Meet The Professor Optimizing the Management of Gastroesophageal Cancers

Harry H Yoon, MD, MHS
Associate Professor of Oncology
Chair, Gastroesophageal Cancer Disease Group
Mayo Clinic Comprehensive Cancer Center
Rochester, Minnesota

Commercial Support

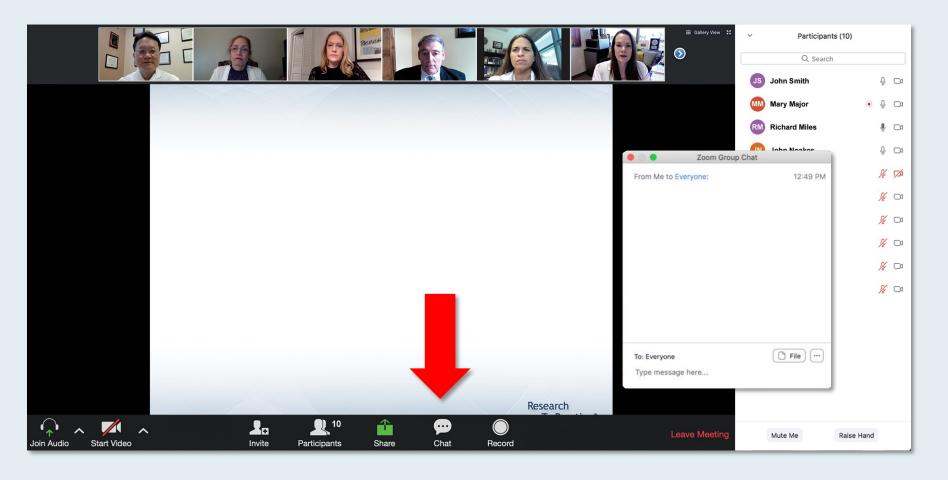
This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Lilly, and Merck.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Mersana Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

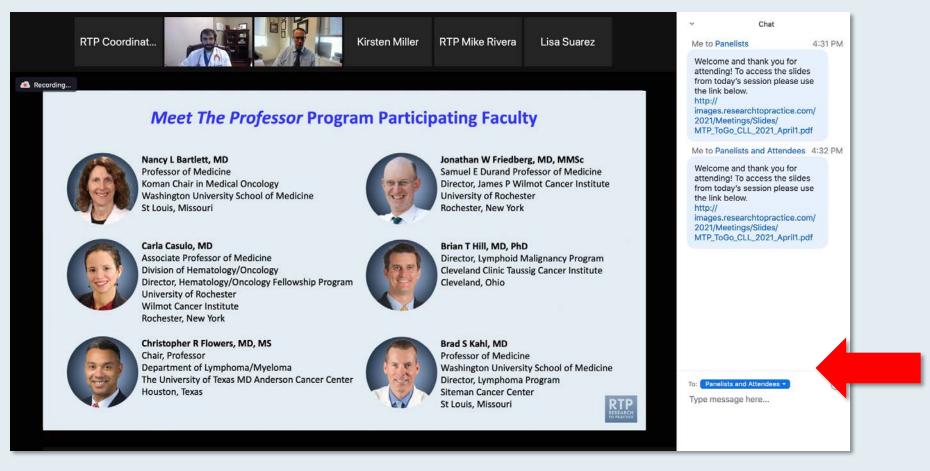
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Dr Yoon — Disclosures

Advisory Committee	Amgen Inc, Daiichi Sankyo Inc
Consulting Agreements	ALX Oncology, Astellas, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Bristol-Myers Squibb Company, MacroGenics Inc, Merck, OncXerna Therapeutics Inc, Zymeworks Inc
Contracted Research	Bristol-Myers Squibb Company, Merck
Speakers Bureau	BeiGene Ltd

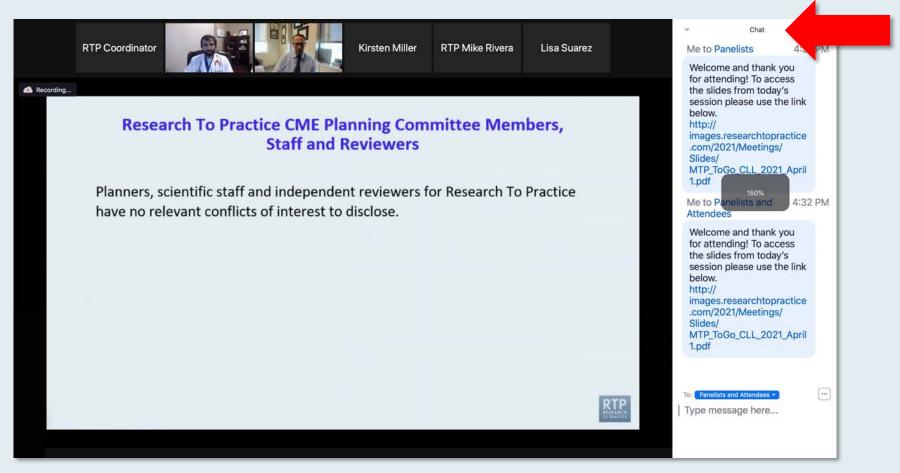
We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY

WITH DR NEIL LOVE

Gastroesophageal Cancers

DR SAMUEL KLEMPNER

MASSACHUSETTS

GENERAL HOSPITAL

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Acute Myeloid Leukemia and Myelodysplastic Syndromes

Friday, June 3, 2022 11:45 AM – 12:45 PM CT (12:45 PM – 1:45 AM ET)

Faculty

Courtney D DiNardo, MD, MSCE Michael R Savona, MD Eunice S Wang, MD

Lung Cancer

Friday, June 3, 2022 6:30 PM – 9:00 PM CT (7:30 PM – 10:00 PM ET)

Faculty

Justin F Gainor, MD
Corey J Langer, MD
Luis Paz-Ares, MD, PhD
Heather Wakelee, MD
Jared Weiss, MD
Helena Yu, MD

Prostate Cancer

Saturday, June 4, 2022 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Andrew J Armstrong, MD, ScM Alan H Bryce, MD Alicia K Morgans, MD, MPH

Gastrointestinal Cancers

Saturday, June 4, 2022 7:00 PM – 9:30 PM CT (8:00 PM – 10:30 PM ET)

Faculty

Tanios Bekaii-Saab, MD Kristen K Ciombor, MD, MSCI Eileen M O'Reilly, MD Philip A Philip, MD, PhD, FRCP John Strickler, MD Eric Van Cutsem, MD, PhD

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Ovarian Cancer

Sunday, June 5, 2022 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Antonio González-Martín, MD, PhD Joyce F Liu, MD, MPH Kathleen N Moore, MD, MS

Chronic Lymphocytic Leukemia and Non-Hodgkin Lymphoma

Sunday, June 5, 2022

7:00 PM - 9:30 PM CT (8:00 PM - 10:30 PM ET)

Faculty

Ian W Flinn, MD, PhD
Brian T Hill, MD, PhD
John P Leonard, MD
Matthew Lunning, DO
Laurie H Sehn, MD, MPH
Mitchell R Smith, MD, PhD

Urothelial Bladder Cancer

Monday, June 6, 2022

6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Yohann Loriot, MD, PhD Elizabeth R Plimack, MD, MS Jonathan E Rosenberg, MD

Breast Cancer

Monday, June 6, 2022

7:00 PM - 9:30 PM CT (8:00 PM - 10:30 PM ET)

Faculty

Javier Cortés, MD, PhD
Matthew P Goetz, MD
Erika Hamilton, MD
Ian E Krop, MD, PhD
Hope S Rugo, MD
Sara M Tolaney, MD, MPH

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Multiple Myeloma

Tuesday, June 7, 2022 6:45 AM – 7:45 AM CT (7:45 AM – 8:45 AM ET)

Faculty

Ajai Chari, MD Elizabeth O'Donnell, MD Robert Z Orlowski, MD, PhD

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

Monday, June 13, 2022 5:00 PM – 6:00 PM ET

Faculty
Jennifer Woyach, MD

Meet The Professor Non-Small Cell Lung Cancer with an Actionable Target Beyond EGFR

Thursday, June 16, 2022 5:00 PM – 6:00 PM ET

Faculty
Melissa Johnson, MD

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

Wednesday, June 22, 2022 5:00 PM - 6:00 PM ET

Faculty
Manish A Shah, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

Harry H Yoon, MD, MHS
Associate Professor of Oncology
Chair, Gastroesophageal Cancer Disease Group
Mayo Clinic Comprehensive Cancer Center
Rochester, Minnesota

Meet The Professor Program Participating Faculty

Peter C Enzinger, MD

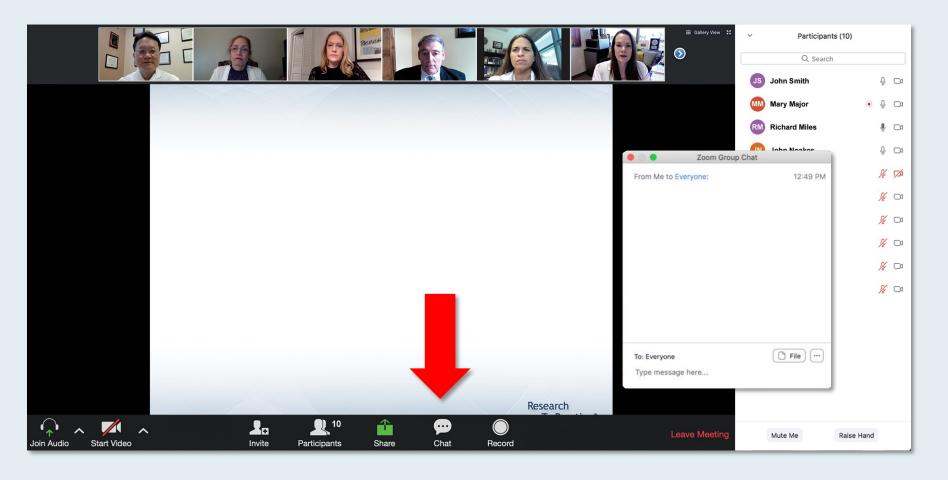
Director, Center for Esophageal and Gastric Cancer
Dana-Farber/Brigham and Women's Cancer Center
Institute Physician, Dana-Farber Cancer Institute
Associate Professor, Harvard Medical School
Boston, Massachusetts

John Strickler, MD
Associate Professor
Duke University
Durham, North Carolina

Yelena Y Janjigian, MD
Associate Professor
Chief of Gastrointestinal Oncology Service
Department of Medicine
Memorial Sloan Kettering Cancer Center
New York, New York

