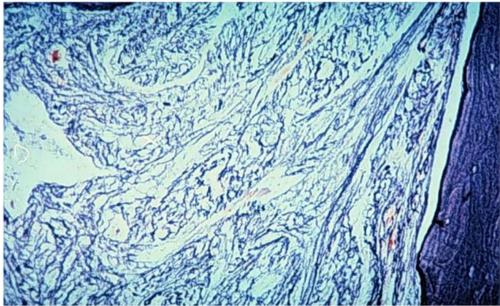
Dr Amany Keruakous (Augusta, Georgia)

Case Presentation: A 76-year-old woman with JAK2 V617Fpositive primary MF treated with ruxolitinib

Dr Tina Bhatnagar (Wheeling, West Virginia)

Case Presentation: An 80-year-old woman with primary MF and pancytopenia (Hb 7.2 g/dL, platelets 38,000/uL)




Case Presentation: An 80-year-old woman with primary MF and pancytopenia (Hb 7.2, platelets 38,000/uL), cont

Dr Jeanne Palmer


Large, hypolobated megakaryocytes

Bone marrow reticulin screen

Case Presentation: A 66-year-old man with JAK2-positive primary MF and pancytopenia who develops recurrent herpes zoster on ruxolitinib

Dr Niyati Nathwani (Charlotte, North Carolina)

Case Presentation: A 64-year-old man with an unspecified myeloproliferative neoplasm, pancytopenia and a JAK2 mutation

Dr Tina Bhatnagar (Wheeling, West Virginia)

Selection of patients appropriate for treatment with ruxolitinib

Case Presentation: A 65-year-old man with post-PV MF and ASXL1, SRSF2 mutations

Case Presentation: A 65-year-old man with post-PCV MF and ASXL1, SRSF2 mutations (continued)

Meet The Professor with Dr Verstovsek

Introduction

Module 1: Case Presentations

- Dr Keruakous: A 72-year-old man with JAK2-positive Intermediate-risk MF, a CALR mutation and multiple comorbidities
- Dr Bhatnagar: A 76-year-old woman with JAK2 V617F-positive primary myelofibrosis (MF) treated with ruxolitinib
- Dr Palmer: An 80-year-old woman with primary MF and pancytopenia (Hb 7.2 g/dL, platelets 38,000/uL)
- Dr Nathwani: A 66-year-old man with JAK2-positive primary MF and pancytopenia who develops recurrent herpes zoster on ruxolitinib
- Dr Bhatnagar: A 64-year-old man with an unspecified myeloproliferative neoplasm, pancytopenia and a JAK2 mutation
- Dr Palmer: A 65-year-old man with post-PV MF and ASXL1, SRSF2 mutations

Module 2: Journal Club with Dr Verstovsek

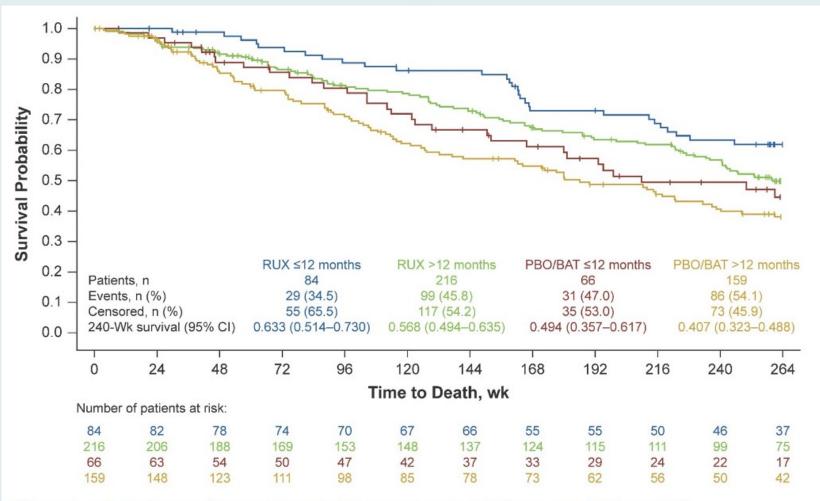
Module 3: Faculty Survey

Module 4: Appendix of Key Publications

Disease Modification in Myelofibrosis: An Elusive Goal?

Pankit Vachhani, MD¹; Srdan Verstovsek, MD, PhD²; and Prithviraj Bose, MD²

J Clin Oncol 2022;[Online ahead of print].



Does Early Intervention in Myelofibrosis Impact Outcomes? A Pooled Analysis of the Comfort I and II Studies

Verstovsek S et al. ASH 2021;Abstract 1505.

Overall Survival for Patients with MF, Stratified by Disease Duration Before Ruxolitinib Initiation

BAT, best available therapy; MF, myelofibrosis; OS, overall survival; PBO, placebo; RUX, ruxolitinib.

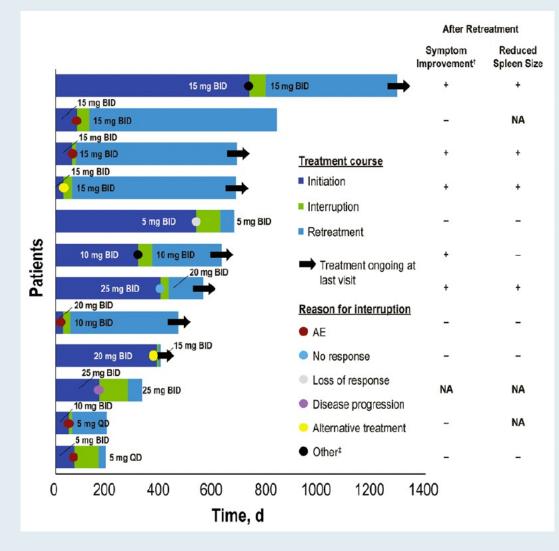
Annals of Hematology (2022) 101:131–137 https://doi.org/10.1007/s00277-021-04682-x

ORIGINAL ARTICLE

Real-world survival of US patients with intermediate- to high-risk myelofibrosis: impact of ruxolitinib approval

Srdan Verstovsek¹ · Shreekant Parasuraman² · Jingbo Yu² · Anne Shah³ · Shambhavi Kumar³ · Ann Xi³ · Claire Harrison⁴

Acta Haematologica Brief Report


Acta Haematol 2022;10:1-5

Ruxolitinib Re-Treatment in Patients with Myelofibrosis: Real-World Evidence on Patient Characteristics and Outcomes

Aaron T. Gerds^a Jingbo Yu^b Robyn M. Scherber^b Dilan Paranagama^b Jonathan K. Kish^c Jay Visaria^d Mukul Singhal^d Srdan Verstovsek^e Naveen Pemmaraju^e

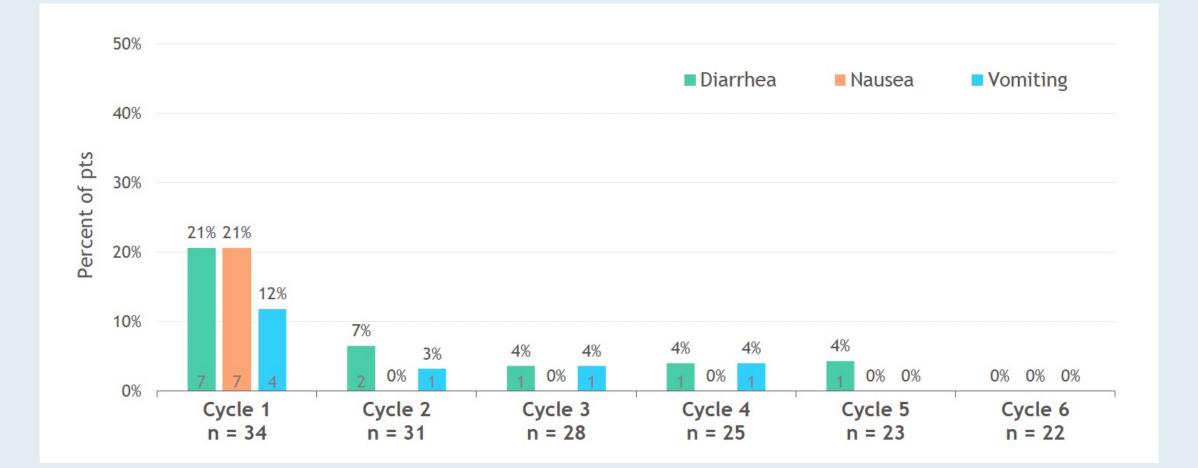
Ruxolitinib Treatment Course Among Individual Patients from the OPEN Analysis Set

Verstovsek S et al. Leukemia Research 110 (2021) 106711

Letter to the Editor

Real-world patient characteristics and treatment patterns of ruxolitinib among patients with advanced essential thrombocythemia at community clinical practice

ASH 2021; Abstract 389


Safety and tolerability of fedratinib, an oral inhibitor of Janus kinase 2, in patients with intermediate- or highrisk myelofibrosis previously treated with ruxolitinib: results from the phase 3b FREEDOM trial

Vikas Gupta¹; Abdulraheem Yacoub²; Srdan Verstovsek³; Ruben Mesa⁴; Claire Harrison⁵; Giovanni Barosi⁶; Jean-Jacques Kiladjian⁷; H. Joachim Deeg⁸; Salman Fazal⁹; Lynda Foltz¹⁰; Ryan Mattison¹¹; Carole Miller¹²; Vinod Parameswaran¹³; Vishwanath Gharpure¹⁴; Christopher Hernandez¹⁴; Jun Zhang¹⁴; and Moshe Talpaz¹⁵

¹Princess Margaret Cancer Centre, Toronto, Canada; ²University of Kansas Medical Center, Kansas City, KS; ³The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX; ⁵Guy's and St Thomas' Hospital, London, United Kingdom; ⁶Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy; ⁷Hôpital Saint-Louis; Université de Paris, Inserm, Paris, France; ⁸Fred Hutchinson Cancer Center, Seattle, WA; ⁹Allegheny Health Network Cancer Institute, Pittsburgh, PA; ¹⁰St. Paul's Hospital, University of British Columbia, Vancouver, Canada; ¹¹University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI; ¹²Ascension Saint Agnes Hospital, Baltimore, MD; ¹³Avera Cancer Institute, Sioux Falls, SD; ¹⁴Bristol Myers Squibb, Princeton, NJ; ¹⁵University of Michigan Comprehensive Cancer Center, Ann Arbor, MI

Frequency of Nausea, Vomiting and Diarrhea by Treatment Cycle

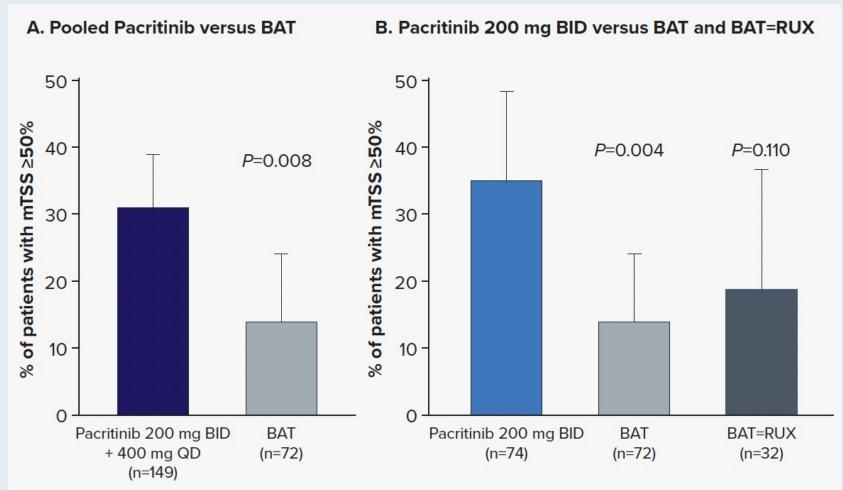
Pacritinib Granted Accelerated Approval for MF with Severe Thrombocytopenia Press Release: February 28, 2022

"Pacritinib received accelerated approval from the FDA at a twice daily, 200-mg dose for patients with intermediate- or high-risk primary or secondary myelofibrosis who are experiencing severe thrombocytopenia with a platelet count below 50×10^9 /L. The agency's decision comes from results of the phase 3 PERSIST-2 study (NCT02055781).

Treatment with pacritinib at 200 mg resulted in a reduction in spleen volume of at least 35% for 29% of patients, vs 3% of patients who received the best available therapy, including ruxolitinib (Jakafi). As part of the post-approval plans for pacritinib, the phase 3 PACIFICA trial (NCT03165734) will be completed with results estimated in 2025.

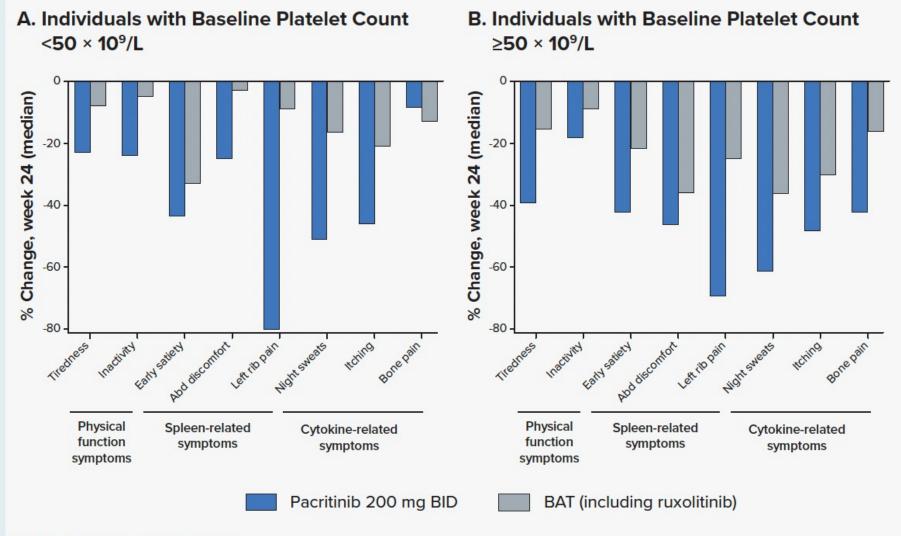
The PERSIST-2 study, which assessed the use of pacritinib compared with best available therapy in patients with myelofibrosis and thrombocytopenia, enrolled 311 patients. Those who enrolled were randomized into 1 of 3 treatment regimens, including pacritinib once daily (n = 104), pacritinib twice daily (n = 107), or a best alternative treatment (n = 100). Best alternative treatments included ruxolitinib (45%), hydroxyurea (19%), and prednisone and/or prednisolone (13%)."

https://www.cancernetwork.com/view/pacritinib-granted-accelerated-approval-for-use-in-myelofibrosis-with-severethrombocytopenia?utm_source=sfmc&utm_medium=email&utm_campaign=3.01.22_CN_Breaking_B&eKey=cmthZGVybWFuQHJlc2Vh cmNodG9wcmFjdGljZS5jb20=



The Impact of Pacritinib on Myelofibrosis Symptoms

Palmer J et al. ASH 2021;Abstract 3628.


Modified TSS Response Rates (Week 24) in PERSIST-2

BAT=best available therapy; BID=twice daily; mTSS=modified total symptom score; QD=once daily; RUX=ruxolitinib; TSS=total symptom score.

Percent Change in Individual Symptom Scores in PERSIST-2

BAT=best available therapy; BID=twice daily.

Palmer J et al. ASH 2021;Abstract 3628.

Haematologica 2021;[Online ahead of print].