Harry H Yoon, MD, MHS
Associate Professor of Oncology
Chair, Gastroesophageal Cancer
Disease Group
Mayo Clinic Comprehensive
Cancer Center
Rochester, Minnesota

Samuel J Klempner, MD
Associate Professor
Massachusetts General Hospital
Harvard Medical School
Boston, Massachusetts


MODERATOR
Neil Love, MD
Research To Practice

Manish A Shah, MD
Chief, Solid Tumor Oncology Service
Director, Gastrointestinal Oncology Program
Co-Director, Center for Advanced Digestive Care
Bartlett Family Professor of Gastrointestinal Oncology
Weill Cornell Medicine/NewYork-Presbyterian Hospital
New York, New York

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

ONCOLOGY TODAY

WITH DR NEIL LOVE

Gastroesophageal Cancers

DR SAMUEL KLEMPNER

MASSACHUSETTS

GENERAL HOSPITAL

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Acute Myeloid Leukemia and Myelodysplastic Syndromes

Friday, June 3, 2022 11:45 AM – 12:45 PM CT (12:45 PM – 1:45 AM ET)

Faculty

Courtney D DiNardo, MD, MSCE Michael R Savona, MD Eunice S Wang, MD

Lung Cancer

Friday, June 3, 2022 6:30 PM – 9:00 PM CT (7:30 PM – 10:00 PM ET)

Faculty

Justin F Gainor, MD
Corey J Langer, MD
Luis Paz-Ares, MD, PhD
Heather Wakelee, MD
Jared Weiss, MD
Helena Yu, MD

Prostate Cancer

Saturday, June 4, 2022 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Andrew J Armstrong, MD, ScM Alan H Bryce, MD Alicia K Morgans, MD, MPH

Gastrointestinal Cancers

Saturday, June 4, 2022 7:00 PM – 9:30 PM CT (8:00 PM – 10:30 PM ET)

Faculty

Tanios Bekaii-Saab, MD Kristen K Ciombor, MD, MSCI Eileen M O'Reilly, MD Philip A Philip, MD, PhD, FRCP John Strickler, MD Eric Van Cutsem, MD, PhD

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Ovarian Cancer

Sunday, June 5, 2022 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Antonio González-Martín, MD, PhD Joyce F Liu, MD, MPH Kathleen N Moore, MD, MS

Chronic Lymphocytic Leukemia and Non-Hodgkin Lymphoma

Sunday, June 5, 2022

7:00 PM - 9:30 PM CT (8:00 PM - 10:30 PM ET)

Faculty

Ian W Flinn, MD, PhD
Brian T Hill, MD, PhD
John P Leonard, MD
Matthew Lunning, DO
Laurie H Sehn, MD, MPH
Mitchell R Smith, MD, PhD

Urothelial Bladder Cancer

Monday, June 6, 2022

6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Yohann Loriot, MD, PhD Elizabeth R Plimack, MD, MS Jonathan E Rosenberg, MD

Breast Cancer

Monday, June 6, 2022

7:00 PM - 9:30 PM CT (8:00 PM - 10:30 PM ET)

Faculty

Javier Cortés, MD, PhD
Matthew P Goetz, MD
Erika Hamilton, MD
Ian E Krop, MD, PhD
Hope S Rugo, MD
Sara M Tolaney, MD, MPH

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Multiple Myeloma

Tuesday, June 7, 2022 6:45 AM – 7:45 AM CT (7:45 AM – 8:45 AM ET)

Faculty

Ajai Chari, MD Elizabeth O'Donnell, MD Robert Z Orlowski, MD, PhD

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

Monday, June 13, 2022 5:00 PM – 6:00 PM ET

Faculty
Jennifer Woyach, MD

Meet The Professor Non-Small Cell Lung Cancer with an Actionable Target Beyond EGFR

Thursday, June 16, 2022 5:00 PM – 6:00 PM ET

Faculty
Melissa Johnson, MD

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

Harry H Yoon, MD, MHS
Associate Professor of Oncology
Chair, Gastroesophageal Cancer Disease Group
Mayo Clinic Comprehensive Cancer Center
Rochester, Minnesota

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Lilly, and Merck.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Yoon — Disclosures

Advisory Committee	Amgen Inc, Daiichi Sankyo Inc
Consulting Agreements	ALX Oncology, Astellas, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Bristol-Myers Squibb Company, MacroGenics Inc, Merck, OncXerna Therapeutics Inc, Zymeworks Inc
Contracted Research	Bristol-Myers Squibb Company, Merck
Speakers Bureau	BeiGene Ltd

Lionel A Kankeu Fonkoua, MDMayo Clinic
Rochester, Minnesota

Neil Morganstein, MDAtlantic Health System
Summit, New Jersey

Gurveen Kaur, MDWVU Medicine Wheeling Hospital
Wheeling, West Virginia

Matthew R Strickland, MD
Massachusetts General Hospital
Cancer Center
Boston, Massachusetts

Kapisthalam (KS) Kumar, MDFlorida Cancer Specialists
Trinity, Florida

Meet The Professor with Dr Yoon

Introduction

MODULE 1: HER2-Negative Disease

- Dr Fonkoua: A 39-year-old woman with Stage IIIA HER2-negative adenocarcinoma of the gastric antrum pMMR, PD-L1 CPS <1
- Dr Kaur: A 76-year-old man with metastatic esophageal adenocarcinoma PD-L1 CPS 5
- Dr Morganstein: A 76-year-old man with HER2-negative gastroesophageal junction adenocarcinoma and multiple brain metastases – microsatellite stable, PD-L1 CPS 10

MODULE 2: HER2-Positive Disease; Barrett's Esophagus

- Dr Kumar: A 61-year-old man with HER2-positive esophageal adenocarcinoma PD-L1 70%
- Dr Morganstein: A 62-year-old man with HER2-positive metastatic gastric cancer
- Dr Strickland: A 55-year-old man with localized esophageal adenocarcinoma and a history of Barrett's esophagus

MODULE 3: Appendix of Key Publications

Meet The Professor with Dr Yoon

Introduction

MODULE 1: HER2-Negative Disease

- Dr Fonkoua: A 39-year-old woman with Stage IIIA HER2-negative adenocarcinoma of the gastric antrum pMMR, PD-L1 CPS <1
- Dr Kaur: A 76-year-old man with metastatic esophageal adenocarcinoma PD-L1 CPS 5
- Dr Morganstein: A 76-year-old man with HER2-negative gastroesophageal junction adenocarcinoma and multiple brain metastases – microsatellite stable, PD-L1 CPS 10

MODULE 2: HER2-Positive Disease; Barrett's Esophagus

- Dr Kumar: A 61-year-old man with HER2-positive esophageal adenocarcinoma PD-L1 70%
- Dr Morganstein: A 62-year-old man with HER2-positive metastatic gastric cancer
- Dr Strickland: A 55-year-old man with localized esophageal adenocarcinoma and a history of Barrett's esophagus

MODULE 3: Appendix of Key Publications

MOMENTUM: Phase 3 Randomized Study of Momelotinib (MMB) versus Danazol (DAN) in Symptomatic and Anemic Myelofibrosis (MF) Patients Previously Treated with a JAK Inhibitor

Mesa RA et al.

ASCO 2022; Abstract 7002.

Session: Hematologic Malignancies—Leukemia, Myelodysplastic Syndromes, and Allotransplant June 4, 2022, 9 AM EDT

Rusfertide (PTG-300) Treatment in Phlebotomy-Dependent Polycythemia Vera Patients

Hoffman R et al.

ASCO 2022; Abstract 7003.

Session: Hematologic Malignancies—Leukemia, Myelodysplastic Syndromes, and Allotransplant June 4, 2022, 9 AM EDT

Multicenter Phase Ib Trial in the U.S. of Salvage CT041 CLDN18.2-Specific Chimeric Antigen Receptor T-Cell Therapy for Patients with Advanced Gastric and Pancreatic Adenocarcinoma

Botta GP et al.

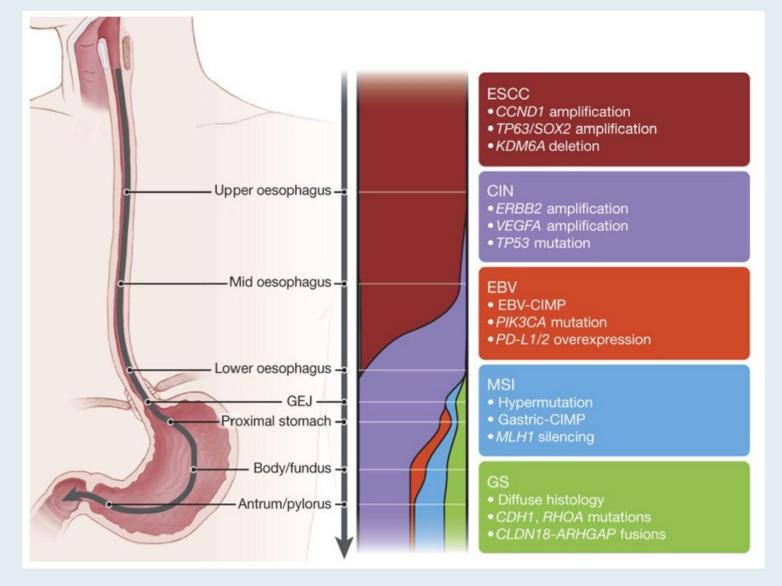
ASCO 2022; Abstract 2538

Onco Targets Ther 2021;14:4361-81.