Retrospective analysis of pacritinib in patients with myelofibrosis and severe thrombocytopenia

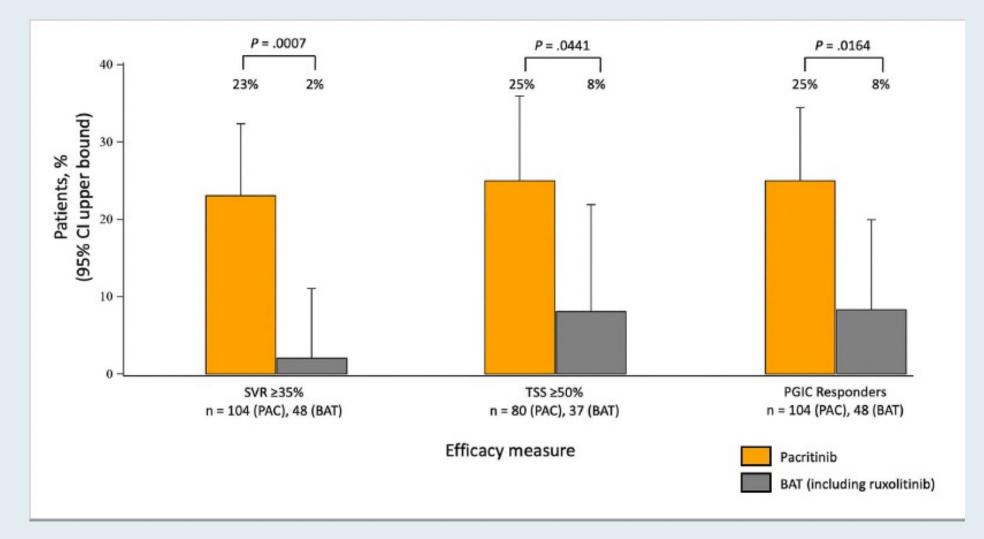
by Srdan Verstovsek, Ruben Mesa, Moshe Talpaz, Jean-Jacques Kiladjian, Claire N. Harrison, Stephen T. Oh, Alessandro M. Vannucchi, Raajit Rampal, Bart L. Scott, Sarah A. Buckley, Adam R. Craig, Karisse Roman-Torres, and John O. Mascarenhas

Baseline Patient and Disease Characteristics in Patients Receiving Pacritinib or Best Available Therapy (BAT)

	Pacritinib (n = 132)	BAT (n = 57)	P-value**
Age, median (range)	69 (50–91)	69 (50-84)	0.95
Male sex, n (%)	80 (61)	28 (49)	0.14
ECOG PS, n* (%)			0.93
0-1	100/132 (76)	42/55 (76)	
2-3	32/132 (24)	13/55 (24)	
Prior JAK2 inhibitor, n (%)	43 (33)	21 (37)	0.57
MF diagnosis, n (%)			0.27
Primary MF	98 (74)	38 (67)	
PPV-MF	20 (15)	8 (14)	
PET-MF	14 (11)	11 (19)	
Time since MF diagnosis (years), median (IQR)	2.0 (0-27)	2.6 (0-14)	0.72
DIPSS risk category, n (%)			0.17
Intermediate-1	26 (20)	5 (9)	
Intermediate-2	63 (48)	30 (53)	
High	43 (33)	22 (39)	
Reticulin and collagen fibrosis staging, n* (%)			0.58
MF0-1	18/122 (15)	11/52 (21)	
MF 2	38/122 (31)	15/52 (29)	
MF3	66/122 (54)	26/52 (50)	
Bone marrow cellularity, n* (%)			0.26
<20%	27/110 (25)	18/49 (37)	
20-40%	18/110 (16)	8/49 (16)	
41-100%	65/110 (59)	23/49 (47)	

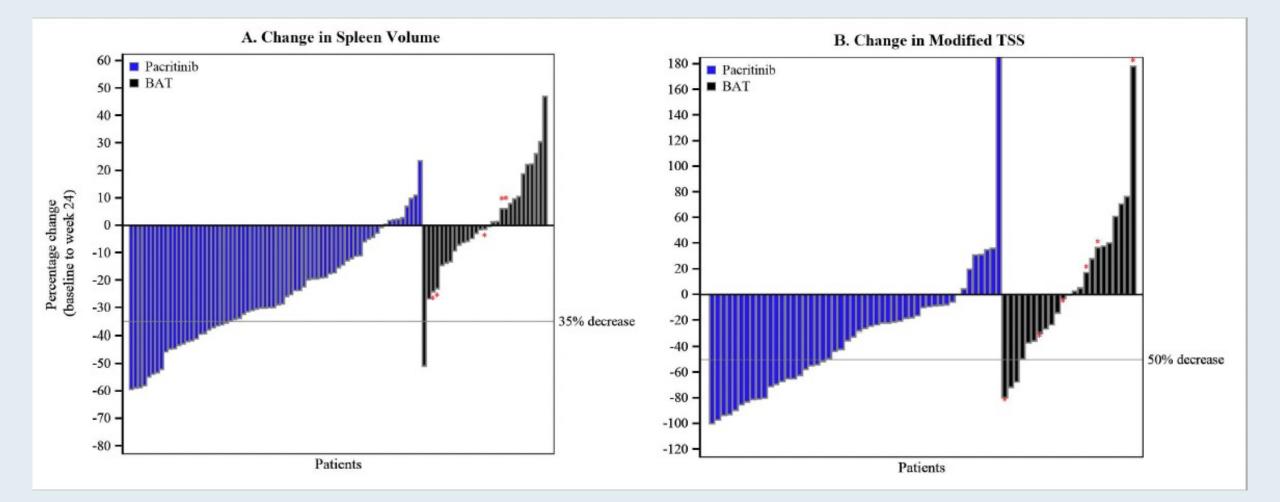
	Pacritinib (n = 132)	BAT (n = 57)	P-value**
Bone marrow blast category, n* (%)			0.82
≥1%	96/115 (84)	41/50 (82)	
<1%	19/115 (17)	11/50 (18)	
Peripheral blood blasts category, n* (%)			0.18
≥1%	60/118 (51)	31/50 (62)	
<1%	58/118 (49)	19/50 (38)	
Platelet count (10 ⁹ /L), median (range)	29 (6-49)	25 (5-49)	0.27
Hemoglobin <10 g/dL, n* (%)	85/132 (64)	35/56 (63)	0.80
RBC transfusion dependence ⁺ , n (%)		8	0.66
Dependent	38 (29)	20 (35)	
Independent	61 (46)	23 (40)	
Indeterminate	33 (25)	14 (25)	
Spleen volume at baseline (cm³)‡, median	2566	2466	0.87
(IQR)	(1633-3680)	(1786-3727)	
Modified TSS score at baseline‡, median (IQR)	17 (12-29)	17 (12-27)	0.94
Study enrollment, n (%)			0.98
PERSIST-1	35 (27)	15 (26)	
PERSIST-2	97 (73)	42 (74)	

SVR and Modified TSS Response Rates by Subgroup of Patients Randomly Assigned to Pacritinib versus BAT

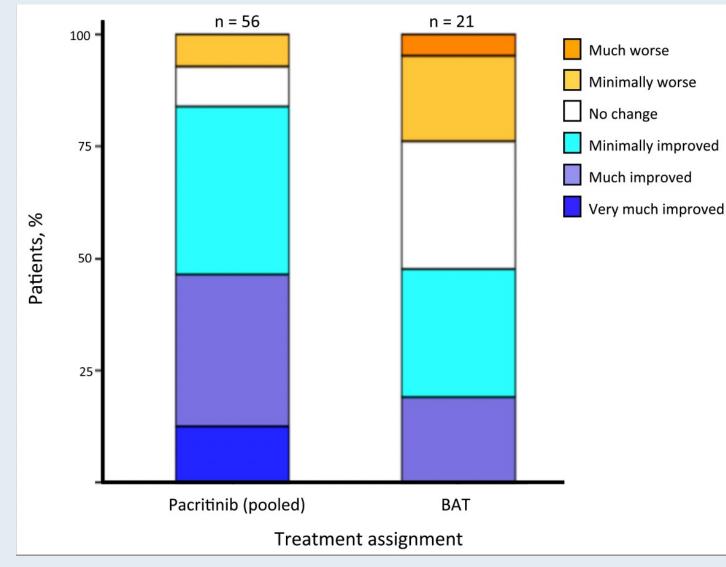

Response rate at week 24	Pacritinib	BAT	P-value*
Patients with ≥35% spleen volume redu	ction, % (n/N)		
Prior JAK2 inhibitor exposure			0.07
Yes	17.9 (5/28)	7.7 (1/13)	
No	25.0 (19/76)	0 (0/35)	
MF diagnosis		51 (Sector 10)	0.52
Primary	24.0 (18/75)	3.1 (1/32)	
Secondary	20.7 (6/29)	0 (0/16)	
Patients with ≥50% reduction in modifie	d TSS, % (n/N)		
Prior JAK2 inhibitors			0.14
Yes	17.9 (5/28)	15.4 (2/13)	
No	28.8 (15/52)	4.2 (1/24)	
MF diagnosis			0.43
Primary	30.4 (17/56)	12.0 (3/25)	
Secondary	12.5 (3/24)	0 (0/12)	
Patients with "much" or "very much" in	proved PGIC scores, % (n/M	N)	
Prior JAK2 inhibitors			0.08
Yes	14.3 (4/28)	15.4 (2/13)	
No	28.9 (22/76)	5.7 (2/35)	
MF diagnosis			0.45
Primary	30.7 (23/75)	12.5 (4/32)	
Secondary	10.3 (3/29)	0 (0/16)	

BAT, best available therapy; JAK2, Janus kinase 2; MF, myelofibrosis; PGIC, Patient Global Impression of Change; SVR, spleen volume reduction; TSS, Total Symptom Score.

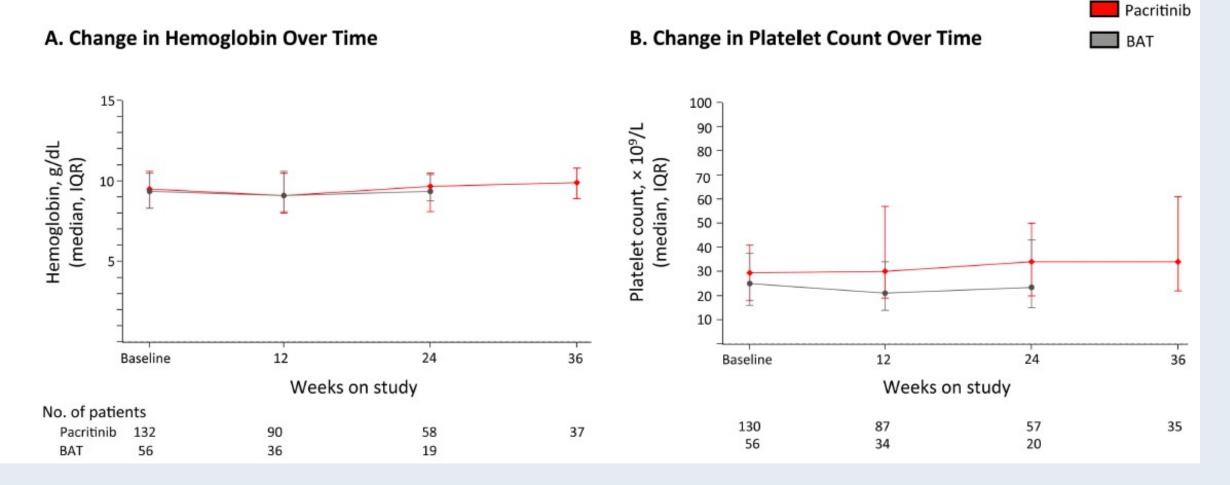
* Breslow and Day homogeneity test


JOURNAL CLUB RESEARCH

Efficacy of Pacritinib versus BAT Based on 24-Week Response Rates for Patients with Severe Thrombocytopenia



Waterfall Plots of Percent Change from Baseline



Self-Reported Symptoms by Treatment Group of Patients Who Completed the Patient Global Impression of Change at Week 24

Median Hemoglobin and Platelet Count Over Time Through Week 24

Review Article

Clin Lymphoma Myeloma Leuk 2021;[Online ahead of print].

SOHO State of the Art Updates and Next Questions: Novel Therapies in Development for Myelofibrosis

Helen T. Chifotides, Prithviraj Bose, Lucia Masarova, Naveen Pemmaraju, Srdan Verstovsek

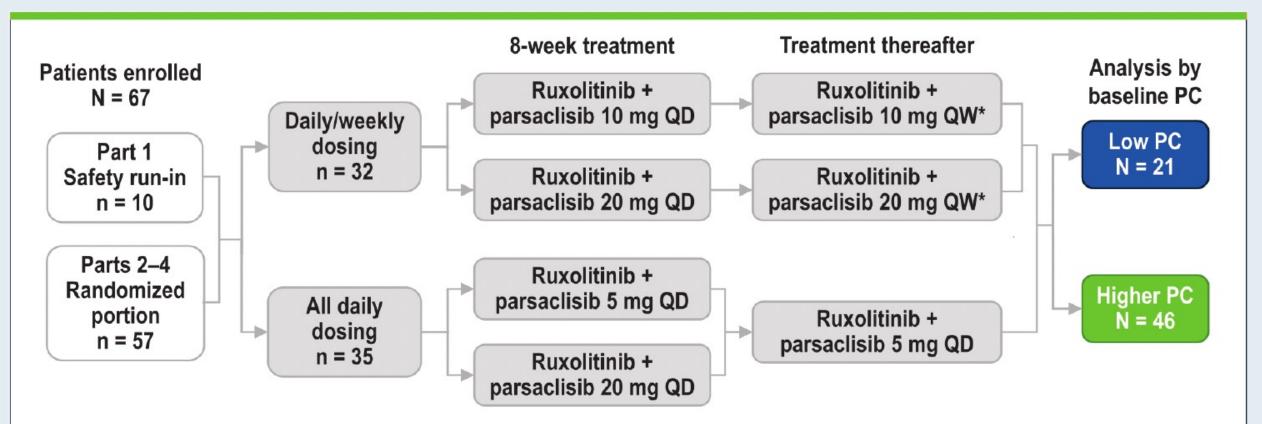
Clin Lymphoma Myeloma Leuk 2021;21(10):641-9.

Review Article

SOHO State of the Art Updates and Next Questions: Identifying and Treating "Progression" in Myelofibrosis

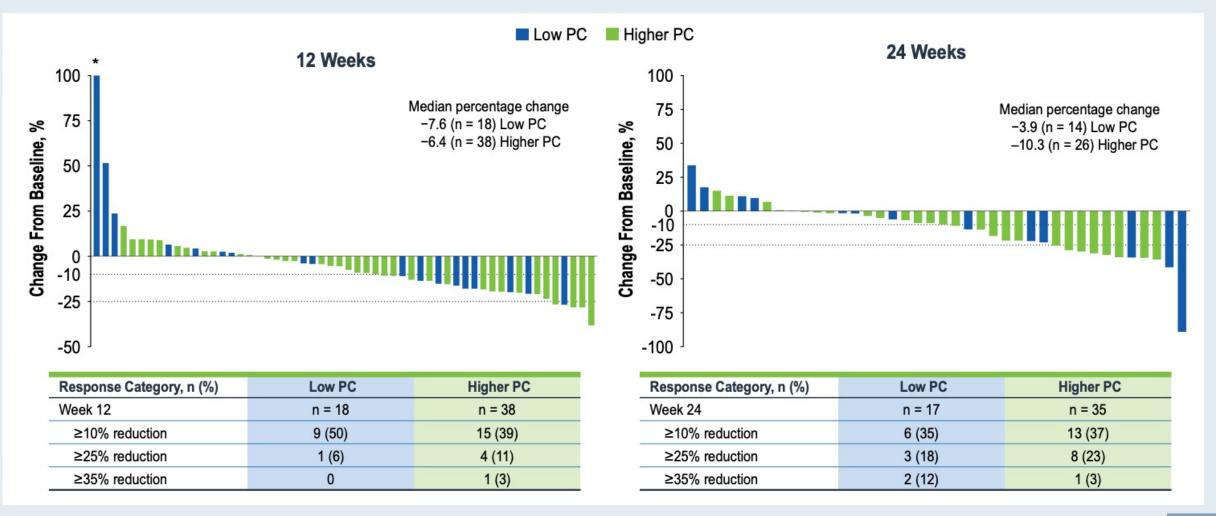
Prithviraj Bose, Srdan Verstovsek

Subgroup Analysis From a Phase 2 Study of the Efficacy and Safety of Parsaclisib, a Selective PI3Kδ Inhibitor, in Combination With Ruxolitinib in Patients With Myelofibrosis

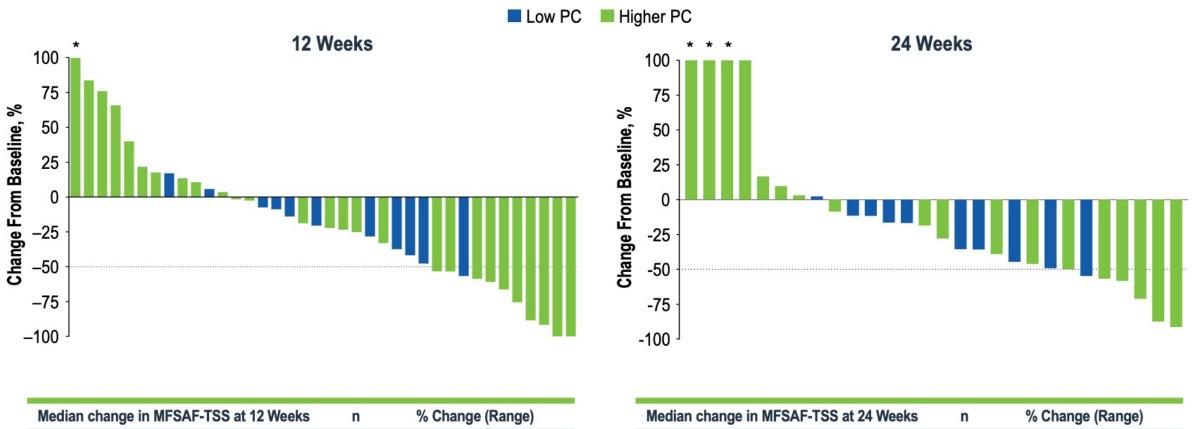

Abdulraheem Yacoub,¹ Uma Borate,² Raajit Rampal,³ Haris Ali,⁴ Eunice Wang,⁵ Aaron Gerds,⁶ Gabriela Hobbs,⁷ Marina Kremyanskaya,⁸ Elliott Winton,⁹ Casey O'Connell,¹⁰ Swati Goel,¹¹ Stephen Oh,¹² Gary Schiller,¹³ Albert Assad,¹⁴ Sue Erickson-Viitanen,¹⁴ Feng Zhou,¹⁴ Naval Daver¹⁵

¹University of Kansas Cancer Center, Westwood, KS, USA; ²Oregon Health & Science University, Portland, OR, USA; ³Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁴City of Hope National Medical Center, Duarte, CA, USA; ⁵Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ⁶Cleveland Clinic, Cleveland, OH, USA; ⁷Massachusetts General Hospital, Boston, MA, USA; ⁸Icahn School of Medicine at Mount Sinai, New York, NY, USA; ⁹Emory University, Atlanta, GA, USA; ¹⁰University of Southern California, Los Angeles, CA, USA; ¹¹Montefiore Medical Center, Bronx, NY, USA; ¹²Washington University School of Medicine, St. Louis, MO, USA; ¹³David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; ¹⁴Incyte Corporation, Wilmington, DE, USA; ¹⁵University of Texas MD Anderson Cancer Center, Houston, TX, USA

ASH 2021; Abstract 3647.


Phase II INCB 50465-201 Study of Adding Parsaclisib to Ruxolitinib

*Options for QD dosing were made available to patients once daily dosing regimens were added to the protocol. PC, platelet counts; QD, once daily; QW, once weekly.



Phase II INCB 50465-201: Percent Change in Spleen Volume

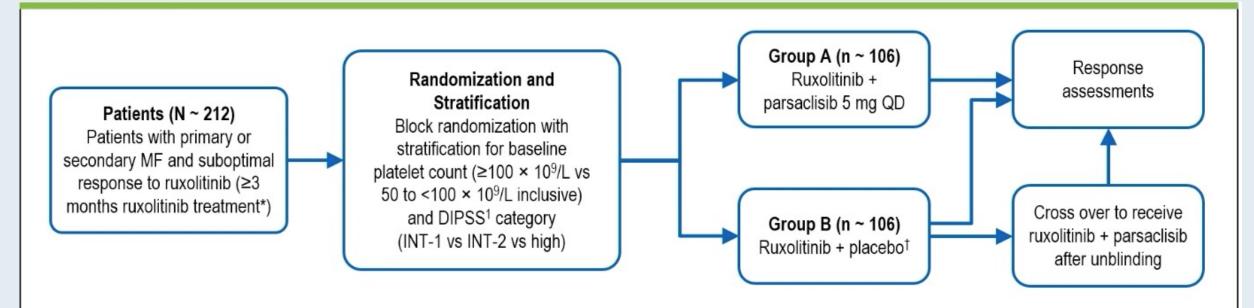
Phase II INCB 50465-201: Percent Change in MFSAF-TSS

Low PC

Higher PC

	% Change (Range)
11	-20.5 (-56.6 to 17.1)
27	-22.2 (-100.0 to 500.0)
	11 27

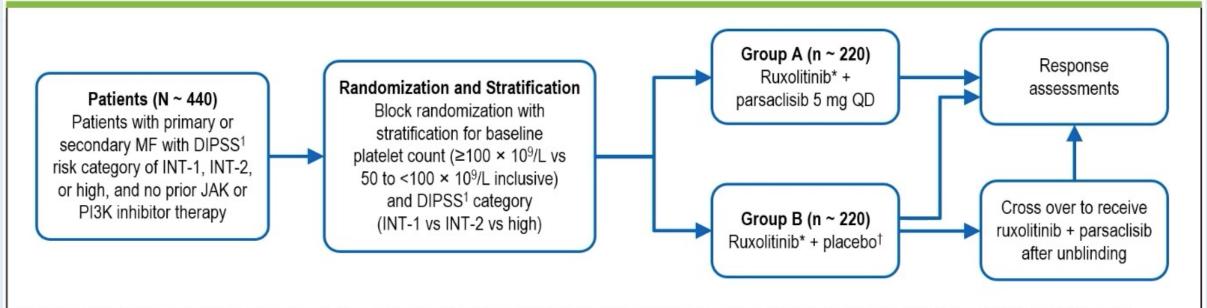
RTP RESEARCH TO PRACTICE


10

18

-26.1 (-54.7 to 2.4)

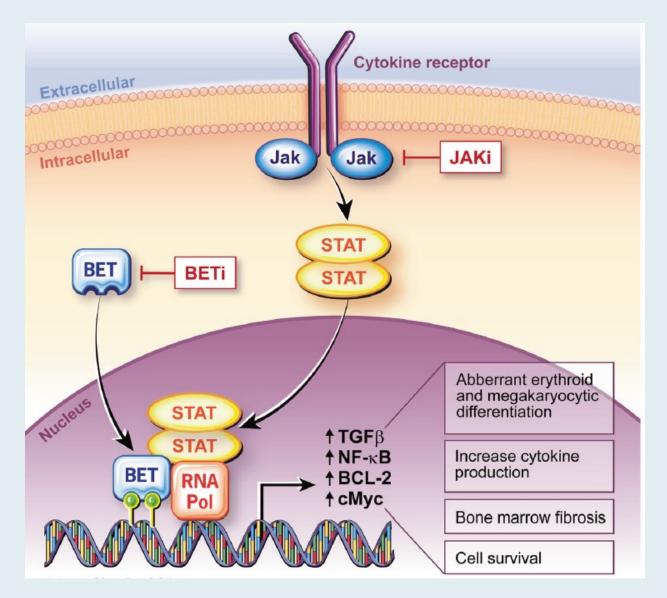
-23.1 (-91.3 to 222.5)


LIMBER-304 Phase III Study Design

*Patients must be receiving a stable dose of ruxolitinib (range, 5–25 mg BID) for \geq 8 weeks prior to starting parsaclisib or placebo treatment. [†]Patients will be eligible to cross over after unblinding if platelet count \geq 50 × 10⁹/L and ANC \geq 0.5 × 10⁹/L. ANC, absolute neutrophil count; BID, twice daily; DIPSS, Dynamic International Prognostic Scoring System; INT, intermediate; QD, once daily.

LIMBER-313 Phase III First-Line Study Design

*Starting doses of ruxolitinib are based on baseline platelet counts, with dose escalation allowed in the first 16 weeks of the study. TPatients will be eligible to cross over after unblinding if platelet count ≥50 × 10⁹/L and ANC ≥0.5 × 10⁹/L. ANC, absolute neutrophil count; DIPSS, Dynamic International Prognostic Scoring System; INT, intermediate; QD, once daily.

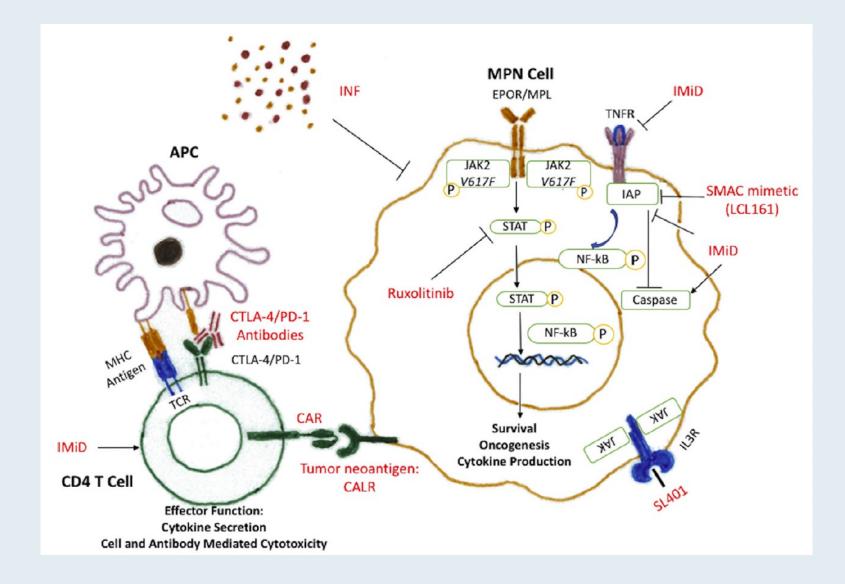

PERSPECTIVE OPEN Paradigm shift: combination BET and JAK inhibition in myelofibrosis

John Mascarenhas [™], Aaron Gerds ² and Srdan Verstovsek ³

Leukemia (2021) 35:3361-3363; https://doi.org/10.1038/s41375-021-01405-z

Mechanism of Action of BET Inhibitor Pelabresib

Mascarenhas J et al. *Leukemia* 2021;35(12):3361-3.

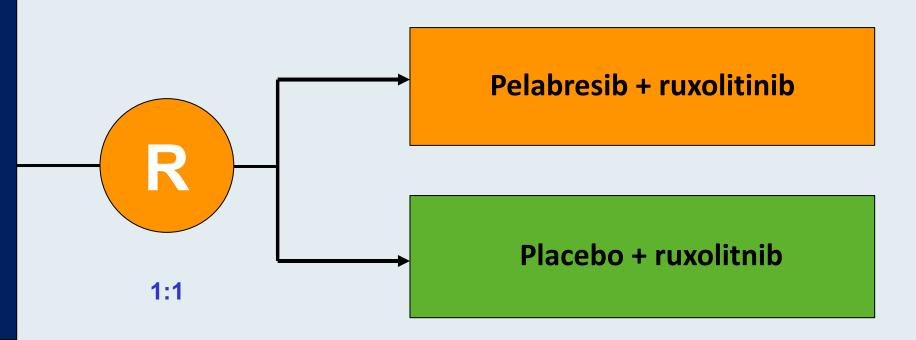

Hematol Oncol Clin North Am 2021;35(2):409-29.

Immunotherapy and Immunomodulation in Myeloproliferative Neoplasms

Naveen Pemmaraju, мD^{a,*}, Natalie C. Chen, мD, PhD^b, Srdan Verstovsek, MD, PhD^C

Immunomodulating Agents in MPN Treatment

Pemmaraju N et al. *Hematol Oncol Clin North Am* 2021;35(2):409-29.


MANIFEST-2: Phase III Trial Design

Eligibility

JAK inhibitor-naïve primary MF or post-ET/PV MF:

- Advanced MF requiring therapy
- Splenomegaly by CT/MRI
- Symptomatic
- DIPSS int-1 or higher

Primary Endpoint: SVR35 at 24 weeks Key Secondary Endpoint: TSS50 by at 24 weeks

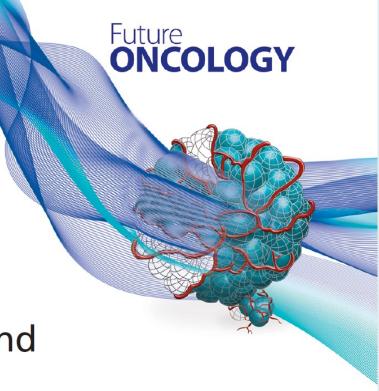
Momelotinib Yields Statistically Significant Improvement in Symptoms for Myelofibrosis Press Release: January 27, 2022

"Topline findings from the phase 3 MOMENTUM study indicated that patients with myelofibrosis experienced a statistically significant reduction in symptoms following treatment with momelotinib.

Treatment with momelotinib resulted in a statistically significant reduction in symptoms for patients with myelofibrosis, according to a press release of the topline findings from the pivotal phase 3 MOMENTUM trial (NCT04173494).

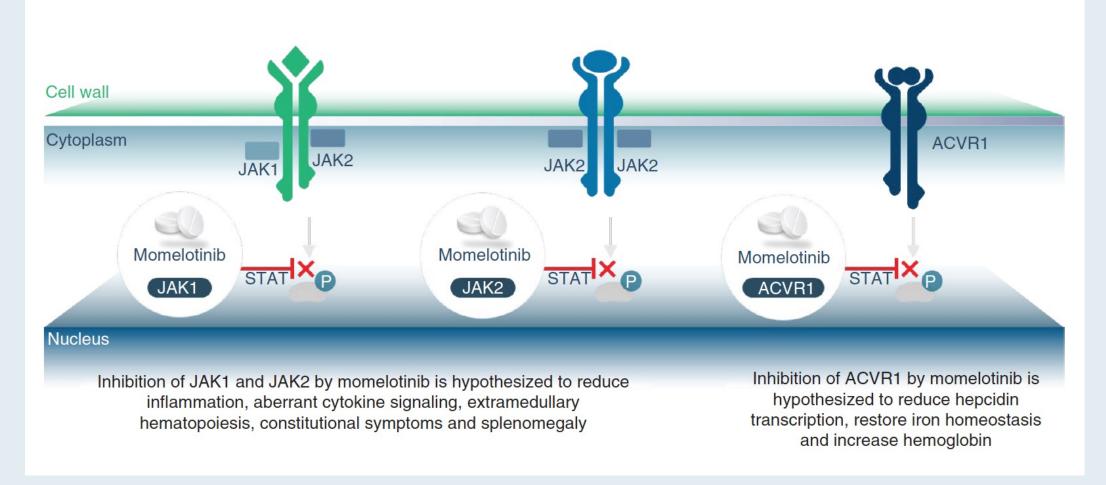
In a population of 195 patients, specifically 130 who received momelotinib and 65 who received danazol, 25% and 9% of patients, respectively, had a total symptom score of more than 50% (P = .0095). Additionally, 31% of patients in the momelotinib arm and 20% in the control arm were transfusion independent following treatment (one-sided P = .0064), indicating non-inferiority. Investigators also reported a splenic response rate of over 35% in 23% of patients in the experimental arm compared with 3% of patients in the control arm (P = .0006).

The full data are set to be presented at an upcoming medical meeting and plans have been put in place to submit a new drug application for the agent in the second quarter of 2022."

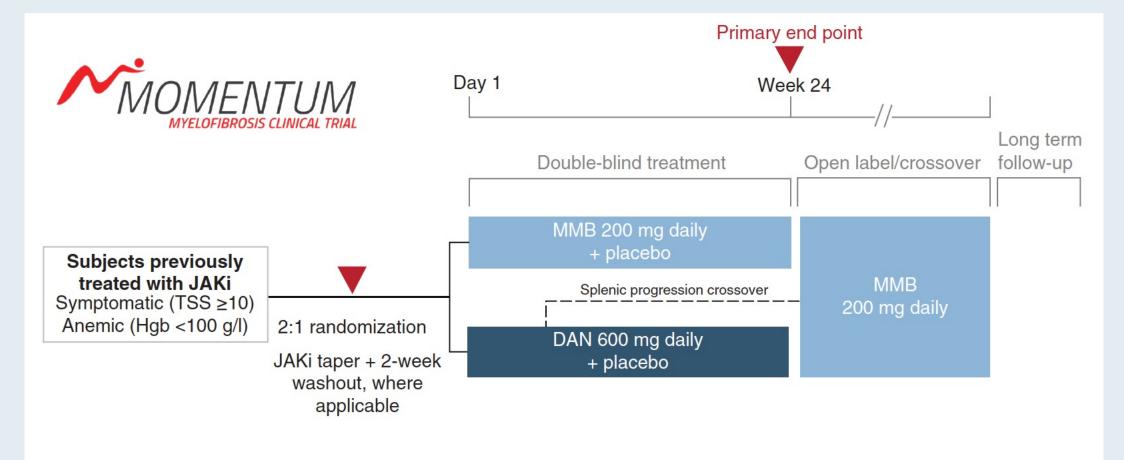


Future Oncol 2021;17(12):1449-58.

Clinical Trial Protocol


MOMENTUM: momelotinib vs danazol in patients with myelofibrosis previously treated with JAKi who are symptomatic and anemic

Srdan Verstovsek¹, Chih-Cheng Chen², Miklós Egyed³, Martin Ellis⁴, Laura Fox⁵, Yeow T Goh⁶, Vikas Gupta⁷, Claire Harrison⁸, Jean-Jacques Kiladjian⁹, Mihaela C Lazaroiu¹⁰, Adam Mead¹¹, Donal McLornan¹², Mary F McMullin¹³, Stephen T Oh¹⁴, Andrew Perkins¹⁵, Uwe Platzbecker¹⁶, Christof Scheid¹⁷, Alessandro Vannucchi¹⁸, Sung-Soo Yoon¹⁹, Mark M Kowalski^{*,20} & Ruben A Mesa²¹


Momelotinib Therapy May Decrease Inflammation, Improve Splenomegaly and Normalize Hemoglobin

Verstovsek S et al. Future Oncol 2021;17(12):1449-58.

MOMENTUM Study Schematic

DAN: Danazol; JAKi: JAK inhibitor; MMB: Momelotinib; TSS: Total symptom score.

Verstovsek S et al. Future Oncol 2021;17(12):1449-58.

Chifotides et al. Journal of Hematology & Oncology (2022) 15:7 https://doi.org/10.1186/s13045-021-01157-4

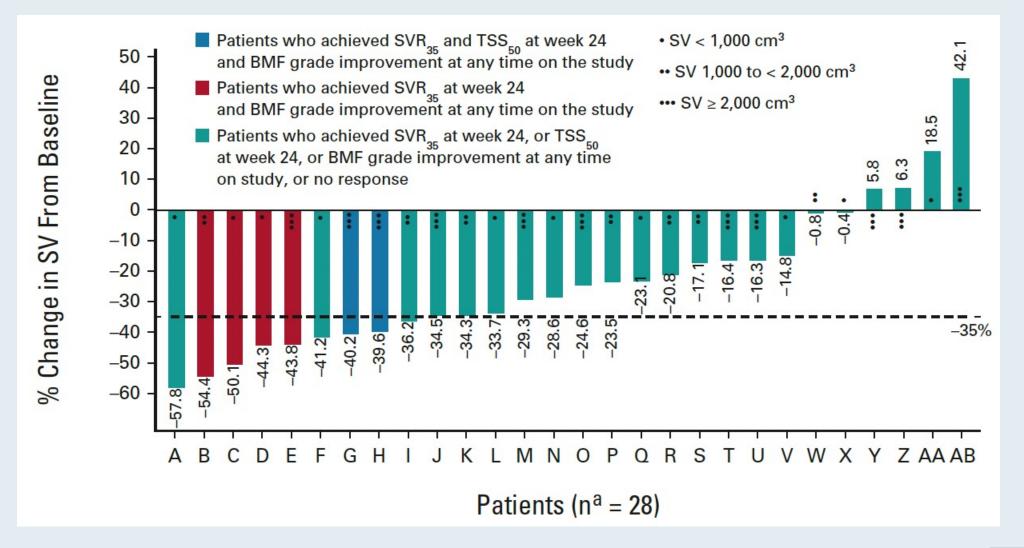
Journal of Hematology & Oncology

REVIEW

Open Access

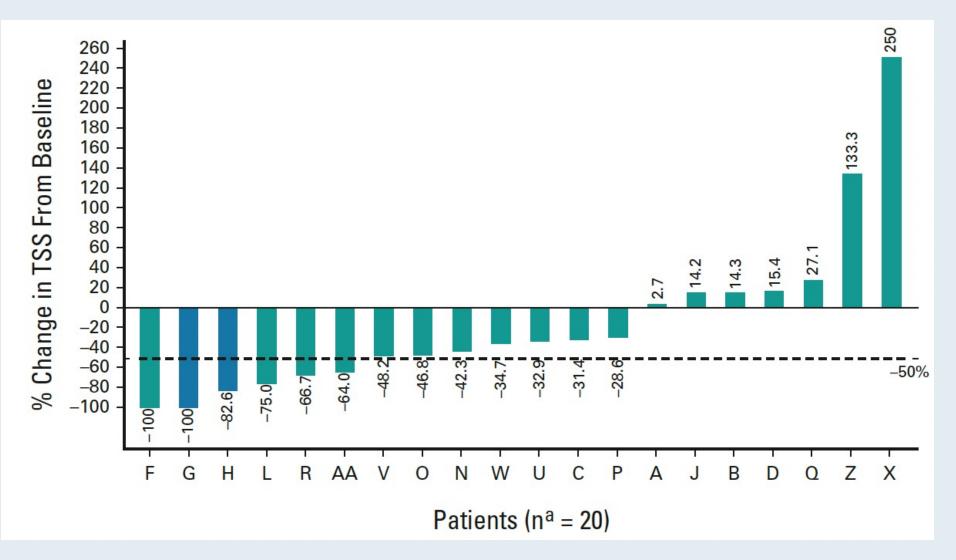
Momelotinib: an emerging treatment for myelofibrosis patients with anemia