OncoTargets and Therapy

Dovepress

open access to scientific and medical research


REVIEW

Rapidly Evolving Treatment Landscape for Metastatic Esophagogastric Carcinoma: Review of Recent Data

Lionel Aurelien Kankeu Fonkoua, Harry H Yoon

The Four Molecular Subtypes of Esophagogastric Cancer Described in the TCGA Study

Meet The Professor with Dr Yoon

Introduction

MODULE 1: HER2-Negative Disease

- Dr Fonkoua: A 39-year-old woman with Stage IIIA HER2-negative adenocarcinoma of the gastric antrum pMMR, PD-L1 CPS <1
- Dr Kaur: A 76-year-old man with metastatic esophageal adenocarcinoma PD-L1 CPS 5
- Dr Morganstein: A 76-year-old man with HER2-negative gastroesophageal junction adenocarcinoma and multiple brain metastases – microsatellite stable, PD-L1 CPS 10

MODULE 2: HER2-Positive Disease; Barrett's Esophagus

- Dr Kumar: A 61-year-old man with HER2-positive esophageal adenocarcinoma PD-L1 70%
- Dr Morganstein: A 62-year-old man with HER2-positive metastatic gastric cancer
- Dr Strickland: A 55-year-old man with localized esophageal adenocarcinoma and a history of Barrett's esophagus

MODULE 3: Appendix of Key Publications

Case Presentation: A 39-year-old woman with Stage IIIA HER2-negative adenocarcinoma of the gastric antrum – pMMR, PD-L1 CPS <1

Dr Lionel Kankeu Fonkoua (Rochester, Minnesota)

Case Presentation: A 76-year-old man with metastatic esophageal adenocarcinoma – PD-L1 CPS 5

Dr Gurveen Kaur (Wheeling, West Virginia)

Case Presentation: A 76-year-old man with metastatic esophageal adenocarcinoma – PD-L1 CPS 5 (continued)

Dr Gurveen Kaur (Wheeling, West Virginia)

Case Presentation: A 76-year-old man with HER2-negative gastroesophageal junction adenocarcinoma and multiple brain metastases – microsatellite stable, PD-L1 CPS 10

Dr Neil Morganstein (Summit, New Jersey)

Research

JAMA Oncology | Brief Report

Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability–High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials

Joseph Chao, MD; Charles S. Fuchs, MD; Kohei Shitara, MD; Josep Tabernero, MD; Kei Muro, MD; Eric Van Cutsem, MD; Yung-Jue Bang, MD; Ferdinando De Vita, MD; Gregory Landers, MD; Chia-Jui Yen, MD; Ian Chau, MD; Anneli Elme, MD; Jeeyun Lee, MD; Mustafa Özgüroğlu, MD; Daniel Catenacci, MD; Harry H. Yoon, MD; Erluo Chen, MPH; David Adelberg, MD; Chie-Schin Shih, MD; Sukrut Shah, PhD; Pooja Bhagia, MD; Zev A. Wainberg, MD

JAMA Oncol 2021;7(6):895-902.

Association of Magnitude and Consistency of PD-L1 Expression and Other Variables Associated with Benefit from Immune Checkpoint Inhibition (ICI): Systematic Review and Meta-Analysis of 14 Phase 3 Trials in Advanced Gastroesophageal Cancer (GEC)

Yoon HH et al.

ASCO 2022; Abstract 344

www.advanced-bio.com

Understanding Suboptimal Response to Immune Checkpoint Inhibitors

Mojun Zhu,* Henan Zhang, Katrina S. Pedersen, Nathan R. Foster, Brandy L. Jaszewski, Xin Liu, Jacob B. Hirdler, Zesheng An, Tanios S. Bekaii-Saab, Thorvardur R. Halfdanarson, Patrick M. Boland, Yiyi Yan, Joleen H. Hubbard, Wen Wee Ma, Harry H. Yoon, Alexander Revzin, Martin E. Fernandez-Zapico, Michael J. Overman, Robert R. McWilliams, and Haidong Dong*

Narrative review of pembrolizumab for the treatment of esophageal cancer: evidence and outlook

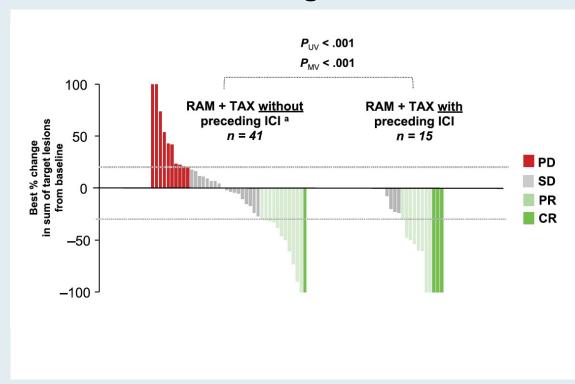
Zixian Jin^{1,2#}^, Jianfei Shen^{1,2#}, Chunguo Wang^{1,2#}, Dong Chen^{1,2}, Bo Zhang^{1,2}, Jian Zhang^{1,2}, Jaffer A. Ajani⁴, Jaafar Bennouna^{5,6}, Joseph Chao⁷, Harry H. Yoon⁸, Hongyu Zhu^{1,2}, Yuhang Ruan^{1,2}, Chengchu Zhu^{1,2}, Anyi Xu^{1,3}

Ann Transl Med 2021;9(14):1189.

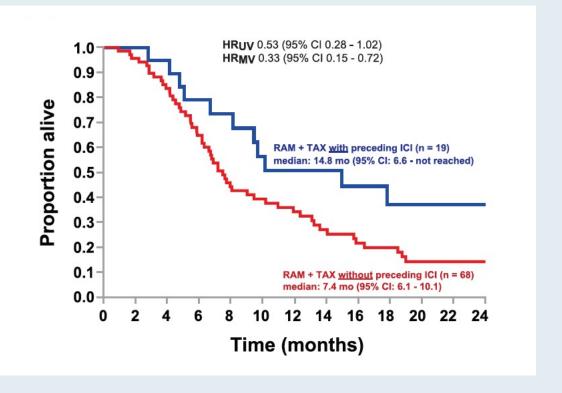
CANCER THERAPY AND PREVENTION

Short Report

Int J Cancer 2021;149(2):378-86.


Outcomes on anti-VEGFR-2/paclitaxel treatment after progression on immune checkpoint inhibition in patients with metastatic gastroesophageal adenocarcinoma

```
Lionel A. Kankeu Fonkoua<sup>1,2</sup> | Sakti Chakrabarti<sup>1,3</sup> | Mohamad B. Sonbol<sup>4</sup> | Pashtoon M. Kasi<sup>5,6</sup> | Jason S. Starr<sup>5</sup> | Alex J. Liu<sup>4</sup> | Wendy K. Nevala<sup>2</sup> | Rachel L. Maus<sup>7</sup> | Melanie C. Bois<sup>8</sup> | Henry C. Pitot<sup>1</sup> | Chandrikha Chandrasekharan<sup>6</sup> | Helen J. Ross<sup>4</sup> | Tsung-Teh Wu<sup>8</sup> | Rondell P. Graham<sup>8</sup> | Jose C. Villasboas<sup>2,9</sup> | Matthias Weiss<sup>10</sup> | Nathan R. Foster<sup>11</sup> | Svetomir N. Markovic<sup>1,7</sup> | Haidong Dong<sup>7,12</sup> | Harry H. Yoon<sup>1</sup>
```



Clinical Activity of Ramucirumab/Paclitaxel in ICI-Experienced Versus ICI-Naïve Patients with Metastatic Gastroesophageal Adenocarcinoma

Tumor Regression

Overall Survival

Editorial

Ramucirumab plus paclitaxel for gastric cancer in China

Yoon HH

Lancet Gastroenterol Hepatol 2021;6(12):975-6.

Lancet Gastroenterol Hepatol 2021;6(12):1015-24.

Efficacy and safety of weekly paclitaxel with or without ramucirumab as second-line therapy for the treatment of advanced gastric or gastroesophageal junction adenocarcinoma (RAINBOW-Asia): a randomised, multicentre, double-blind, phase 3 trial

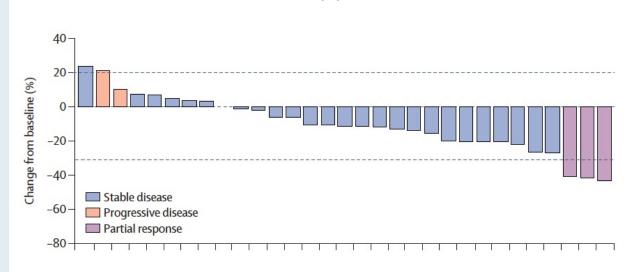
Rui-Hua Xu*†, Yanqiao Zhang†, Hongming Pan†, Jifeng Feng, Tao Zhang, Tianshu Liu, Yanru Qin, Shukui Qin, Xianli Yin, Baorui Liu, Yi Ba, Nong Yang, Pei Jye Voon, Suebpong Tanasanvimon, Chan Zhou, Wan Li Zhang, Lin Shen*

Trifluridine/tipiracil plus ramucirumab in gastric cancer

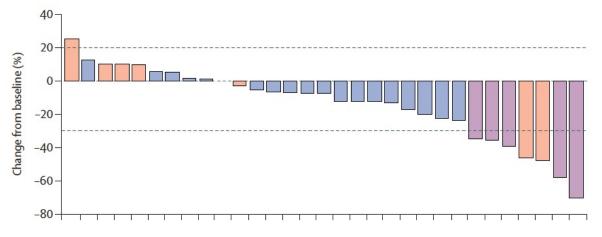
Mojun Zhu, Mohamad Bassam Sonbol, Harry H Yoon

Lancet Gastroenterol Hepatol 2021;6(3):154-5.

Safety and activity of trifluridine/tipiracil and ramucirumab in previously treated advanced gastric cancer: an open-label, single-arm, phase 2 trial


Akihito Kawazoe, Takayuki Ando, Hisashi Hosaka, Junya Fujita, Keisuke Koeda, Kazuhiro Nishikawa, Kenji Amagai, Kazumasa Fujitani, Kazuhiro Ogata, Keita Watanabe, Yuji Yamamoto, Kohei Shitara

Lancet Gastroenterol Hepatol 2021;6(3):209-17.