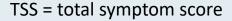
Helen T. Chifotides^(D), Prithviraj Bose^(D) and Srdan Verstovsek^{*}^(D)


Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal Response: Phase II Safety and Efficacy Claire N. Harrison, MD¹; Jacqueline S. Garcia, MD²; Tim C. P. Somervaille, MBBS, PhD^{3.4}; James M. Foran, MD⁵; Srdan Verstovsek, MD, PhD⁶; Catriona Jamieson, MD, PhD⁷; Ruben Mesa, MD⁸; Ellen K. Ritchie, MD⁹; Srinivas K. Tantravahi, MBB

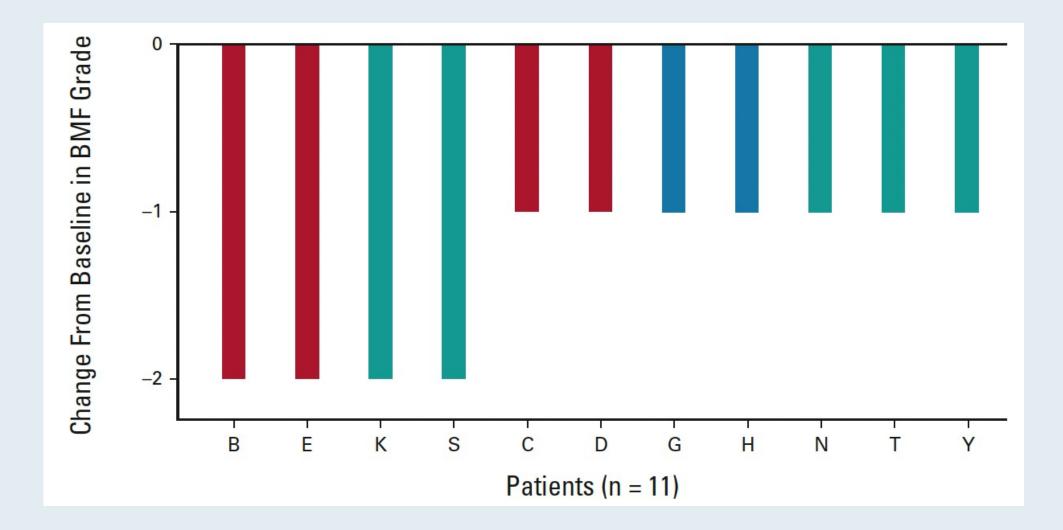
Claire N. Harrison, MD¹; Jacqueline S. Garcia, MD²; Tim C. P. Somervaille, MBBS, PhD^{3,4}; James M. Foran, MD⁵; Srdan Verstovsek, MD, PhD⁶; Catriona Jamieson, MD, PhD⁷; Ruben Mesa, MD⁸; Ellen K. Ritchie, MD⁹; Srinivas K. Tantravahi, MBBS¹⁰; Pankit Vachhani, MD¹¹; Casey L. O'Connell, MD¹²; Rami S. Komrokji, MD¹³; Jason Harb, PhD¹⁴; Jessica E. Hutti, PhD¹⁴; Leanne Holes, MBA¹⁴; Abdullah A. Masud, MS, PhD¹⁴; Silpa Nuthalapati, PhD¹⁴; Jalaja Potluri, MD¹⁴; and Naveen Pemmaraju, MD⁶

J Clin Oncol 2022;[Online ahead of print].




Percent Change in Spleen Volume from Baseline

Percent Change in TSS from Baseline at Week 24

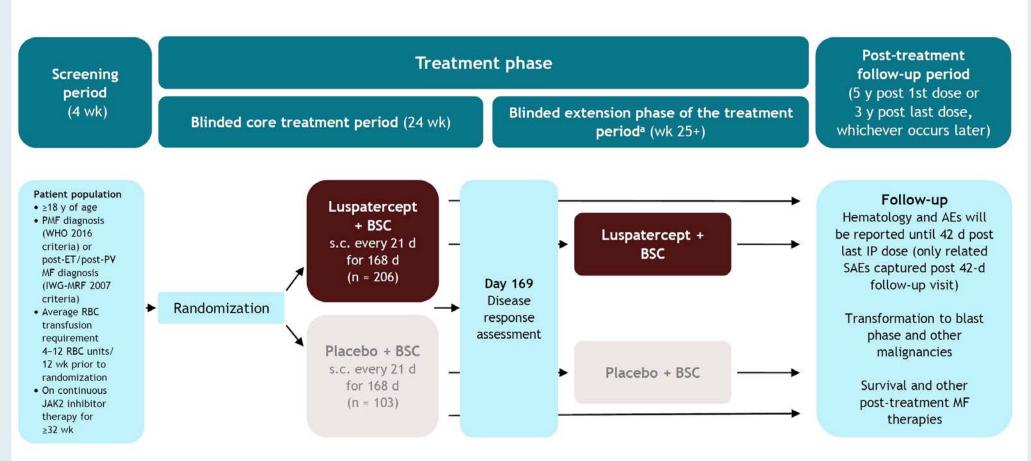


Harrison CN et al. J Clin Oncol 2022;[Online ahead of print].

Percent Change in Bone Marrow Fibrosis (BMF) from Baseline

A Randomized Open-Label, Phase 3 Study to Evaluate Imetelstat versus Best Available Therapy (BAT) in Patients with Intermediate-2 (Int-2) or High-Risk Myelofibrosis (MF) Refractory to Janus Kinase Inhibitor (JAKi)

Mascarenhas J et al. ASH 2021;Abstract 1503.



INDEPENDENCE: A Phase 3 Study of Efficacy and Safety of Luspatercept versus Placebo in Patients with Myeloproliferative Neoplasm-Associated Myelofibrosis on JAK2 Inhibitor Therapy and Requiring Red Blood Cell Transfusions

Mesa RA et al. ASH 2021;Abstract 1490.

Figure. The INDEPENDENCE trial design

^aPatients on study can be unblinded after analysis of the primary endpoint and with data monitoring committee consultation. Patients receiving placebo have the opportunity to receive luspatercept treatment and be treated for ≥ 24 wk in the open-label extension treatment period as long as they continue to demonstrate benefit from treatment, or they experience transformation to blast phase, unacceptable toxicities, or meet any other criteria for treatment discontinuation.

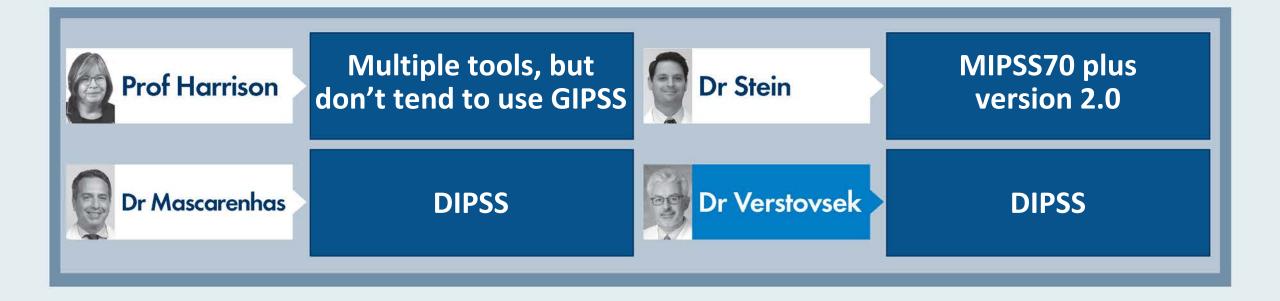
AE, adverse event; BSC, best supportive care; d, day; ET, essential thrombocythemia; IP, investigational product; IWG-MRF, International Working Group for Myelofibrosis Research and Treatment; MF, myelofibrosis; PMF, primary myelofibrosis; PV, polycythemia vera; RBC, red blood cell; SAE, serious adverse event; s.c., subcutaneously; WHO, World Health Organization; wk, week; y, year.

Mesa RA et al. ASH 2021;Abstract 1490.

Meet The Professor with Dr Verstovsek

Introduction

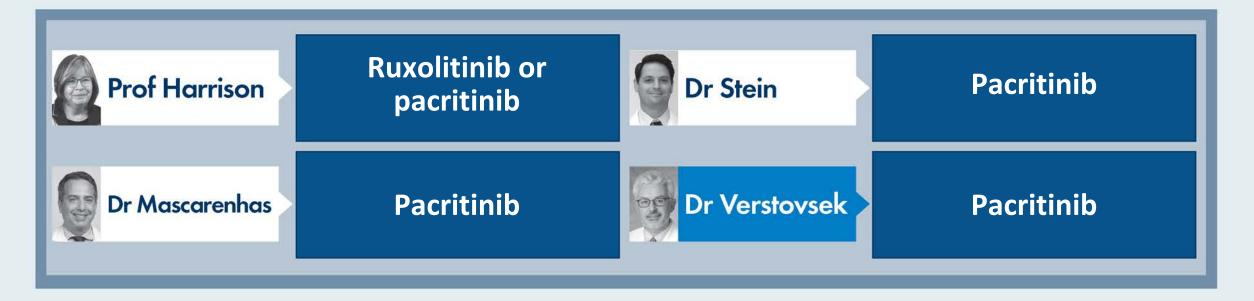
Module 1: Case Presentations


- Dr Keruakous: A 72-year-old man with JAK2-positive Intermediate-risk MF, a CALR mutation and multiple comorbidities
- Dr Bhatnagar: A 76-year-old woman with JAK2 V617F-positive primary myelofibrosis (MF) treated with ruxolitinib
- Dr Palmer: An 80-year-old woman with primary MF and pancytopenia (Hb 7.2 g/dL, platelets 38,000/uL)
- Dr Nathwani: A 66-year-old man with JAK2-positive primary MF and pancytopenia who develops recurrent herpes zoster on ruxolitinib
- Dr Bhatnagar: A 64-year-old man with an unspecified myeloproliferative neoplasm, pancytopenia and a JAK2 mutation
- Dr Palmer: A 65-year-old man with post-PV MF and ASXL1, SRSF2 mutations

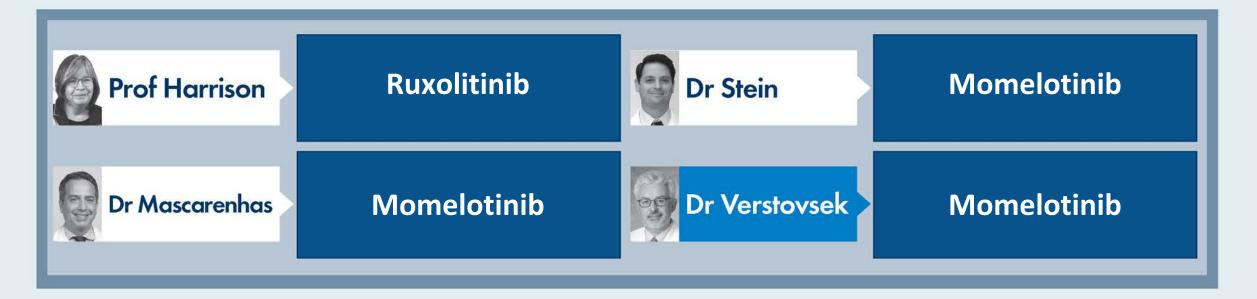
Module 2: Journal Club with Dr Verstovsek

Module 3: Faculty Survey

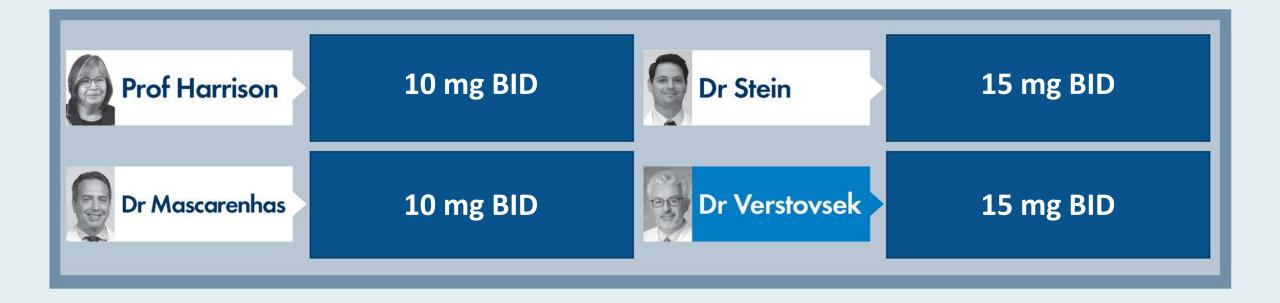
Which prognostic tool do you typically use for your patients with myelofibrosis (MF)?


For a 65-year-old patient with <u>lower-risk</u>, symptomatic MF, which treatment would you generally recommend?

HU = hydroxyurea

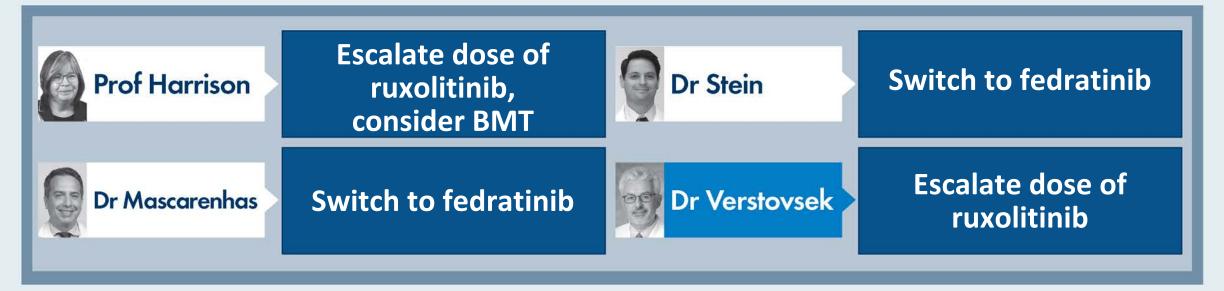


Regulatory and reimbursement issues aside and assuming you could access all these agents, for a 65-year-old patient with higher-risk, symptomatic MF, splenomegaly and a platelet count of $40,000/\mu$ L, which treatment would you generally recommend (assuming the patient is not a transplant candidate)?

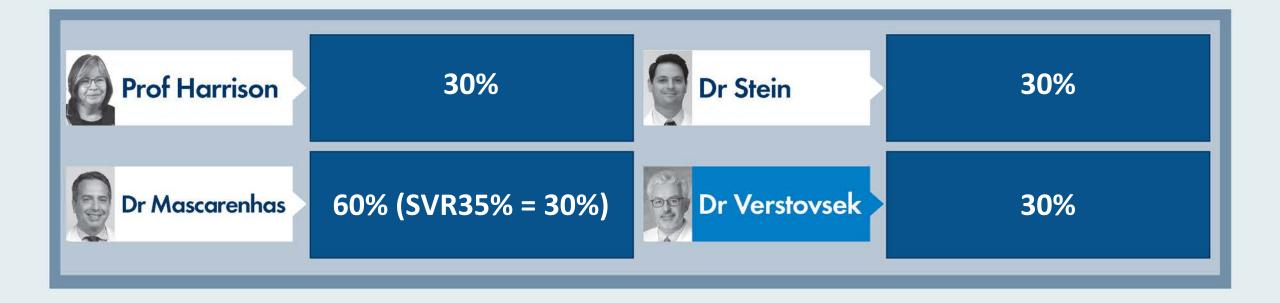


Regulatory and reimbursement issues aside and assuming you could access all these agents, for a 65-year-old patient with higher-risk, symptomatic MF, splenomegaly <u>and transfusion-dependent</u> <u>anemia (Hgb 8.0 g/dL)</u>, which treatment would you generally recommend (assuming the patient is not a transplant candidate)?

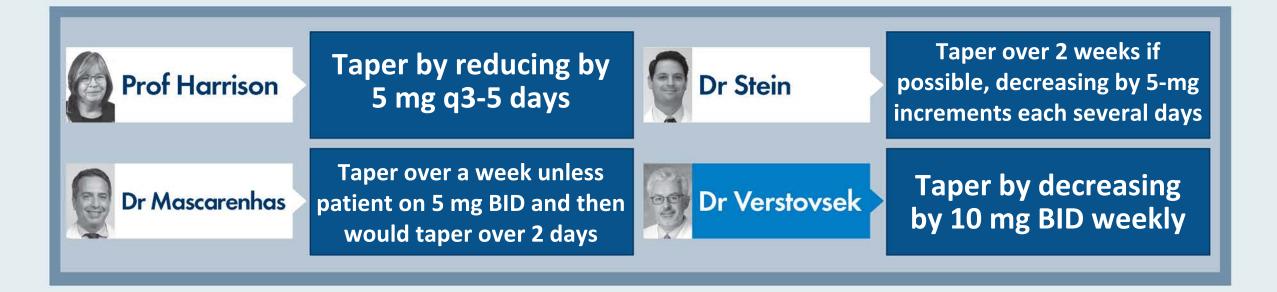
If treating a patient with higher-risk, symptomatic MF, splenomegaly and a platelet count of 150,000/µL with ruxolitinib, what starting dose would you generally use?



What is the maximum dose of ruxolitinib that you would use for a patient with MF?


Regulatory and reimbursement issues aside and assuming you could access all these agents, if a 65-year-old patient with higher-risk, symptomatic MF did not experience reduction in spleen size or improvement in symptoms after <u>3 months</u> of standard-dose ruxolitinib, which of the following would you most likely attempt (assuming normal renal and hepatic function and a platelet count >200,000/µL)?