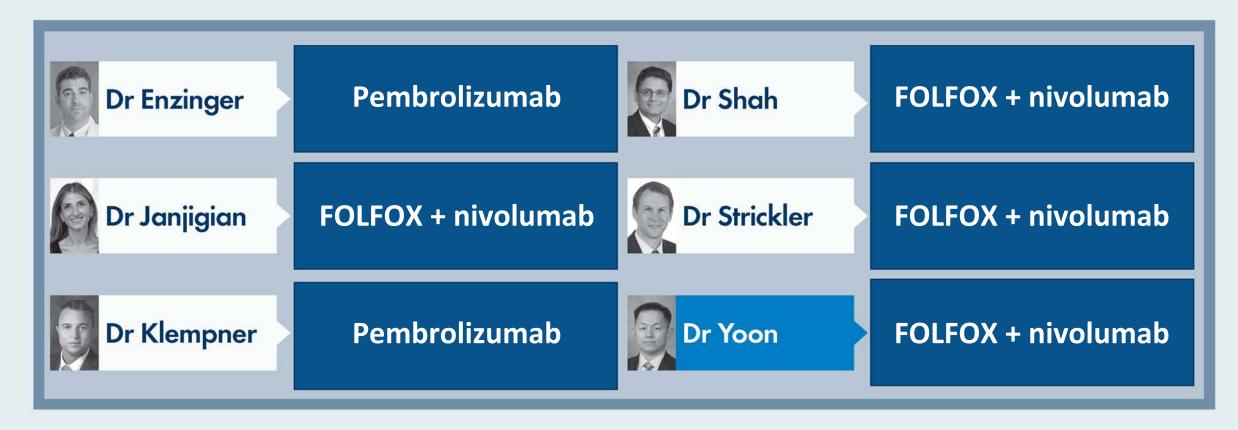
Maximum Percent Change in Tumor Size with Trifluridine/ Tipiracil for Previously Treated Advanced Gastric Cancer

Cohort A: n = 33 patients previously treated with 1 line of chemotherapy without ramucirumab

Cohort B: n = 31 patients previously treated with 2 to 4 lines of chemotherapy, including ramucirumab

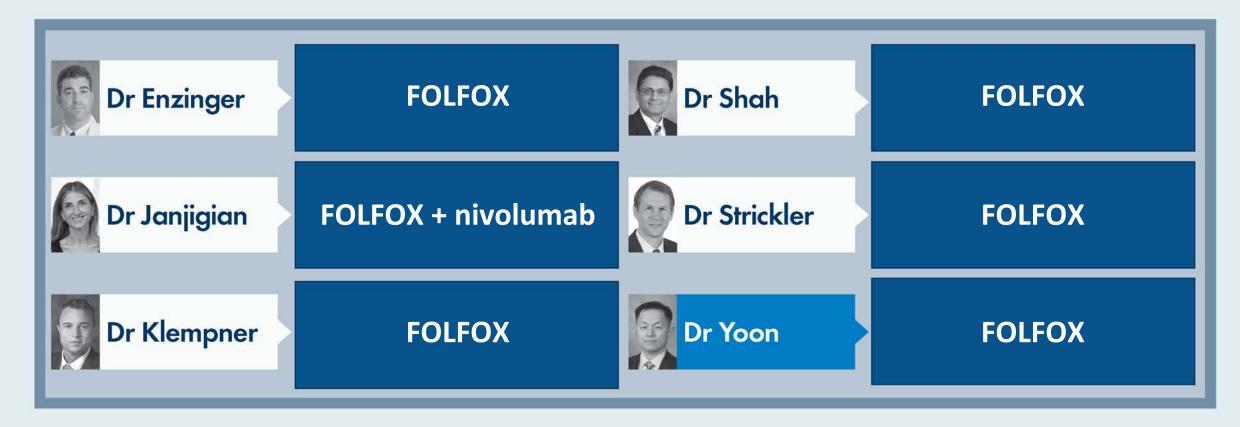
Checkpoint Inhibitor Approvals for HER2-Negative Gastric, GEJ and Esophageal Cancers

Regimen/FDA approval date/Pivotal trial	Location	Histology	Setting	PD-L1
Nivolumab 5/20/21 (CM-577)	Esophageal, GEJ	Adenocarcinoma and squamous	Completed resected, with residual pathologic disease after neoadjuvant chemoradiation	Not required
Pembrolizumab + cisplatin/5-FU 3/22/2021 (KN-590)	Esophageal, GEJ	Adenocarcinoma and squamous	 Recurrent locally advanced or metastatic Not amenable to surgical resection or definitive chemoradiation 	Not required
Nivolumab + mFOLFOX6 or CAPOX 4/16/2021 (CM-649)	Gastric, GEJ, esophageal	Adenocarcinoma	Advanced or metastatic gastric, GEJ or esophageal adenocarcinoma	Not required
Pembrolizumab 7/30/2019 (KN-181)	Esophageal, GEJ	Squamous	 Recurrent locally advanced or metastatic Not amenable to surgical resection or definitive chemoradiation After ≥1 prior lines of systemic therapy 	CPS ≥10
Nivolumab 6/10/2020 (ATTRACTION-3)	Esophageal	Squamous	 Unresectable advanced, recurrent or metastatic After prior fluoropyrimidine- and platinum-based chemotherapy 	Not required

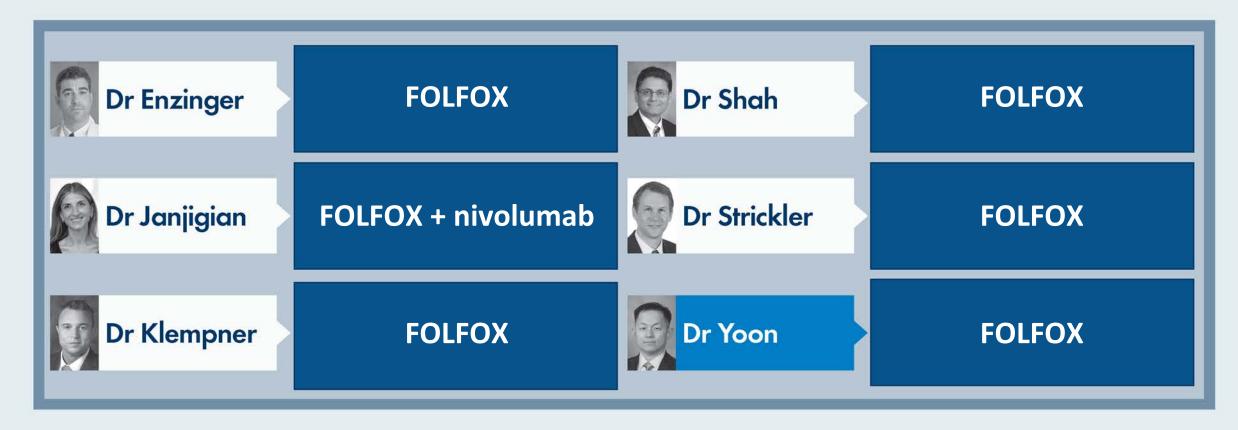


Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient presenting with metastatic HER2-negative, <u>MSI-high</u> gastric adenocarcinoma?

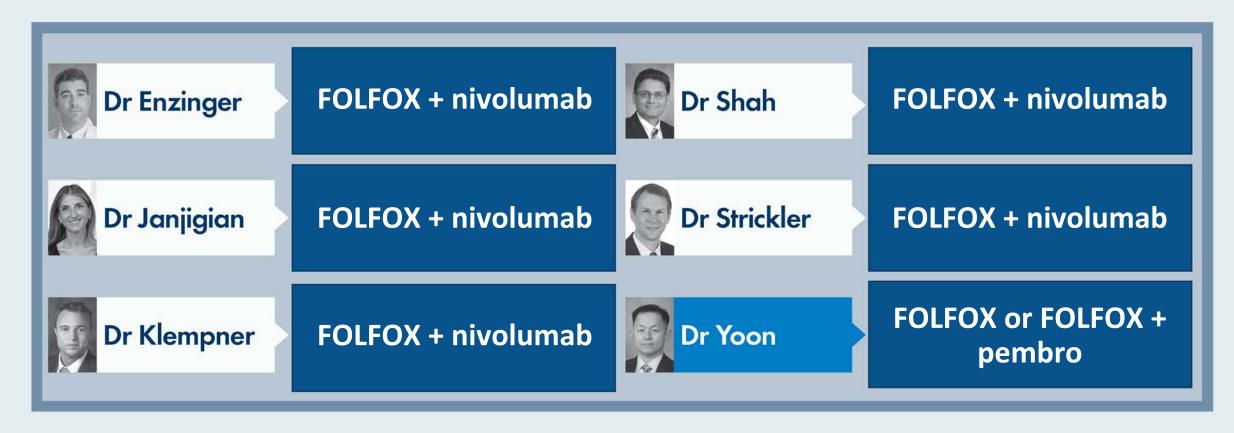
- 1. Chemotherapy
- 2. Pembrolizumab + chemotherapy
- 3. Nivolumab + chemotherapy
- 4. Nivolumab + ipilimumab
- 5. Pembrolizumab
- 6. Nivolumab
- 7. Other



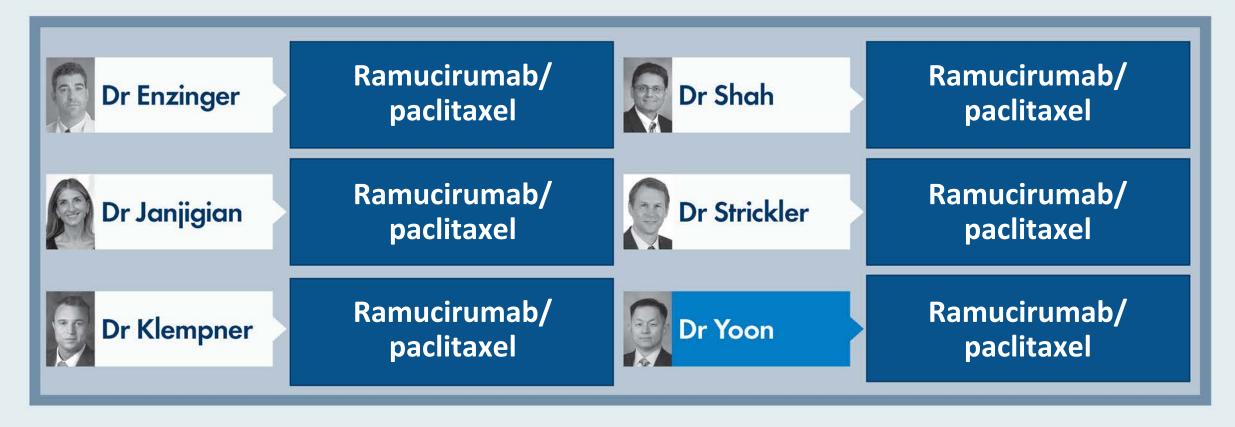
Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient presenting with metastatic HER2-negative, <u>MSI-high</u> gastric adenocarcinoma?



Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient presenting with metastatic HER2-negative, MSS gastric adenocarcinoma with a PD-L1 CPS of 0?



Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient presenting with metastatic HER2-negative, MSS gastric adenocarcinoma with a PD-L1 CPS of 1?



Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient presenting with metastatic HER2-negative, MSS gastric adenocarcinoma with a PD-L1 CPS of 5?

Regulatory and reimbursement issues aside, what would you currently recommend as second-line therapy for a patient with metastatic HER2-negative, MSS adenocarcinoma of the GEJ (PD-L1 CPS ≥5) who has experienced disease progression on first-line FOLFOX/nivolumab or FOLFOX/pembrolizumab?

Meet The Professor with Dr Yoon

Introduction

MODULE 1: HER2-Negative Disease

- Dr Fonkoua: A 39-year-old woman with Stage IIIA HER2-negative adenocarcinoma of the gastric antrum pMMR, PD-L1 CPS <1
- Dr Kaur: A 76-year-old man with metastatic esophageal adenocarcinoma PD-L1 CPS 5
- Dr Morganstein: A 76-year-old man with HER2-negative gastroesophageal junction adenocarcinoma and multiple brain metastases – microsatellite stable, PD-L1 CPS 10

MODULE 2: HER2-Positive Disease; Barrett's Esophagus

- Dr Kumar: A 61-year-old man with HER2-positive esophageal adenocarcinoma PD-L1 70%
- Dr Morganstein: A 62-year-old man with HER2-positive metastatic gastric cancer
- Dr Strickland: A 55-year-old man with localized esophageal adenocarcinoma and a history of Barrett's esophagus

MODULE 3: Appendix of Key Publications

Case Presentation: A 61-year-old man with HER2-positive esophageal adenocarcinoma – PD-L1 70%

Dr KS Kumar (Trinity, Florida)

HER2-Overexpression/Amplification and Survival in Patients with Resectable Esophageal/ Gastroesophageal Junction Adenocarcinoma (E/GEJ-AC) Treated with Neoadjuvant Carboplatin/Paclitaxel-Based Chemoradiation

Feng Y et al.

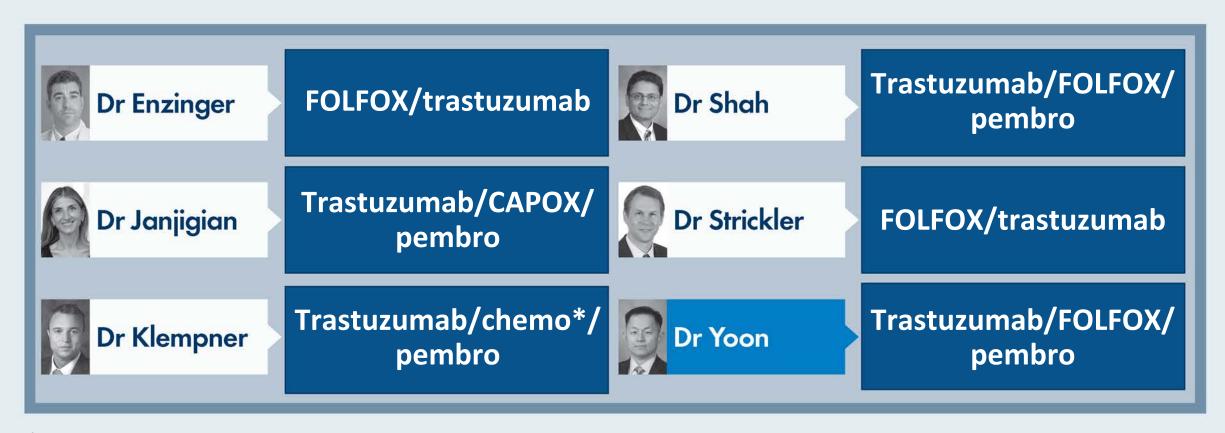
Gastrointestinal Cancers Symposium 2021; Abstract 239

Maintenance Therapy in First-Line Gastric and Gastroesophageal Junction Adenocarcinoma: A Retrospective Analysis

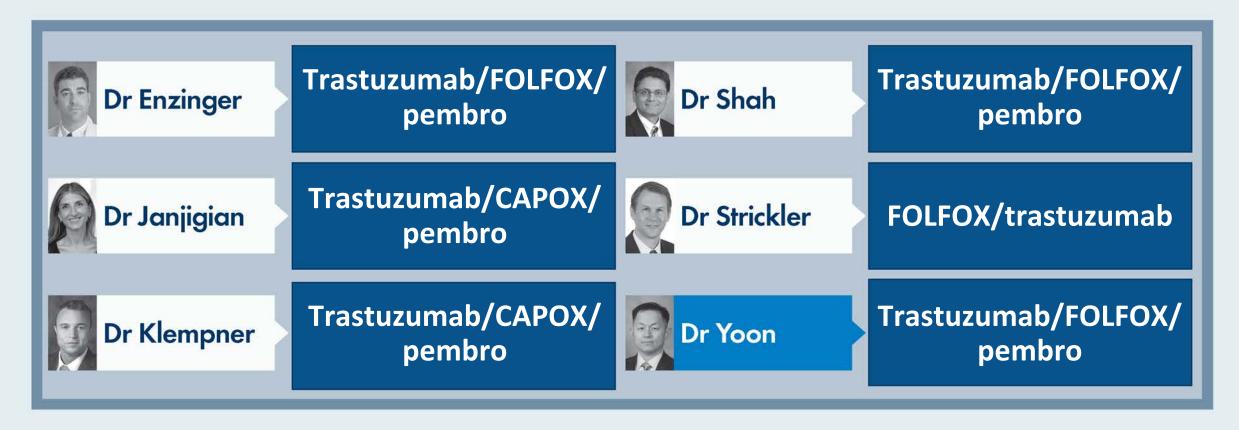
Daniel Walden¹, Mohamad Bassam Sonbol¹, Skye Buckner Petty¹, Harry H. Yoon², Mitesh Borad¹, Tanios S. Bekaii-Saab¹ and Daniel H. Ahn^{1*}

Recent FDA Approvals in HER2-Positive Gastric, GEJ and Esophageal Cancer

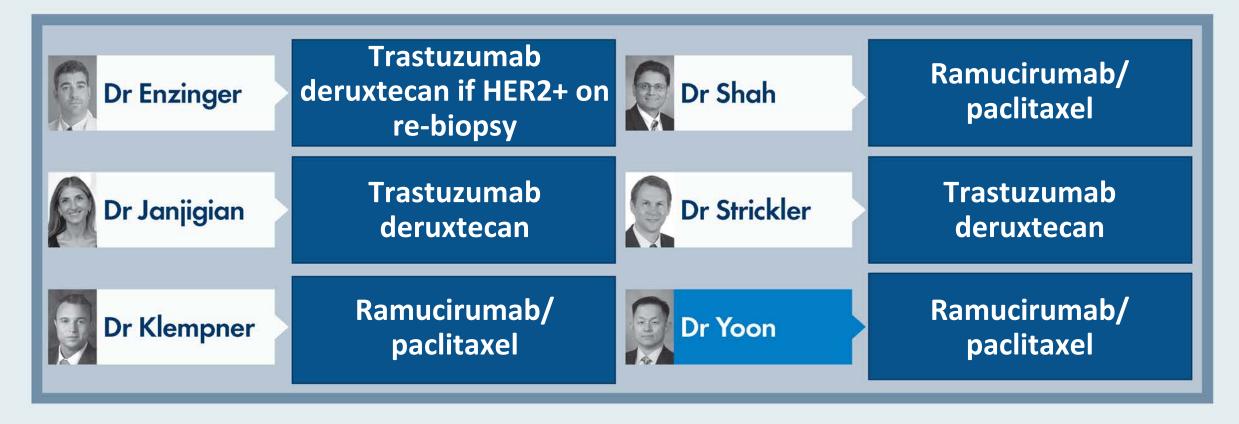
Regimen/FDA approval date/Pivotal trial	Location	Histology	Setting	PD-L1
Pembrolizumab + trastuzumab + chemotherapy 5/5/2021 (KN-811)	Gastric, GEJ	Adenocarcinoma	First-line treatment for locally advanced, unresectable or metastatic HER2-positive gastric or GEJ adenocarcinoma	Not required
Trastuzumab deruxtecan 1/15/2021 (DESTINY-Gastric01)	Gastric, GEJ	Adenocarcinoma	Patients who have received a prior trastuzumab-based regimen	Not required


Case Presentation: A 62-year-old man with HER2-positive metastatic gastric cancer

Dr Neil Morganstein (Summit, New Jersey)


Regulatory and reimbursement issues aside, what would be your preferred first-line treatment for a patient with newly diagnosed metastatic <u>HER2-positive</u>, MSS gastric adenocarcinoma with a PD-L1 CPS of 0?

^{*} FOLFOX or CAPOX



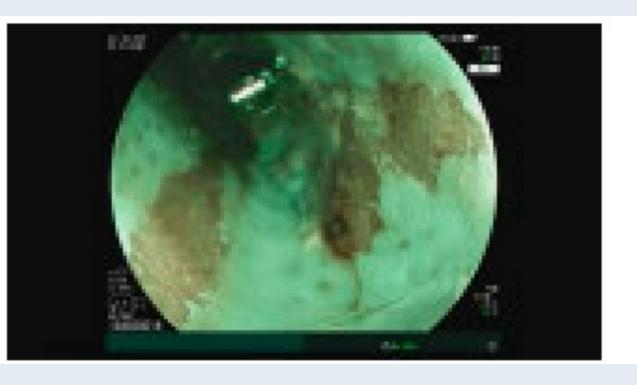
Regulatory and reimbursement issues aside, what would be your preferred first-line treatment for a patient with newly diagnosed metastatic <u>HER2-positive</u>, MSS gastric adenocarcinoma with a PD-L1 CPS ≥1?

Regulatory and reimbursement issues aside, what would you currently recommend as second-line therapy for a patient with metastatic HER2-positive, MSS gastric adenocarcinoma (PD-L1 CPS ≥1) with disease progression on <u>FOLFOX/trastuzumab/pembrolizumab</u>?



Case Presentation: A 55-year-old man with localized esophageal adenocarcinoma and a history of Barrett's esophagus

Dr Matthew Strickland (Boston, Massachusetts)



Lower Third of the Esophagus

2 Lower Third of the Esophagus

Meet The Professor with Dr Yoon

Introduction

MODULE 1: HER2-Negative Disease

- Dr Fonkoua: A 39-year-old woman with Stage IIIA HER2-negative adenocarcinoma of the gastric antrum pMMR, PD-L1 CPS <1
- Dr Kaur: A 76-year-old man with metastatic esophageal adenocarcinoma PD-L1 CPS 5
- Dr Morganstein: A 76-year-old man with HER2-negative gastroesophageal junction adenocarcinoma and multiple brain metastases – microsatellite stable, PD-L1 CPS 10

MODULE 2: HER2-Positive Disease; Barrett's Esophagus

- Dr Kumar: A 61-year-old man with HER2-positive esophageal adenocarcinoma PD-L1 70%
- Dr Morganstein: A 62-year-old man with HER2-positive metastatic gastric cancer
- Dr Strickland: A 55-year-old man with localized esophageal adenocarcinoma and a history of Barrett's esophagus

MODULE 3: Appendix of Key Publications

HER2-Negative Gastroesophageal Cancers

Checkpoint Inhibitor Approvals for HER2-Negative Gastric, GEJ and Esophageal Cancers

Regimen/FDA approval date/Pivotal trial	Location	Histology	Setting	PD-L1
Nivolumab 5/20/21 (CM-577)	Esophageal, GEJ	Adenocarcinoma and squamous	Completed resected, with residual pathologic disease after neoadjuvant chemoradiation	Not required
Pembrolizumab + cisplatin/5-FU 3/22/2021 (KN-590)	Esophageal, GEJ	Adenocarcinoma and squamous	 Recurrent locally advanced or metastatic Not amenable to surgical resection or definitive chemoradiation 	Not required
Nivolumab + mFOLFOX6 or CAPOX 4/16/2021 (CM-649)	Gastric, GEJ, esophageal	Adenocarcinoma	Advanced or metastatic gastric, GEJ or esophageal adenocarcinoma	Not required
Pembrolizumab 7/30/2019 (KN-181)	Esophageal, GEJ	Squamous	 Recurrent locally advanced or metastatic Not amenable to surgical resection or definitive chemoradiation After ≥1 prior lines of systemic therapy 	CPS ≥10
Nivolumab 6/10/2020 (ATTRACTION-3)	Esophageal	Squamous	 Unresectable advanced, recurrent or metastatic After prior fluoropyrimidine- and platinum-based chemotherapy 	Not required

Nature 2022;[Online ahead of print].