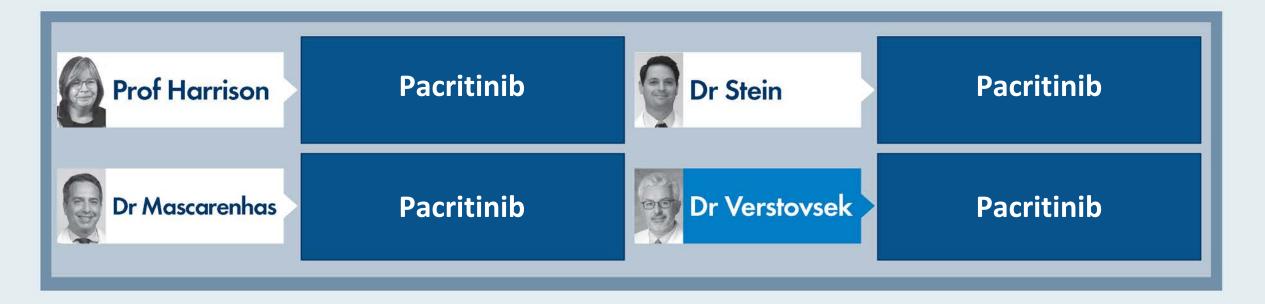
BMT = bone marrow transplant



If you decided to switch to fedratinib for the patient in the previous scenario, what would you estimate is the likelihood that he or she would respond?



When discontinuing <u>ruxolitinib</u> due to insufficient response, intolerance or progressive disease, do you generally taper off or discontinue immediately?



Based on current clinical trial data and your personal experience, how would you compare patient-reported symptom relief with ruxolitinib to that with fedratinib?

A 65-year-old man with symptomatic, higher-risk MF and splenomegaly (baseline platelet count 110,000/ μ L) receives ruxolitinib 15 mg BID and responds with significant clinical improvement. Approximately 3 years later, he presents with drenching night sweats, fatigue, abdominal discomfort and an increase in spleen size. <u>Platelet count = 44,000/ μ L, Hgb = 11.2 g/dL. Regulatory and reimbursement issues aside, what treatment would you most likely recommend next if the patient is transplant ineligible?</u>

Do you believe pacritinib has real pharmacologic advantages over other available JAK inhibitors that make it a preferable treatment option for patients with MF and low platelet counts?

Do you believe that the risk of bleeding and/or cardiovascular toxicities is a significant concern for patients with MF receiving pacritinib?

A 70-year-old woman presents with lower-risk MF and anemia, for which she has been transfusion dependent for 4 months. Nutritional deficiency and hemolysis are ruled out, and she does not have any other symptoms and no splenomegaly on physical exam. Her serum EPO is 750 mU/mL. What would you recommend?

A 55-year-old man with higher-risk MF is receiving ruxolitinib while awaiting allogeneic stem cell transplantation, with significant improvement of splenomegaly. When would you stop ruxolitinib?

Meet The Professor with Dr Verstovsek

Introduction

Module 1: Case Presentations

- Dr Keruakous: A 72-year-old man with JAK2-positive Intermediate-risk MF, a CALR mutation and multiple comorbidities
- Dr Bhatnagar: A 76-year-old woman with JAK2 V617F-positive primary myelofibrosis (MF) treated with ruxolitinib
- Dr Palmer: An 80-year-old woman with primary MF and pancytopenia (Hb 7.2 g/dL, platelets 38,000/uL)
- Dr Nathwani: A 66-year-old man with JAK2-positive primary MF and pancytopenia who develops recurrent herpes zoster on ruxolitinib
- Dr Bhatnagar: A 64-year-old man with an unspecified myeloproliferative neoplasm, pancytopenia and a JAK2 mutation
- Dr Palmer: A 65-year-old man with post-PV MF and ASXL1, SRSF2 mutations

Module 2: Journal Club with Dr Verstovsek

Module 3: Faculty Survey

N Engl J Med 2012;366:799-807

The NEW ENGLAND JOURNAL of MEDICINE

COMFORT-I

ORIGINAL ARTICLE

A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis

Srdan Verstovsek, M.D., Ph.D., Ruben A. Mesa, M.D., Jason Gotlib, M.D.,

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

VOL.

VOL. 366 NO. 9

JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis

MARCH 1, 2012

COMFORT-II

Claire Harrison, D.M., Jean-Jacques Kiladjian, M.D., Ph.D., Haifa Kathrin Al-Ali, M.D., Heinz Gisslinger, M.D., Roger Waltzman, M.D., M.B.A., Viktoriya Stalbovskaya, Ph.D., Mari McQuitty, R.N., M.P.H., Deborah S. Hunter, Ph.D., Richard Levy, M.D., Laurent Knoops, M.D., Ph.D., Francisco Cervantes, M.D., Ph.D., Alessandro M. Vannucchi, M.D., Tiziano Barbui, M.D., and Giovanni Barosi, M.D.

)., Vikas Gupta, M.D., John F. DiPersio, M.D., Ph.D.,
., Michael Deininger, M.D., Ph.D., Carole Miller, M.D.,
M.D., Moshe Talpaz, M.D., Elliott F. Winton, M.D.,
W.D., Murat O. Arcasoy, M.D., Elizabeth Hexner, M.D.,
M.D., Ronald Paquette, M.D., Azra Raza, M.D.,
1 Erickson-Viitanen, Ph.D., Iphigenia L. Koumenis, M.S.,
Victor Sandor, M.D., and Hagop M. Kantarjian, M.D.

COMFORT-I and COMFORT-II: Ruxolitinib for Intermediate-2- or High-Risk MF

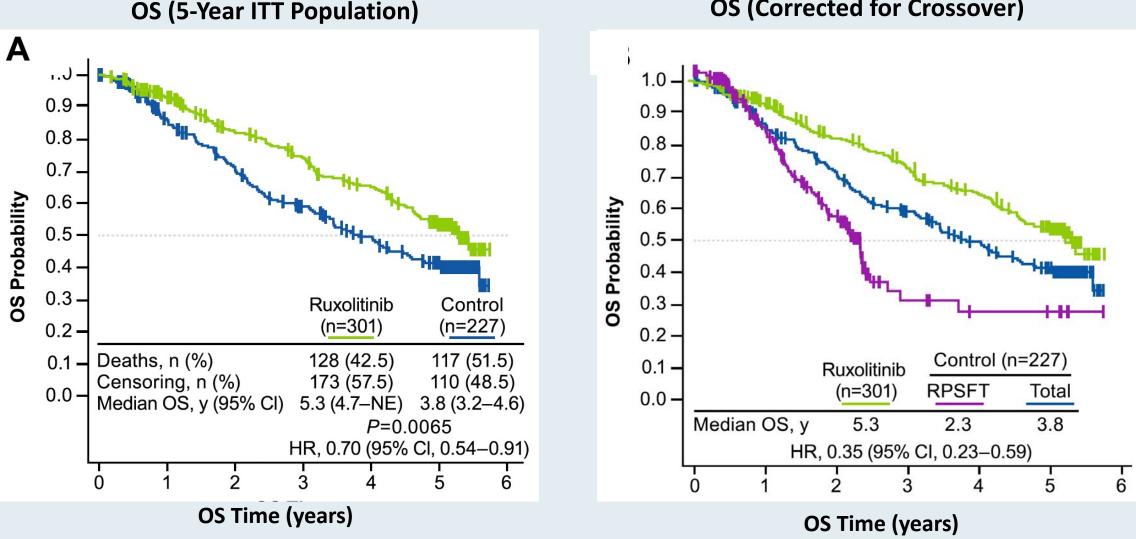
 Randomized Phase III studies in which patients with intermediate 2- or high-risk MF received ruxolitinib (15 or 20 mg BID) versus placebo (COMFORT-I, N = 309) or best available therapy (COMFORT-II, N = 149)

	COMFORT-I, Wk 24 ¹			COMFORT-II, Wk 48 ²		
Efficacy outcomes	Ruxolitinib (n = 155)	Placebo (n = 154)	<i>p</i> -value	Ruxolitinib (n = 144)	BAT (n = 72)	<i>p</i> -value
Spleen volume reduction ≥35%	41.9%	0.7%	< 0.001	28%	0	< 0.001
≥50% reduction in MF-SAF TSS	45.9%	5.3%	< 0.001	NR	NR	NR
Safety outcomes						
Discontinued due to AEs	11.0%	10.6%	NR	8%	5%	NR
Grade 3/4 anemia	45%	19%		NR	NR	
Grade 3/4 thrombocytopenia	13%	1%		NR	NR	
Grade 3/4 neutropenia	7%	2%		NR	NR	

Verstovsek et al. Journal of Hematology & Oncology (2017) 10:156 DOI 10.1186/s13045-017-0527-7

Journal of Hematology & Oncology

RESEARCH


Open Access

Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses

Srdan Verstovsek^{1*}, Jason Gotlib², Ruben A. Mesa³, Alessandro M. Vannucchi⁴, Jean-Jacques Kiladjian⁵, Francisco Cervantes⁶, Claire N. Harrison⁷, Ronald Paquette⁸, William Sun⁹, Ahmad Naim⁹, Peter Langmuir⁹, Tuochuan Dong¹⁰, Prashanth Gopalakrishna¹¹ and Vikas Gupta¹²

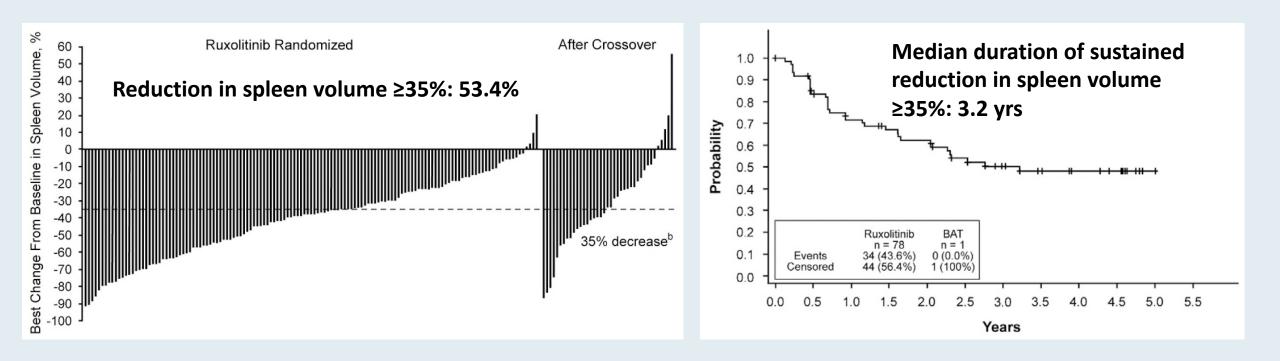
COMFORT-I and COMFORT-II Pooled Analyses: Long-Term Survival with Ruxolitinib

OS (Corrected for Crossover)

Verstovsek S et al. J Hem Onc 2017;10:156.

OPEN

Leukemia (2016) 30, 1701–1707


www.nature.com/leu

ORIGINAL ARTICLE Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis

CN Harrison¹, AM Vannucchi², J-J Kiladjian³, HK Al-Ali⁴, H Gisslinger⁵, L Knoops⁶, F Cervantes⁷, MM Jones⁸, K Sun⁸, M McQuitty⁹, V Stalbovskaya⁹, P Gopalakrishna⁹ and T Barbui¹⁰ on behalf of the COMFORT-II Investigators¹¹

COMFORT-II Final 5-Year Analysis: Rates and Duration of Splenic Reduction

COMFORT-II Final 5-Year Analysis: Exposure-Adjusted Rates of Grade 3/4 Adverse Events

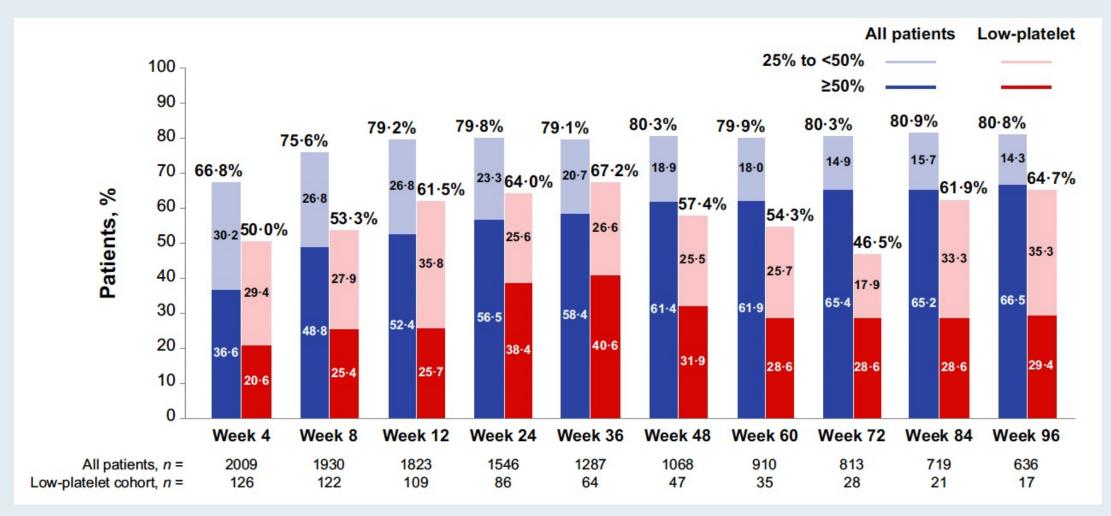
	BAT (n = 73)	Ruxolitinib (n = 191)
Any AE	36%	275
Anemia	8%	9%
Thrombocytopenia	6%	6%
Pneumonia	6%	2%
General physical health deterioration	5%	2%
Acute renal failure	0	1%

bjh research paper

Primary analysis of JUMP, a phase 3b, expanded-access study evaluating the safety and efficacy of ruxolitinib in patients with myelofibrosis, including those with low platelet counts

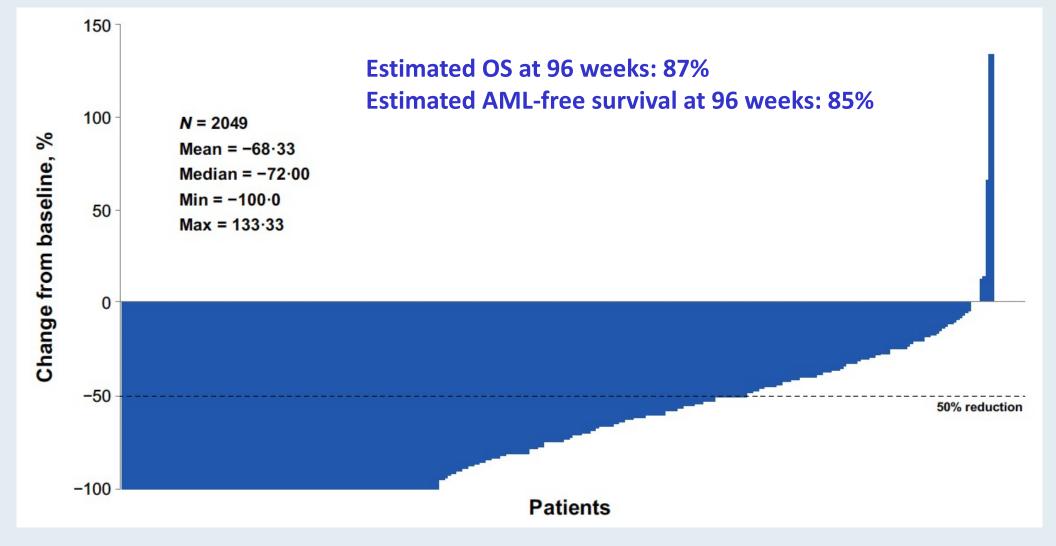
Haifa Kathrin Al-Ali,^{1,†} D Martin Griesshammer,^{2,†} D Lynda Foltz,³ Giuseppe A. Palumbo,⁴ Bruno Martino,⁵ Francesca Palandri,⁶ Anna Marina Liberati,⁷ Philipp le Coutre,⁸ Carmen García-Hernández,⁹ Andrey Zaritskey,¹⁰ Renato Tavares,¹¹ Vikas Gupta,¹² Pia Raanani,¹³ Pilar Giraldo,¹⁴ Mathias Hänel,¹⁵ Daniela Damiani,¹⁶ D Tomasz Sacha,¹⁷ D Catherine Bouard,¹⁸ Carole Paley,¹⁹ Ranjan Tiwari,²⁰ Francesco Mannelli²¹ and Alessandro M. Vannucchi²¹

Br J Haematol 2020;189(5):888-903



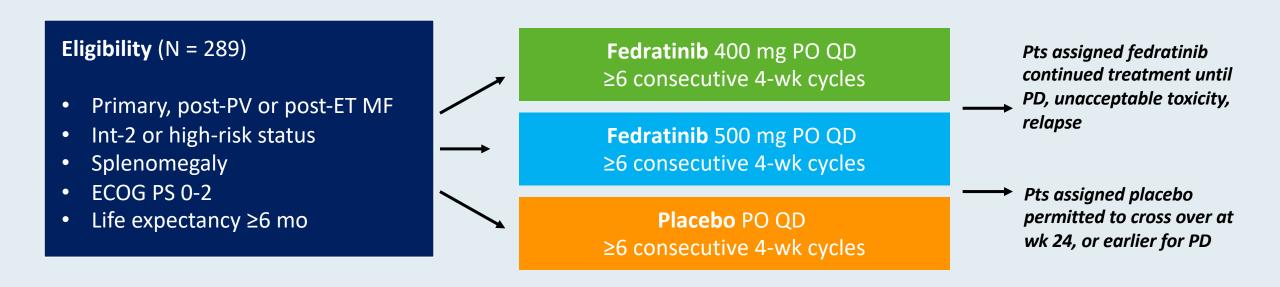
JUMP: Baseline Characteristics

Parameter	All patients (N = 2,233)	Plt count (<100 x 10 ⁹ /l) (n = 138)	Plt count (≥100 x 10 ⁹ /l) (n = 2,087)
Median age	67.0	67.5	67.0
Time since initial diagnosis	25.8 mo	36.1 mo	25.1 mo
DIPSS risk status			
Low	2.7%	0	2.9%
Intermediate-1	37.4%	23.9%	38.4%
Intermediate-2	33.8%	43.5%	33.3%
High	8.7%	8.7%	8.7%
Platelet count, x 10 ⁹ /l			
<50	<0.1%	0.7%	0
≥50 to <75	1.3%	20.3%	0
≥100 to <200	4.9%	79.0%	0
≥200	62.6%	0	67.0%