Article

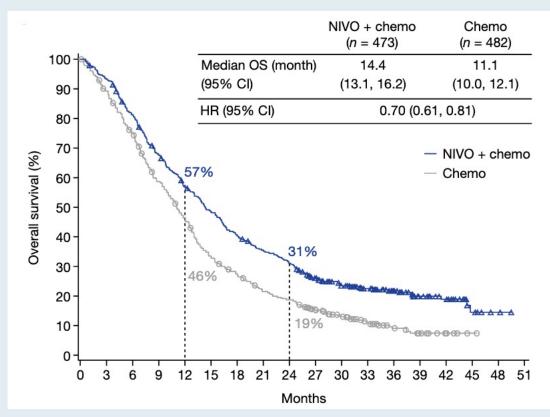
Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer

https://doi.org/10.1038/s41586-022-04508-4

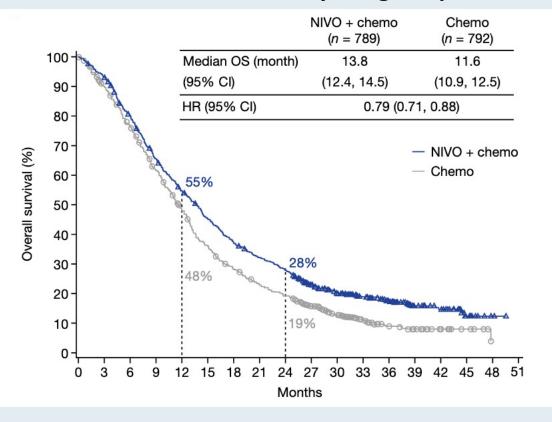
Received: 22 October 2021

Accepted: 3 February 2022

Published online: 23 March 2022

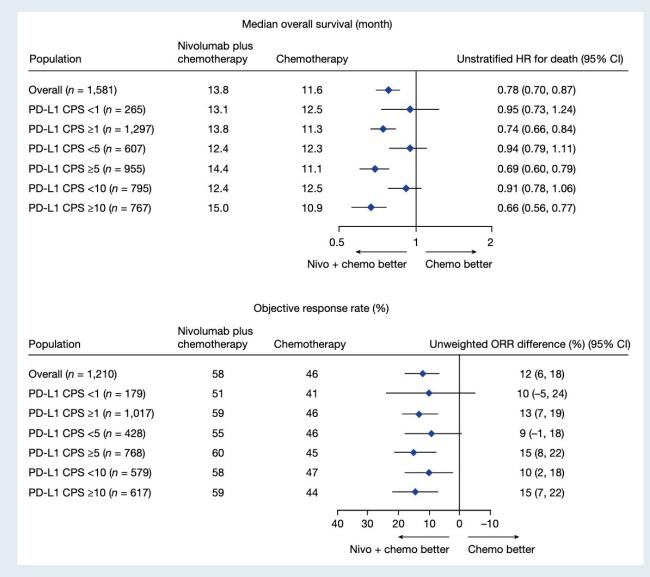

Open access

Kohei Shitara¹, Jaffer A. Ajani², Markus Moehler³, Marcelo Garrido⁴, Carlos Gallardo⁵, Lin Shen⁶, Kensei Yamaguchi⁷, Lucjan Wyrwicz⁸, Tomasz Skoczylas⁹, Arinilda Campos Bragagnoli¹⁰, Tianshu Liu¹¹, Mustapha Tehfe¹², Elena Elimova¹³, Ricardo Bruges¹⁴, Thomas Zander¹⁵, Sergio de Azevedo¹⁶, Ruben Kowalyszyn¹⁷, Roberto Pazo-Cid¹⁸, Michael Schenker¹⁹, James M. Cleary²⁰, Patricio Yanez²¹, Kynan Feeney²², Michalis V. Karamouzis²³, Valerie Poulart²⁴, Ming Lei²⁴, Hong Xiao²⁴, Kaoru Kondo²⁴, Mingshun Li²⁴ & Yelena Y. Janjigian^{25 ⋈}



CheckMate 649: Overall Survival

PD-L1 CPS ≥5

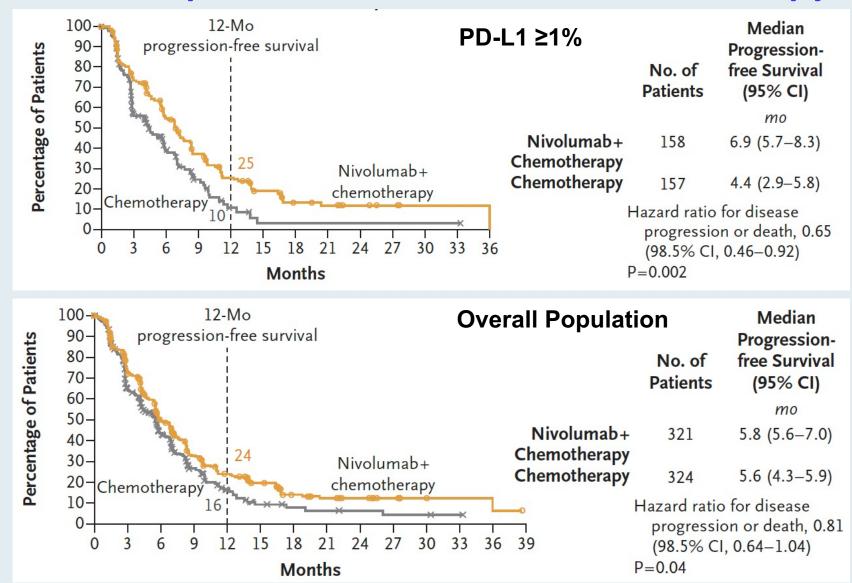

All randomly assigned patients

CPS = combined positive score

CheckMate 649: Efficacy Subgroup Analysis by PD-L1 CPS Excluding Patients with MSI-High Tumors

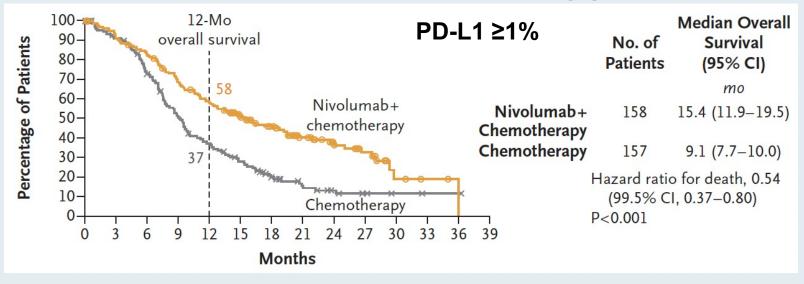
The NEW ENGLAND JOURNAL of MEDICINE

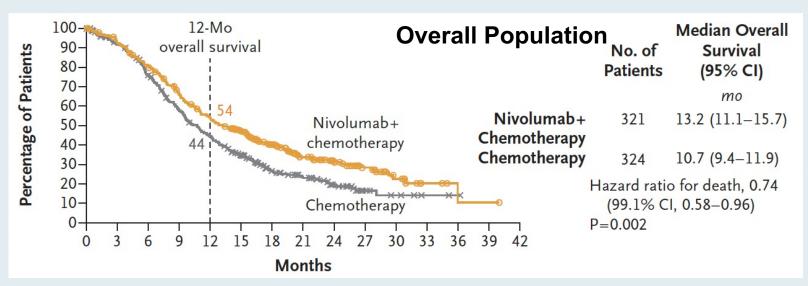
ORIGINAL ARTICLE

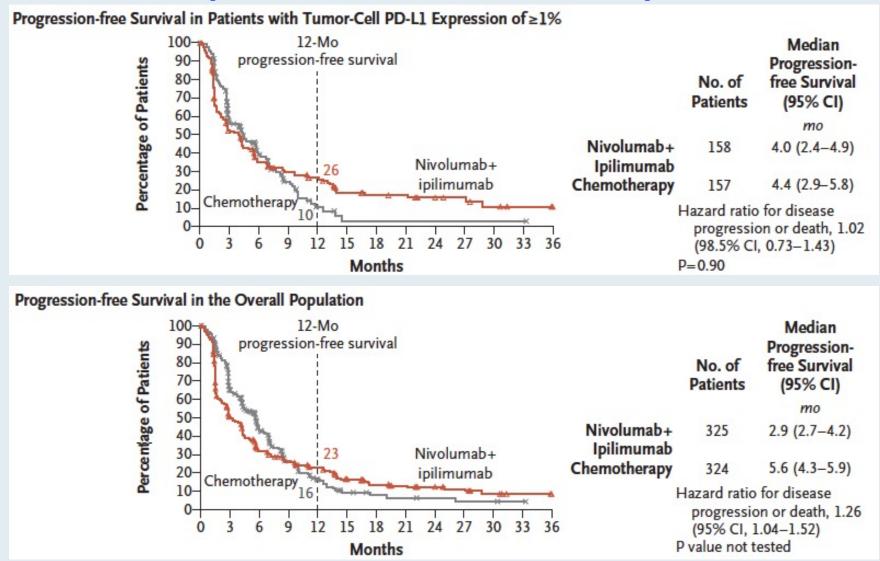

Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma

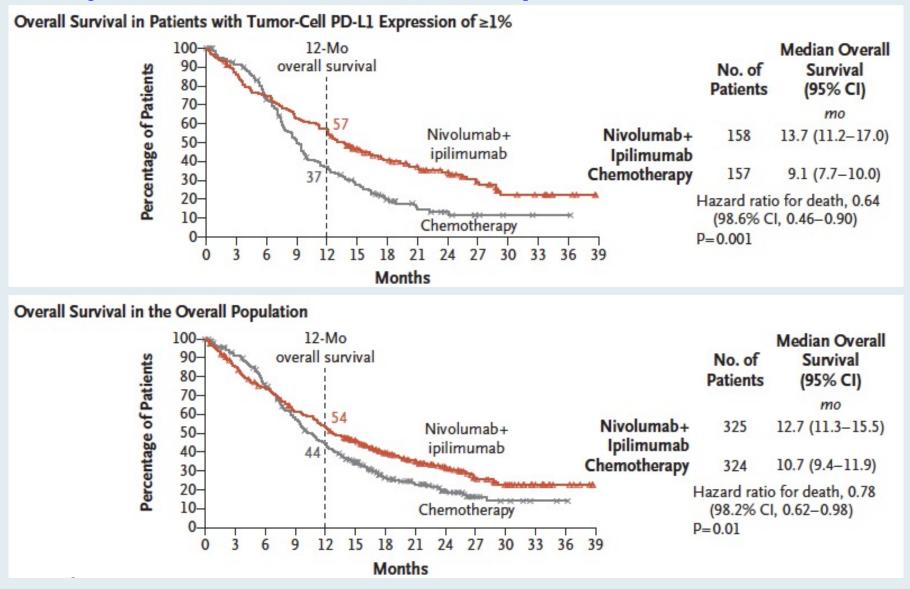
Y. Doki, J.A. Ajani, K. Kato, J. Xu, L. Wyrwicz, S. Motoyama, T. Ogata, H. Kawakami, C.-H. Hsu, A. Adenis, F. El Hajbi, M. Di Bartolomeo, M.I. Braghiroli, E. Holtved, S.A. Ostoich, H.R. Kim, M. Ueno, W. Mansoor, W.-C. Yang, T. Liu, J. Bridgewater, T. Makino, I. Xynos, X. Liu, M. Lei, K. Kondo, A. Patel, J. Gricar, I. Chau, and Y. Kitagawa, for the CheckMate 648 Trial Investigators*

New Engl J Med 2022;386(5):449-62.




CheckMate 648: Progression-Free Survival for PD-L1 ≥1% and in the Overall Population – Nivolumab + Chemotherapy


CheckMate 648: Overall Survival for PD-L1 ≥1% and in the Overall Population – Nivolumab + Chemotherapy



CheckMate 648: Progression-Free Survival for PD-L1 ≥1% and in the Overall Population – Nivolumab + Ipilimumab

CheckMate 648: Overall Survival for PD-L1 ≥1% and in the Overall Population – Nivolumab + Ipilimumab

CheckMate 648: Antitumor Activity (BICR)

	PD-L1 ≥1%			Overall population			
Endpoint	Nivo/chemo (n = 158)	Nivo/ipi (n = 158)	Chemotherapy (n = 157)	Nivo/chemo (n = 321)	Nivo/ipi (n = 325)	Chemotherapy (n = 324)	
ORR	53%	35%	20%	47%	28%	27%	
Best overall res	sponse						
CR	16%	18%	5%	13%	11%	6%	
PR	37%	18%	15%	34%	17%	21%	
SD	25%	27%	46%	32%	32%	46%	
PD	14%	30%	15%	13%	32%	12%	
Median DoR	8.4 mo	11.8 mo	5.7 mo	8.2 mo	11.1 mo	7.1 mo	
Pts with ongoing response	13%	25%	3%	17%	22%	6%	

BICR = blinded independent central review

CheckMate 648: Select Treatment-Related Adverse Events

	Nivolumab/chemotherapy (N = 310)		Nivolumab/ipilimumab (N = 322)		Chemotherapy (N = 304)	
Endpoint	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4
Serious AEs	53%	35%	20%	47%	28%	27%
AEs leading to discontinuation	16%	18%	5%	13%	11%	6%
Nausea	59%	4%	8%	<1%	52%	3%
Stomatitis	32%	6%	4%	0	23%	2%
Anemia	30%	10%	4%	1%	22%	6%
Decreased neutrophils	21%	8%	1%	0	17%	8%
Decreased white cells	14%	4%	1%	0	9%	2%

Checkmate-649 versus Checkmate-648

CM-649 - Gastric cancer

NIVO (1 mg/kg) + IPI (3 mg/kg) Q3W × 4 then NIVO 240 mg Q2We Different schedules!

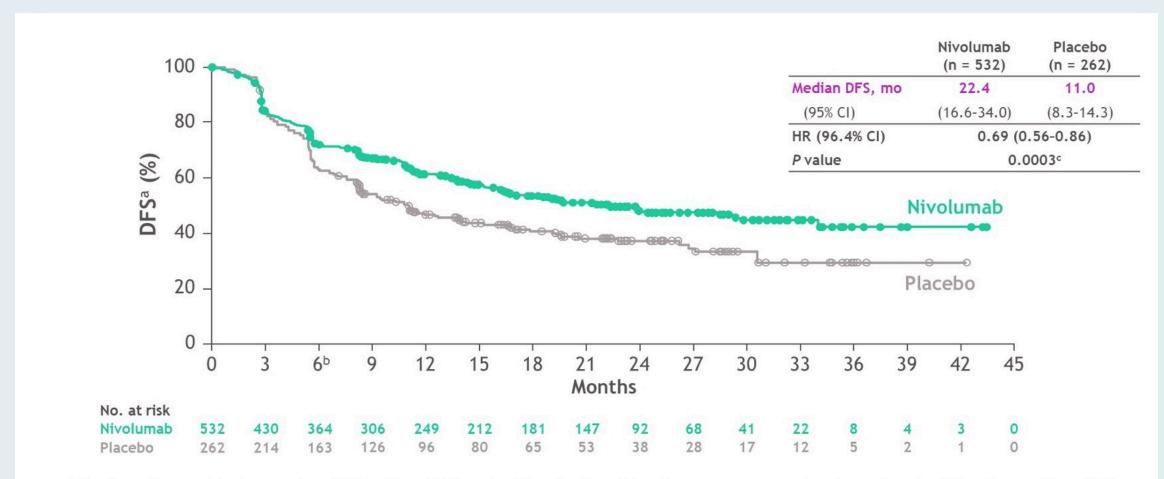
CM-648 - Esophageal cancer

NIVO (3 mg/kg) Q2W + IPI (1 mg/kg) Q6W

CM-649: Treatment-related Adverse Events

All treated, an (%)	NIVO + chemo (n = 782) ^b		Chemo (n = 767) ^b		NIVO + IPI (n = 403) ^c		Chemo (n = 389) ^c	
7.11 treated, 11 (70)	Any grade	Grade 3-4	Any grade	Grade 3-4	Any grade	Grade 3-4	Any grade	Grade 3-4
Any TRAEsd	739 (95)	471 (60)	682 (89)	344 (45)	323 (80)	155 (38)	356 (92)	180 (46)
Serious TRAEsd	175 (22)	133 (17)	94 (12)	77 (10)	122 (30)	93 (23)	54 (14)	45 (12)
TRAEs leading to discontinuation ^{d,e}	300 (38)	141 (18)	188 (25)	70 (9)	88 (22)	68 (17)	101 (26)	37 (10)
Treatment-related deathsf	16	(2)g	4 (<	(1) ^h	10	(2) ⁱ	3 ((1) ^j

Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer following neoadjuvant chemoradiotherapy: expanded efficacy and safety analyses from CheckMate 577


Ronan J. Kelly, ¹ Jaffer A. Ajani, ² Jaroslaw Kuzdzal, ³ Thomas Zander, ⁴ Eric Van Cutsem, ⁵ Guillaume Piessen, ⁶ Guillermo Mendez, ⁷ Josephine Feliciano, ⁸ Satoru Motoyama, ⁹ Astrid Lièvre, ¹⁰ Hope Uronis, ¹¹ Elena Elimova, ¹² Cecile Grootscholten, ¹³ Karen Geboes, ¹⁴ Jenny Zhang, ¹⁵ Samira Soleymani, ¹⁵ Ming Lei, ¹⁵ Prianka Singh, ¹⁵ James M. Cleary, ¹⁶ Markus Moehler ¹⁷

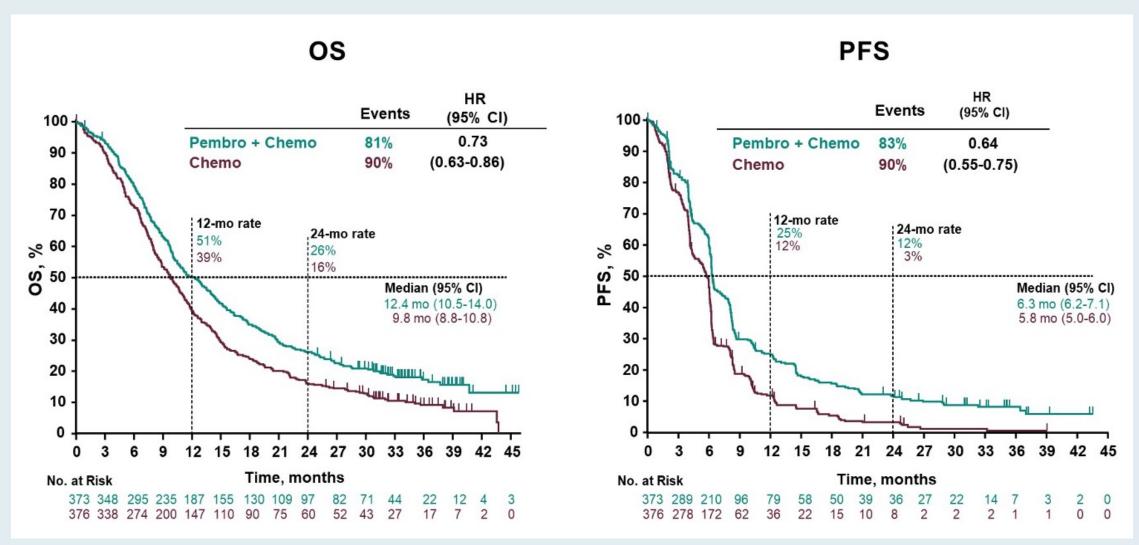
¹The Charles A. Sammons Cancer Center at Baylor University Medical Center, Dallas, TX; ²The University of Texas MD Anderson Cancer Center, Houston, TX; ³Jagiellonian University, John Paul II Hospital, Cracow, Poland; ⁴University Hospital of Cologne, Cologne, Germany; ⁵University Hospitals Gasthuisberg, Leuven and KULeuven, Leuven, Belgium; 6University of Lille, Claude Huriez University Hospital, Lille, France; ¬Fundacion Favaloro, Buenos Aires, Argentina; ®Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; 9Akita University Hospital, Akita, Japan; ¹0CHU Pontchaillou, Rennes 1 University, Rennes, France; ¹¹Duke Cancer Institute, Durham, NC; ¹²Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹³Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; ¹⁴UZ Gent, Gent, Belgium; ¹⁵Bristol Myers Squibb, Princeton, NJ; ¹6Dana Farber Cancer Institute, Boston, MA; ¹7Johannes-Gutenberg University Clinic, Mainz, Germany