JUMP: Patients with a ≥25% and a ≥50% Decrease from Baseline in Spleen Length

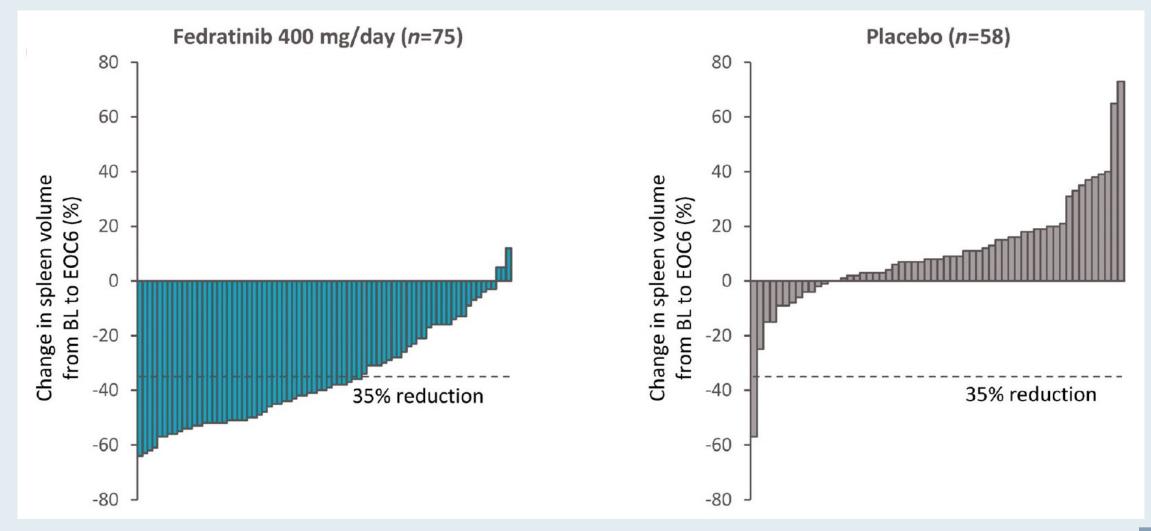
JUMP: Best Percent Change from Baseline in Palpable Spleen Length at Any Time in the Overall Patient Population


bjh short report

Updated results of the placebo-controlled, phase III JAKARTA trial of fedratinib in patients with intermediate-2 or high-risk myelofibrosis

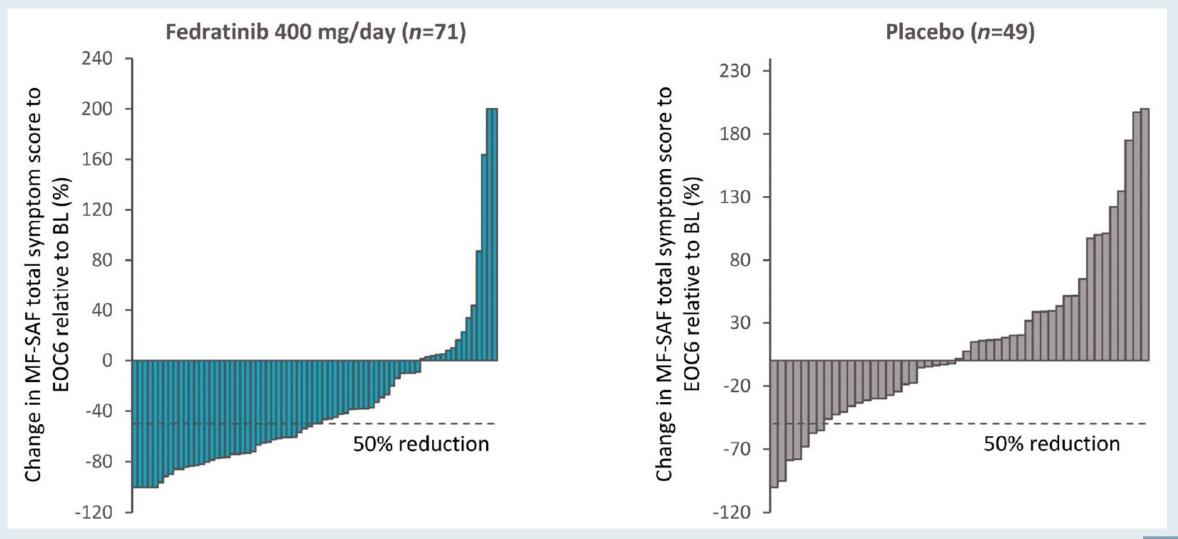
Animesh Pardanani,¹ D Ayalew Tefferi,¹ D Tamás Masszi,² Elena Mishchenko,³ Mark Drummond,⁴ Eric Jourdan,⁵ Alessandro Vannucchi,⁶ Mindaugas Jurgutis,⁷ Vincent Ribrag,⁸ Alessandro Rambaldi,^{9,10} Liang Piu Koh,¹¹ Shelonitda Rose,¹² Jun Zhang¹² and Claire Harrison¹³ Br J Haematol 2021;195:244-8.

JAKARTA Phase III Study Design



Primary endpoint: Spleen response (≥35% reduction in spleen volume vs BL) at Wk 24, and confirmed 4 wks later

Secondary endpoints: Symptom response (≥50% reduction in TSS), safety

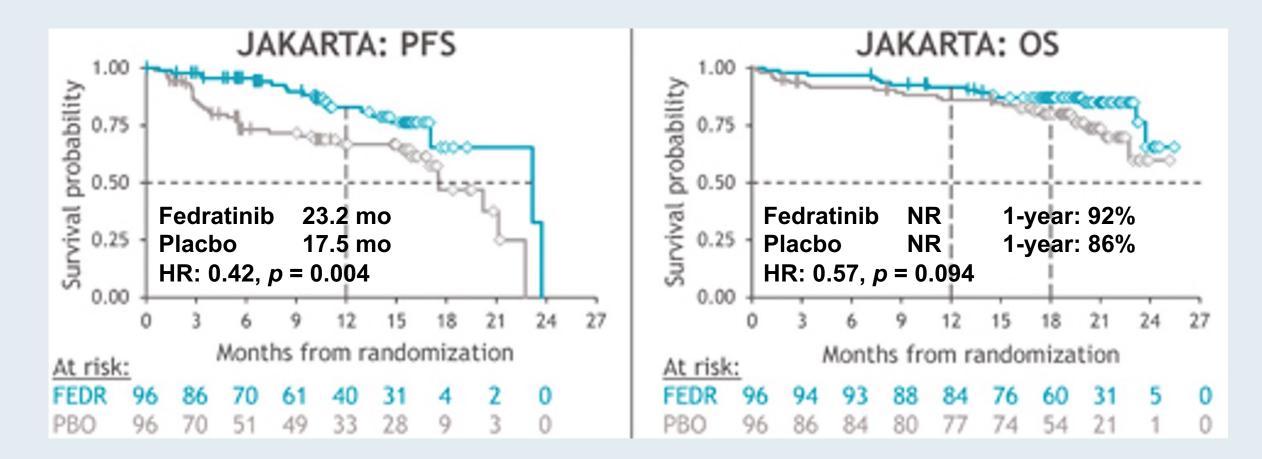

Pardanani A et al. JAMA Oncol 2015;1:643-51.

JAKARTA: Change in Spleen Volume from Baseline to End of Cycle 6

JAKARTA: Change in Total Symptom Scores from Baseline to End of Cycle 6

JAKARTA: Selected Adverse Events

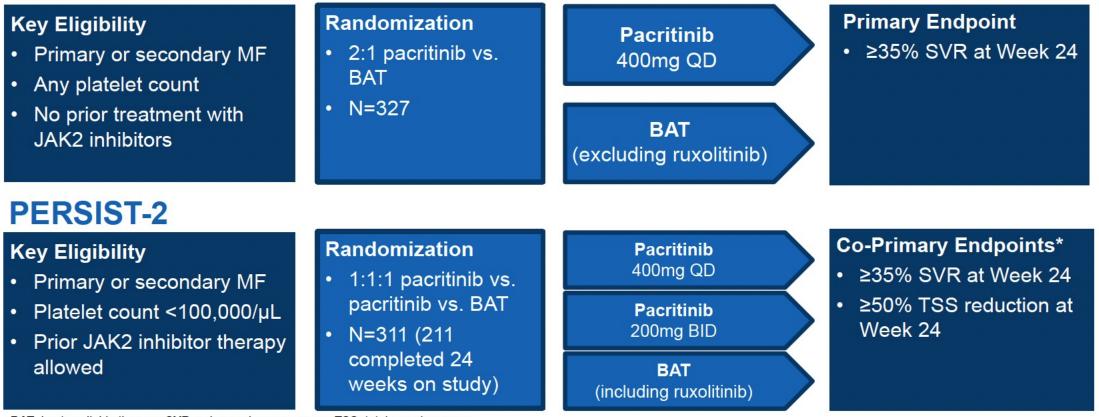
	Fedratinib	400 mg (n = 96)	Placebo (n = 95)				
Adverse events	All grades	Grade ≥3	All grades	Grade ≥3			
Diarrhea	66%	5%	16%	0			
Nausea	62%	0	15%	0			
Anemia	40%	30%	14%	7%			
Vomiting	39%	3.1%	5%	0			
Fatigue	19%	5%	16%	1.1%			
Laboratory parameters							
Anemia	74%	34%	32%	10%			
Thrombocytopenia	47%	12%	26%	10%			
Neutropenia	23%	5%	13%	3.3%			
Biochemistry	Biochemistry						
Lipase increased	35%	10%	7%	2.2%			


Pardanani A et al. Br J Haematol 2021;195:244-8.

Overall and Progression-Free Survival in Patients Treated with Fedratinib as First-Line Myelofibrosis (MF) Therapy and After Prior Ruxoltinib (RUX): Results from the JAKARTA and JAKARTA2 Trials

Harrison C et al. EHA 2021;Abstract S203.

JAKARTA: Survival Analysis



New Option for the Management of MF in Patients with Thrombocytopenia: Pacritinib

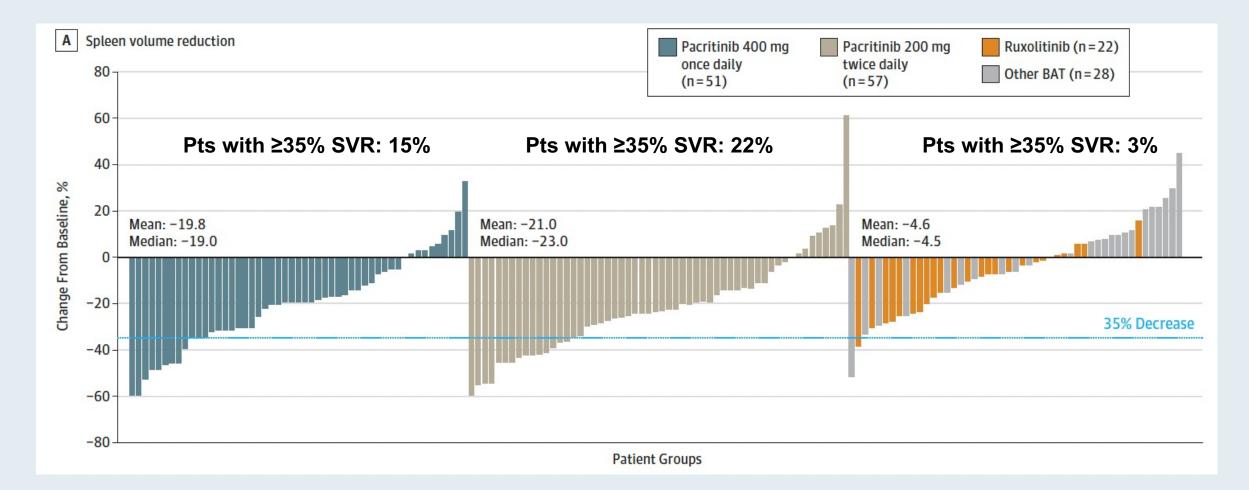
Phase III PERSIST-1 and PERSIST-2 Study Designs

PERSIST-1

BAT, best available therapy; **SVR**, spleen volume response; **TSS**, total symptom score * Primary analysis compared pooled pacritinib (400mg QD and 200mg BID) vs. BAT

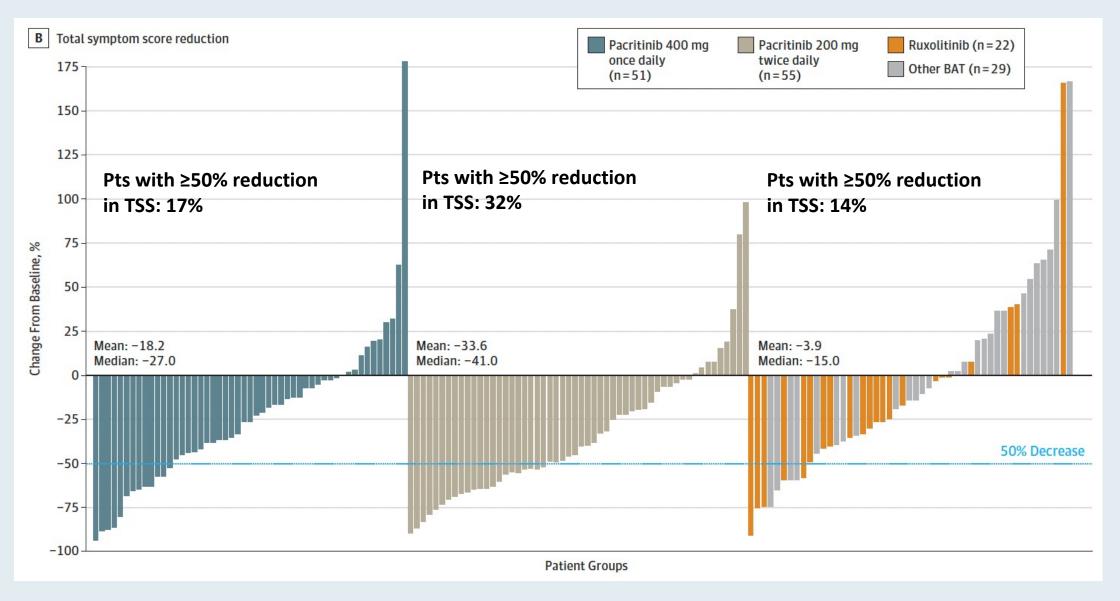
Research

JAMA Oncol 2018;4(5):652-9.

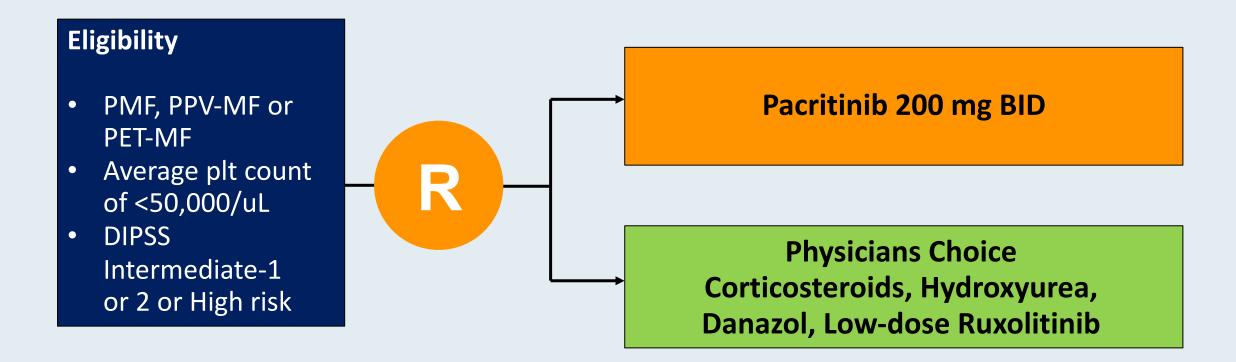

JAMA Oncology | Original Investigation

Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis A Randomized Clinical Trial

John Mascarenhas, MD; Ronald Hoffman, MD; Moshe Talpaz, MD; Aaron T. Gerds, MD; Brady Stein, MD; Vikas Gupta, MD, FRCP, FRCPath; Anita Szoke, MD; Mark Drummond, MBChB, PhD, FRCPath; Alexander Pristupa, MD; Tanya Granston, PhD; Robert Daly, PhD; Suliman Al-Fayoumi, PhD; Jennifer A. Callahan, MS; Jack W. Singer, MD; Jason Gotlib, MD; Catriona Jamieson, MD, PhD; Claire Harrison, MD, DM, FRCP, PRCPath; Ruben Mesa, MD, FACP; Srdan Verstovsek, MD, PhD



PERSIST-2: Spleen Volume Reduction

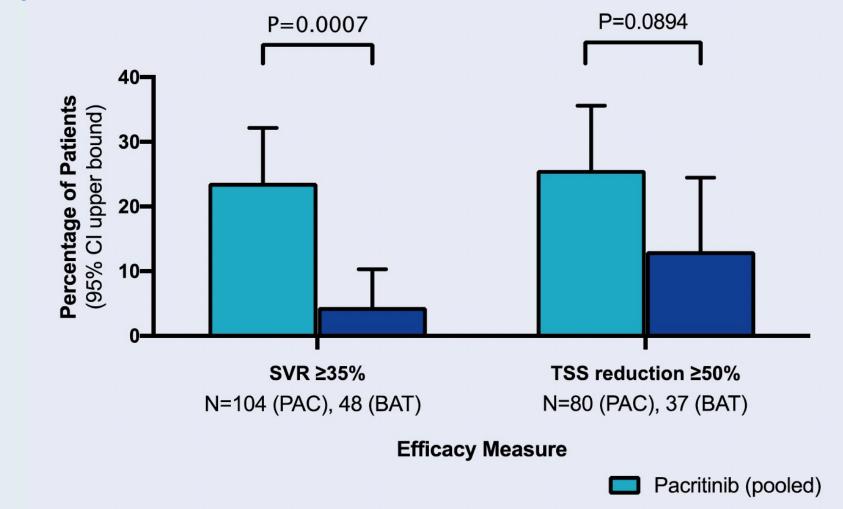


PERSIST-2: Reduction in Total Symptom Score

PACIFICA (PAC303) Study Design

Primary Endpoint: Spleen volume

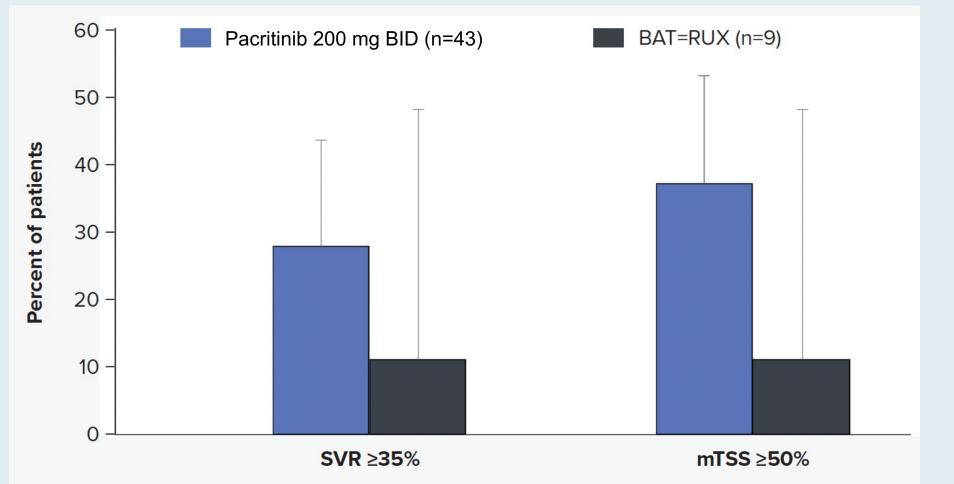
Secondary Endpoints: Total Symptom Score, OS, Patient Global Impression of Change


https://clinicaltrials.gov/ct2/show/NCT03165734

Pacritinib Demonstrates Efficacy Versus Best Available Therapy in Myelofibrosis Patients with Severe Thrombocytopenia in Two Phase 3 Studies

Mesa RA et al. ASH 2019;Abstract 4195.

PERSIST-1 and PERSIST-2: Pacritinib versus BAT Efficacy Outcomes (Week 24) in Patients with Baseline Platelet Counts <50,000/µL


A Retrospective Head-to-Head Comparison Between Pacritinib and Ruxolitinib in Patients with

Myelofibrosis and Moderate-to-Severe Thrombocytopenia

Mascarenhas J et al. ASH 2021;Abstract 3639.

Proportion of Patients Meeting SVR and Modified TSS Thresholds in a Retrospective Analysis of PERSIST-2

Data in patients randomized prior to September 7, 2015, based on ITT truncated on the day of the FDA clinical hold. Differences between groups were not significant. Error bars are the 95% confidence interval upper bound. BAT=best available therapy; BID=twice daily; FDA=US Food and Drug Administration; ITT=intention-to-treat; mTSS=modified total symptom score; RUX=ruxolitinib; SVR=spleen volume reduction.

Mascarenhas J et al. ASH 2021; Abstract 3639.

Safety Analysis of Pacritinib in Patients with Myelofibrosis and Severe Thrombocytopenia

Mascarenhas J et al. ASH 2021;Abstract 3640.

Overview of Adverse Events in the Target Population in PERSIST-2 and PAC203

한 방어	PERSIS	Т-2	PAC203	Total (pooled)	
AE, n (%)	Pacritinib 200 mg BID BATª (n=47) (n=42)		pacritinib 200 mg BID (n=24)	pacritinib 200 mg BID (N=71)	
TEAE (all grades)	46 (98)	38 (91)	24 (100)	70 (99)	
Grade ≥3 TEAE	39 (83)	26 (62)	23 (96)	62 (87)	
Treatment-emergent serious AE	28 <mark>(</mark> 60)	16 (38)	16 (67)	44 (62)	
Grade ≥3 treatment-emergent serious AE	25 (53)	15 (36)	14 (58)	39 (55)	
TEAE leading to study drug discontinuation	10 (21)	7 (17)	4 (17)	14 (20)	
TEAE with an outcome of death	6 (13)	8 (19)	3 (13)	9 (13)	

^aThe most common BAT was ruxolitinib (40%) and watch and wait (31%).

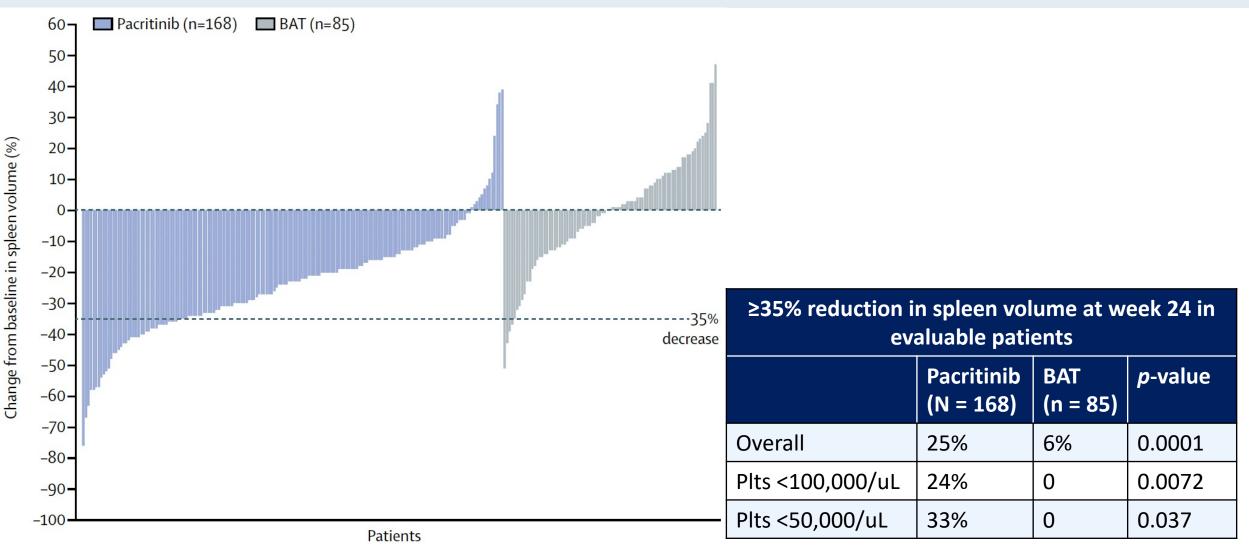
AE=adverse event; BAT=best available therapy; BID=twice daily; TEAE=treatment-emergent adverse event.

Summary of Hemorrhage AEs, Cardiac AEs and MACE in the Target Population in PERSIST-2 and PAC203

	PERSIS	PERSIST-2		Total (pooled)		
AE , n (%)	Pacritinib 200 mg BID (n=47)	BATª (n=42)	pacritinib 200 mg BID (n=24)	pacritinib 200 mg BID (N=71)		
Treatment-emergent heme	orrhage AEs (S	MQ) [⊳]				
Any-grade bleeding AEs	23 (49)	26 (62)	18 (75)	41 (58)		
Serious bleeding AEs	6 (13)	4 (10)	2 (8)	8 (11)		
Grade ≥3 bleeding AEs	8 (17)	5 (12)	3 (13)	11 (16)		
Treatment-emergent card	iac AEs (SMQ) ^b					
Any-grade cardiac AEs	16 (34)	19 (45)	13 (54)	29 (41)		
Serious cardiac AEs	4 (9)	9 (21)	3 (13)	7 (10)		
Grade ≥3 cardiac AEs	4 (9)	8 (19)	2 (8)	6 (9)		
MACE category ^c						
MACE	O (O)	2 (5)	O (O)	O (O)		
MACE death (Grade 5)	O (O)	1 (2)	O (O)	O (O)		

^aThe most common BAT agents were ruxolitinib and watch and wait. ^bBleeding and cardiac events defined by SMQ include the preferred terms in hemorrhage and cardiac arrhythmias, cardiac failure, ischemic heart disease, and embolic and thrombotic events, respectively.

Lancet Haematol 2017;4:e225-36


Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial

Ruben A Mesa, Alessandro M Vannucchi, Adam Mead, Miklos Egyed, Anita Szoke, Aleksandr Suvorov, Janos Jakucs, Andrew Perkins, Ritam Prasad, Jiri Mayer, Judit Demeter, Peter Ganly, Jack W Singer, Huafeng Zhou, James P Dean, Peter A te Boekhorst, Jyoti Nangalia, Jean-Jacques Kiladjian, Claire N Harrison

PERSIST-1: Reduction in Spleen Volume at Week 24

PERSIST-1: Patients Achieving ≥50% Reduction in Total Symptom Score 2.0 at weeks 24 and 48

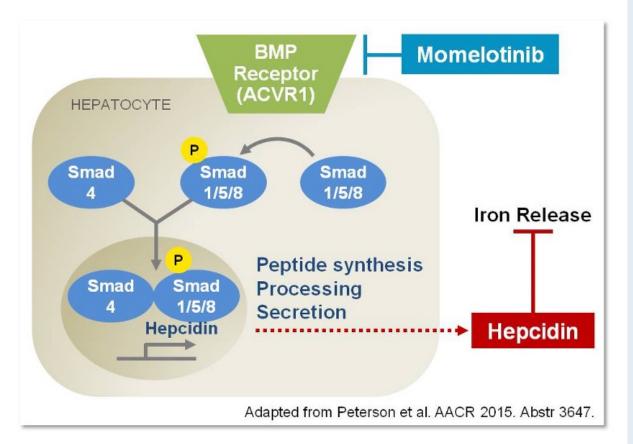
	Week 24			Week 48	Week 48		
	Pacritinib	BAT	p value	Pacritinib	BAT	p value	
Overall	19/100 (19%)	5/48 (10%)	0.24	15/100 (15%)	0/48	0.0027	
Platelets							
<100 000/µL	7/28 (25%)	1/13 (8%)	0.40	3/28 (11%)	0/13	0.54	
<50 000/µL	3/11 (27%)	0/5	0.51	2/11 (18%)	0/5	1.0	

Data are n/N (%).

Mesa RA et al. Lancet Haematol 2017;4:e225-36.

PERSIST-1: Select Adverse Events

	Pacritinib (N = 220)		BAT (N = 106)		
	Any grade	Grade 3/4	Any grade	Grade 3/4	
Diarrhea	55%	5%	10%	0	
Nausea	27%	1%	7%	0	
Anemia	24%	17%	20%	15%	
Thrombocytopenia	17%	11%	14%	11%	
Vomiting	16%	1%	6%	0	
Fatigue	10%	2%	9%	1%	



Potential Front-Line Option for Patients with MF and Significant Anemia and/or Transfusion Dependence: Momelotinib

Momelotinib Mechanism of Action

- MMB also inhibits activin A receptor, Type 1 (ACVR1)
- ACVR1 activation leads to increased hepcidin gene expression¹
- Hepcidin decreases plasma iron and hepcidin is elevated in MF²
- MMB ameliorates anemia in a rodent ACD model¹

1. Asshoff M, et al. Blood 2017;129:1823-30; 2. Pardanani A, et al. Am J Hematology 2013;88:312-6. ACVR1: Activin A Receptor, Type 1; BMP, bone morphogenic protein.

Harrison CN et al. ASCO 2017; Abstract 7001.

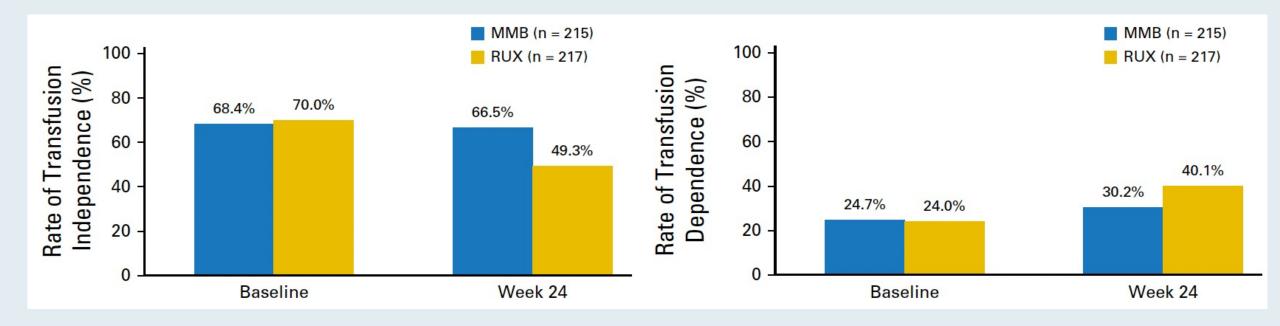
VOLUME 35 · NUMBER 34 · DECEMBER 1, 2017

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor–Naïve Patients With Myelofibrosis

Ruben A. Mesa, Jean-Jacques Kiladjian, John V. Catalano, Timothy Devos, Miklos Egyed, Andrzei Hellmann, Donal McLornan, Kazuya Shimoda, Elliott F. Winton, Wei Deng, Ronald L. Dubowy, Julia D. Maltzman, Francisco Cervantes, and Jason Gotlib



SIMPLIFY-1 Trial of Momelotinib (MMB) in Patients with Treatment-Naïve MF

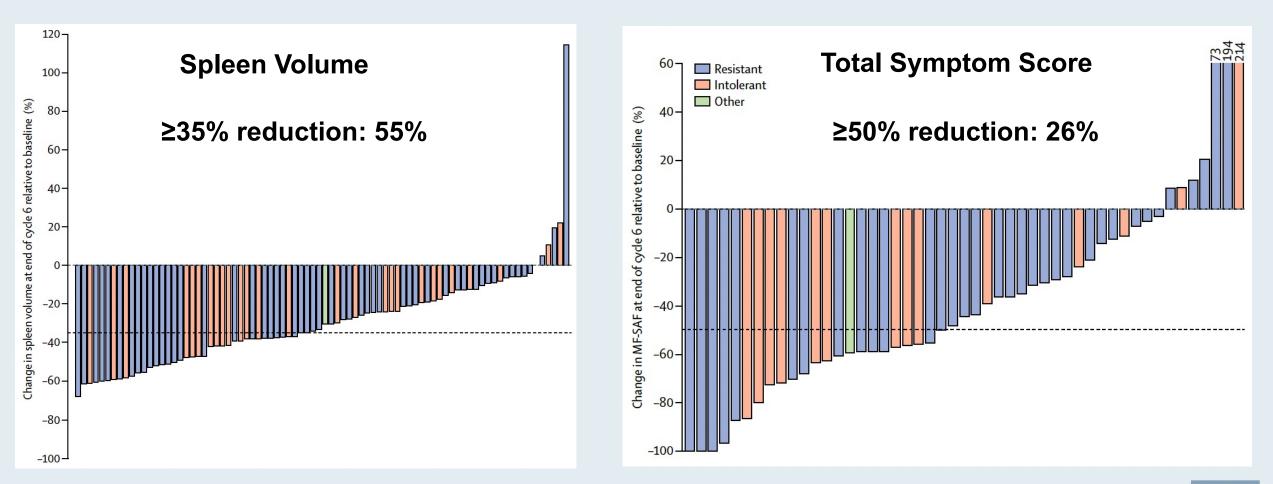
	SIMPLIFY-1, Wk 24 ¹				
Efficacy outcomes	MMB (n = 215)	RUX (n = 217)	<i>p</i> -value		
Spleen volume reduction ≥ 35%	26.5%	29.0%	0.011		
≥50% reduction in MF-SAF TSS	28.4%	42.2%	0.98		
Transfusion independence at week 24	66.5%	49.3%	<0.001		
Safety outcomes					
Discontinued due to AEs	13.1%	5.6%	NR		
Grade 3/4 anemia	5.6%	23.1%			
Grade 3/4 thrombocytopenia	7.0%	4.6%			
Grade 3/4 neutropenia	2.8%	4.6%			

SIMPLIFY-1: Momelotinib versus Ruxolitinib Effects on Transfusion Requirements at Week 24

Mesa RA et al. J Clin Oncol 2017;35(34):3844-50.

Evolving Therapeutic Landscape for Individuals with MF Progressing on or Intolerant to Initial JAK Inhibitor Therapy

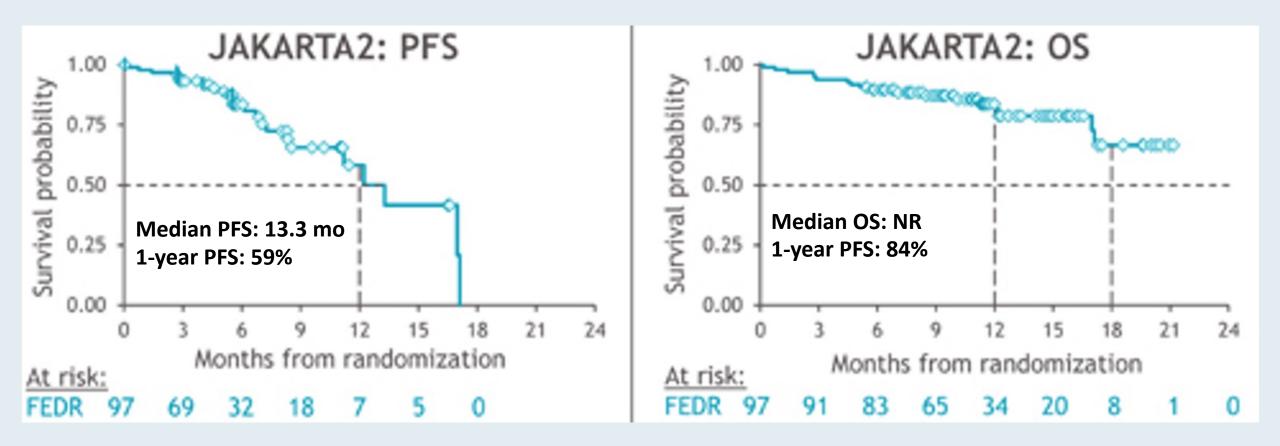
- JAKARTA-2: Fedratinib in patients with intermediate- or high-risk MF resistant or intolerant to ruxolitinib
- Ongoing FREEDOM and FREEDOM2 trials of fedratinib after ruxolitinib
- SIMPLIFY-2: Momelotinib


Lancet Haematol 2017;4:e317-24.

Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study

Claire N Harrison, Nicolaas Schaap, Alessandro M Vannucchi, Jean-Jacques Kiladjian, Ramon V Tiu, Pierre Zachee, Eric Jourdan, Elliott Winton, Richard T Silver, Harry C Schouten, Francesco Passamonti, Sonja Zweegman, Moshe Talpaz, Joanne Lager, Zhenming Shun, Ruben A Mesa

JAKARTA-2: Change in Total Symptom Score and Spleen Volume from Baseline to End of Cycle 6



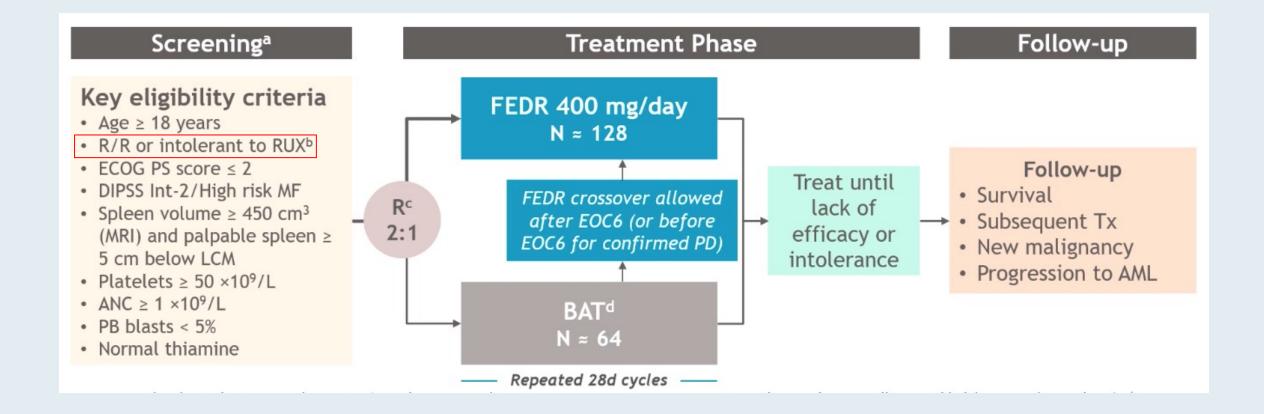
Overall and Progression-Free Survival in Patients Treated with Fedratinib as First-Line Myelofibrosis (MF) Therapy and After Prior Ruxoltinib (RUX): Results from the JAKARTA and JAKARTA2 Trials

Harrison C et al. EHA 2021;Abstract S203.

JAKARTA2: Survival Analysis

FREEDOM: Trial Design and Key Eligibility Criteria

International, single-arm, open-label, phase 3b trial (NCT03755518)


edratinib efficacy,
, disease ion or of consent
strategies: aptomatic use of iting and anti-diarrheal Tx f fedratinib with food modifications mentation
n ni of

RTP RESEARCH TO PRACTICE

Gupta V et al. ASH 2021; Abstract 389.

thrombocytopenia, anemia, hematoma or hemorrhage.

FREEDOM2 Phase III Study Design

Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial

Claire N Harrison, Alessandro M Vannucchi, Uwe Platzbecker, Francisco Cervantes, Vikas Gupta, David Lavie, Francesco Passamonti, Elliott F Winton, Hua Dong, Jun Kawashima, Julia D Maltzman, Jean-Jacques Kiladjian, Srdan Verstovsek

Lancet Haematol 2018;5(2):e73-81.

SIMPLIFY-2 Trial of Momelotinib (MMB) in Patients with MF Previously Treated with Ruxolitinib

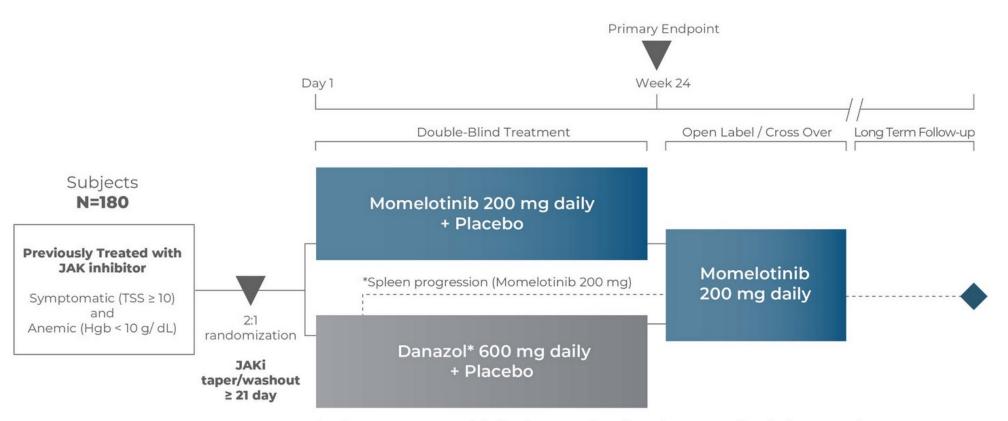
	SIMPLIFY-2, Wk 24				
Efficacy outcomes	MMB (n = 104)	BAT (n = 52)	<i>p</i> -value		
Spleen volume reduction ≥35%	7%	6%	0.90		
≥50% reduction in MF-SAF TSS	26%	6%	0.0006		
Transfusion independence	43%	26%	0.0012		
Safety outcomes					
Discontinued due to AEs	21%	16%	NR		
Grade 3/4 anemia	14%	14%			
Grade 3/4 thrombocytopenia	7%	6%			
Grade 3/4 neutropenia	NR	NR			



Robust Overall Survival and Sustained Efficacy Outcomes during Long Term Exposure to Momelotinib in JAK Inhibitor Naïve and Previously JAK Inhibitor Treated Intermediate/High Risk Myelofibrosis Patients

Verstovsek S et al. ASH 2020;Abstract 54.

SIMPLIFY-1 (S1) and SIMPLIFY-2 (S2): Long-Term Outcomes with MMB


- S1 reduction in spleen volume of ≥35% from baseline at week 24 (MMB vs RUX): 26.5% vs 29.5%
- S1 transfusion independence at week 24 (MMB vs RUX): 70% vs 54%
- S2 transfusion independence at week 24 (MMB vs BAT/RUX): 44% vs 27%

Verstovsek S et al. ASH 2020; Abstract 54.

MOMENTUM: Phase III Trial Schema of Momelotinib in MF

Trial Identifier: NCT04173494 (Closed)

*Early crossover to open label in the event of confirmed symptomatic splenic progression.

Danazol has been selected as an appropriate treatment comparator given its use to ameliorate anemia in myelofibrosis patients, as recommended by NCCN and ESMO guidelines.

Verstovsek S et al. *Future Oncology* 2021;17(12):1449-58.

Novel Agents and Strategies Beyond JAK Inhibitors Under Investigation in MF

A Phase 2 Study of the LSD1 Inhibitor Img-7289 (Bomedemstat) for the Treatment of Advanced Myelofibrosis

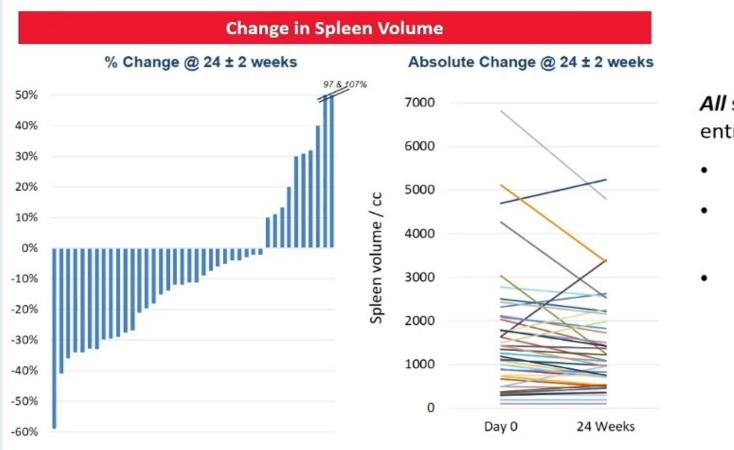
Gill H et al. ASH 2021;Abstract 139.

Phase I/II Trial of Bomedemstat for Advanced MF

Primary Endpoints

- Safety and tolerability
- Pharmacokinetics in first 15 patients
- Spleen volume reduction

Secondary Endpoints


- Symptom reduction (MPN-SAF TSS)
- Changes in cytokine profiles
- Changes in mutant allele frequencies (MAF)
- Changes in bone marrow (BM) fibrosis

Key Eligibility Criteria

- Dx of PMF, PET-MF, or PPV-MF
- Refractory or resistant to, intolerant of, inadequate control by, or ineligible for, available approved therapies
- IPSS Intermediate-1, -2 or High-risk disease
- Platelets ≥100 x10⁹/L
- Peripheral blasts ≤10%
- Spleen of any size
- ECOG PS ≤2

Spleen Volume Reduction and Total Symptom Score at 24 Weeks with Bomedemstat

All spleen sizes allowed at study entry

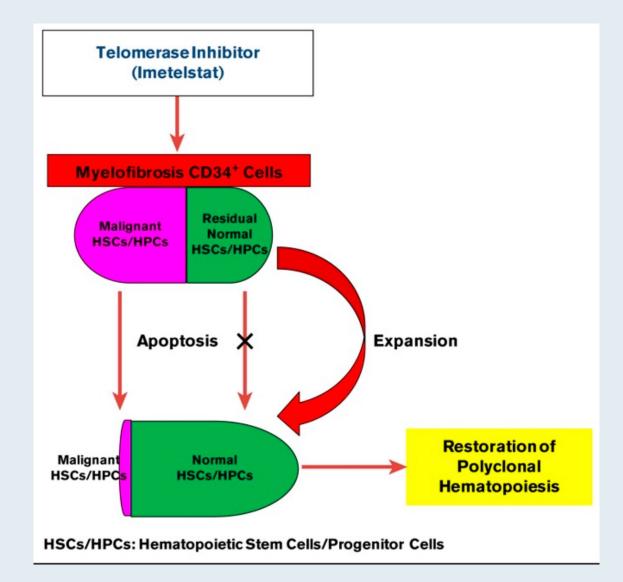
- 30/40 (75%) had any decrease
- 14/40 (35%) had ≥20%
 decrease
- 3/40 **(8%)** had ≥35% decrease

Data cut-off date: 31Oct 2021

• 17/23 patients (74%) had a decrease in TSS and 6/23 patients (26%) had a decrease of ≥50%.

Gill H et al. ASH 2021; Abstract 139.

Safety and Tolerability of Bomedemstat

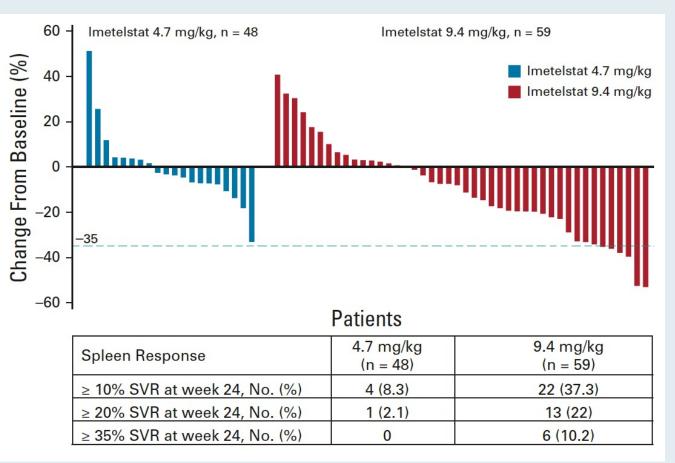

Preferred Term (N=90)	Any Grade AEs	Grade 3/4 AEs
Thrombocytopenia	42 (47%)	35 (39%)
Dysgeusia	29 (32%)	0
Anaemia	29 (32%)	20 (22%)
Diarrhoea	27 (30%)	0
Nausea	25 (28%)	2 (2%)
Fatigue	22 (24%)	4 (4%)
Constipation	21 (23%)	1 (1%)
Oedema peripheral	18 (20%)	1 (1%)
Arthralgia	16 (18%)	0
Abdominal pain	15 (17%)	1 (1%)
Decreased appetite	14 (16%)	2 (2%)
Pruritus	14 (16%)	2 (2%)

- Bomedemstat is generally well tolerated
- Most common hematologic AE, thrombocytopenia, is anticipated because dose titration rules target Grade 2 (50-75 x 10⁹/L)
- The most common non-hematologic AE related to bomedemstat was dysgeusia (n=27, 30% of patients) with 1 patient who discontinued

Any grade of AE occurring at a frequency of >15% included regardless of relatedness; total number of events = 1443

Telomerase Inhibitor Imetelstat: Mechanism of Action

Wang X et al. *Blood Advances* 2018;2(18):2378-88.


Randomized, Single-Blind, Multicenter Phase II Study of Two Doses of Imetelstat in Relapsed or Refractory Myelofibrosis John Mascarenhas, MD¹; Rami S. Komrokji, MD²; Francesca Palandri, MD³; Bruno Martino, MD⁴; Dietger Niederwieser, MD, PhD⁵; Andreas Reiter, MD⁶; Bart L. Scott, MD⁷; Maria R. Baer, MD⁸; Ronald Hoffman, MD¹; Olatoyosi Odenike, MD⁹; Alessandro M. Vannucchi, MD¹⁰; Jacqueline Bussolari, PhD¹¹; Eugene Zhu, PhD¹¹; Esther Rose, MD¹¹; Laurie Sherman, BSN¹²; Souria Dougherty, BS, MBA¹²; Libo Sun. PhD¹²: Fei Huang. PhD¹²: Ving Wan. PhD¹²: Fave M. Follor. MD¹².

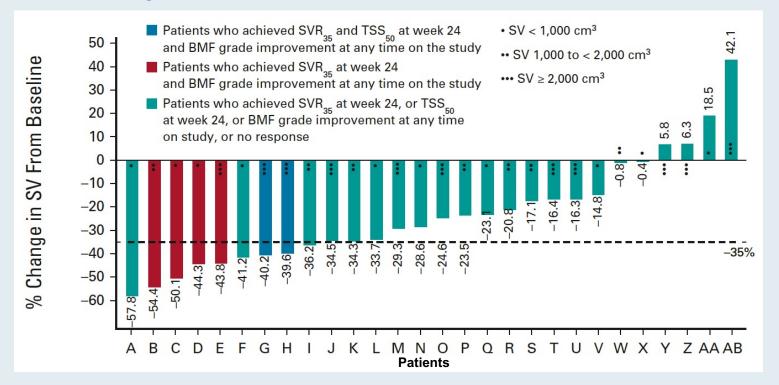
Souria Dougherty, BS, MBA¹²; Libo Sun, PhD¹²; Fei Huang, PhD¹²; Ying Wan, PhD¹²; Faye M. Feller, MD¹²; Aleksandra Rizo, MD, PhD¹²; and Jean-Jacques Kiladijan, MD, PhD¹³

J Clin Oncol 2021;39:2881-92.

Phase II Trial of Imetelstat in Relapsed/Refractory Myelofibrosis

- At week 24, symptom response rates were 32.2% in the 9.4-mg/kg arm and 6.3% in the 4.7-mg/kg arm.
- Most common adverse events on both arms were grade 3 or 4 reversible cytopenias.

Mascarenhas J et al. J Clin Oncol 2021;39:2881-92.


Addition of Navitoclax to Ongoing Ruxolitinib Therapy for Patients With Myelofibrosis With Progression or Suboptimal Response: Phase II Safety and Efficacy Claire N. Harrison, MD¹; Jacqueline S. Garcia, MD²; Tim C. P. Somervaille, MBBS, PhD^{3.4}; James M. Foran, MD⁵; Srdan Verstovsek, MD, PhD⁶; Catriona Jamieson, MD, PhD⁷; Ruben Mesa, MD⁸; Ellen K. Ritchie, MD⁹; Srinivas K. Tantravahi, MB

Claire N. Harrison, MD¹; Jacqueline S. Garcia, MD²; Tim C. P. Somervaille, MBBS, PhD^{3,4}; James M. Foran, MD⁵; Srdan Verstovsek, MD, PhD⁶; Catriona Jamieson, MD, PhD⁷; Ruben Mesa, MD⁸; Ellen K. Ritchie, MD⁹; Srinivas K. Tantravahi, MBBS¹⁰; Pankit Vachhani, MD¹¹; Casey L. O'Connell, MD¹²; Rami S. Komrokji, MD¹³; Jason Harb, PhD¹⁴; Jessica E. Hutti, PhD¹⁴; Leanne Holes, MBA¹⁴; Abdullah A. Masud, MS, PhD¹⁴; Silpa Nuthalapati, PhD¹⁴; Jalaja Potluri, MD¹⁴; and Naveen Pemmaraju, MD⁶

J Clin Oncol 2022;[Online ahead of print].

Phase II Trial of Adding the Bcl-XL/Bcl-2 Inhibitor Navitoclax to Ruxolitinib for Patients with MF and Disease Progression or a Suboptimal Response

- ≥50% reduction in total symptom score (TSS50) was achieved by 30% (6 of 20) of patients at week 24, and bone marrow fibrosis improved by 1-2 grades.
- Reversible thrombocytopenia without clinically significant bleeding was the most common adverse event (88%) but was manageable with dose reductions and interruptions.

Harrison CN et al. J Clin Oncol 2022;[Online ahead of print].

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Tuesday, March 15, 2022 5:00 PM – 6:00 PM ET

> Faculty Sonali M Smith, MD

> > Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