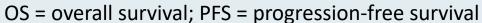
Abstract number 4003

CheckMate 577: Disease-Free Survival (DFS)

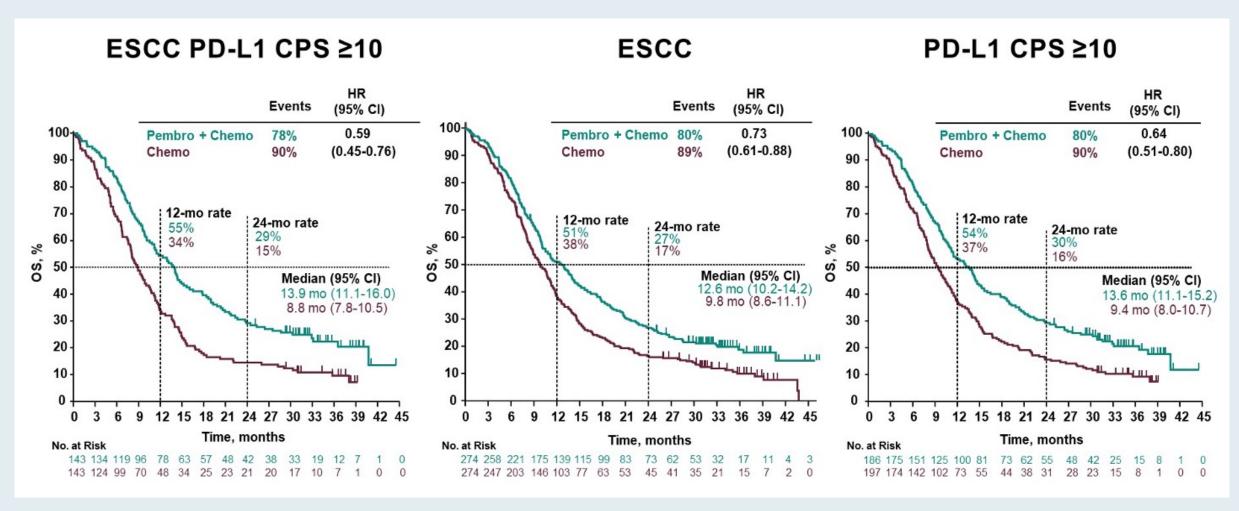
Nivolumab provided superior DFS with a 31% reduction in the risk of recurrence or death and a doubling in median DFS versus placebo

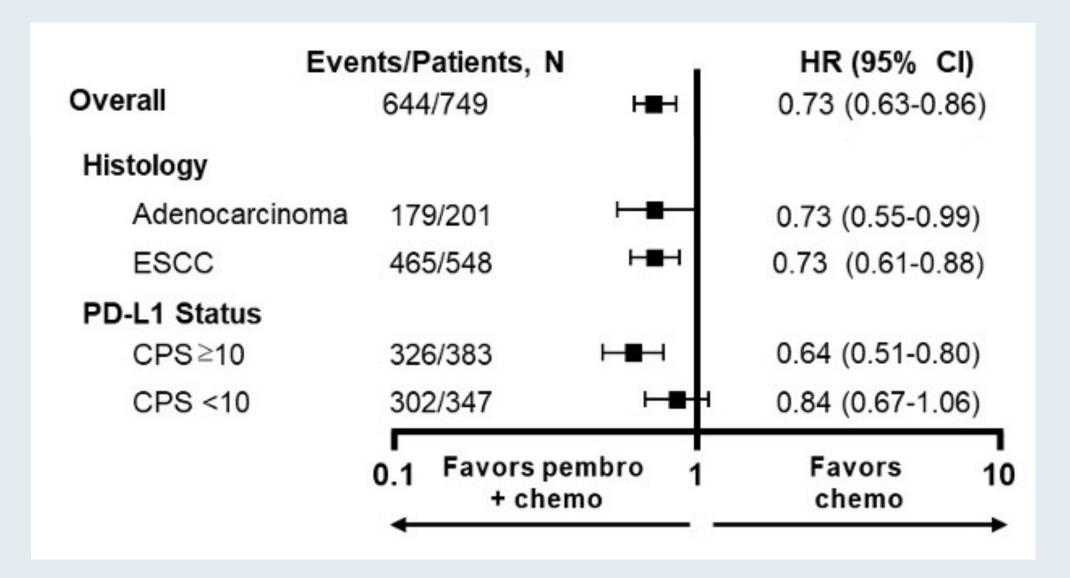
First-line Pembrolizumab Plus Chemotherapy Versus Chemotherapy in Advanced Esophageal Cancer: Longerterm Efficacy, Safety, and Quality-of-life Results From the Phase 3 KEYNOTE-590 Study


Jean-Philippe Metges,¹ Ken Kato,² Jong-Mu Sun,³ Manish A. Shah,⁴ Peter Enzinger,⁵ Antoine Adenis,⁶ Toshihiko Doi,⁷ Takashi Kojima,⁷ Zhigang Li,⁸ Sung-Bae Kim,⁹ Byoung Chul Cho,¹⁰ Wasat Mansoor,¹¹ Shau-Hsuan Li,¹² Patrapim Sunpaweravong,¹³ Maria Alsina Maqueda,¹⁴ Gary L. Buchschacher, Jr,¹⁵ Wu Jimin,¹⁶ Sukrut Shah,¹⁶ Pooja Bhagia,¹⁶ Lin Shen¹⁷


¹CHU Brest – Institut de Cancerologie et d'Hematologie ARPEGO Network, Brest, France; ²National Cancer Center Hospital, Tokyo, Japan; ³Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ⁴Weill Cornell Medical College, New York, NY, USA; ⁵Dana Farber Cancer Institute, Boston, MA, USA; ⁵IRCM, Inserm, Université Montpellier, ICM, Montpellier, France; ¬National Cancer Center Hospital East, Kashiwa, Japan; ¬Shanghai Chest Hospital Esophageal Disease Center, Shanghai, China; ¬Sasan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ¹¹Christie Hospital NHS Trust, Manchester, United Kingdom; ¹²Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; ¹³Prince of Songkla University Hospital, Songkhla, Thailand; ¹⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹⁵Kaiser Permanente Southern California, Los Angeles Medical Center, Los Angeles, CA, USA; ¹⁶Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁶Peking University Cancer Hospital & Institute; Beijing, China

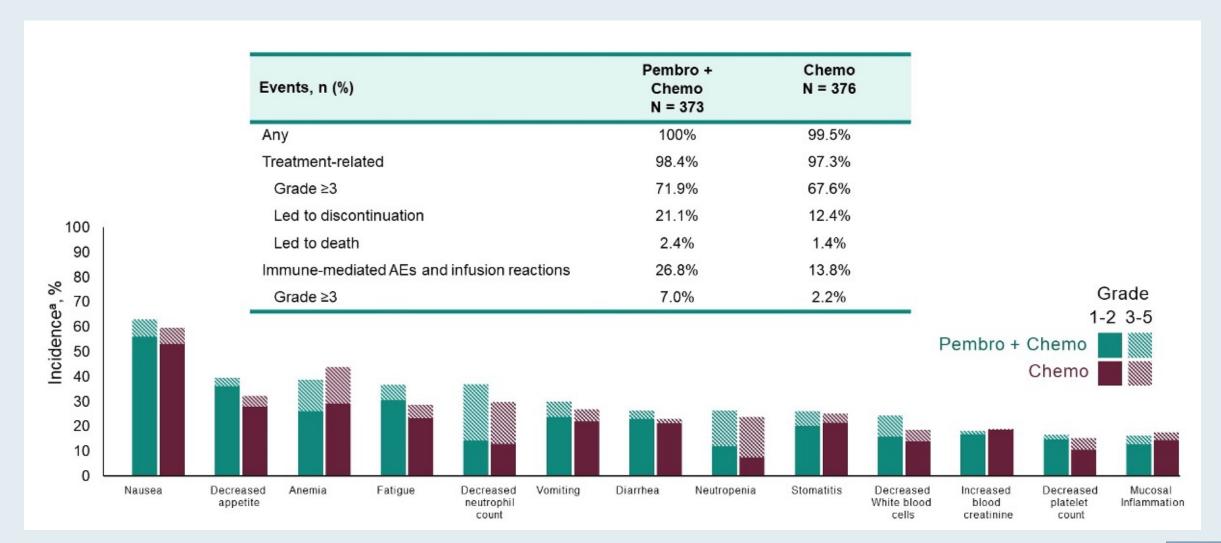
Gastrointestinal Cancers Symposium 2022; Abstract 241.


KEYNOTE-590: Survival Analyses (All Patients)


KEYNOTE-590: Overall Survival (OS) in Prespecified Subgroups

ESCC = esophageal squamous cell carcinoma

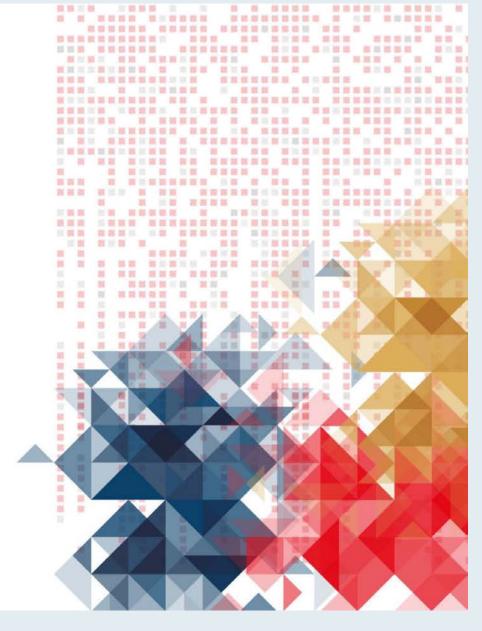
KEYNOTE-590: Overall Survival in Select Subgroups



KEYNOTE-590: Antitumor Response

Best response, n (%)	Pembro + Chemo N = 373	Chemo N = 376
ORR, n (%)	168 (45.0)	110 (29.3)
Complete response	25 (6.7)	9 (2.4)
Partial response	143 (38.3)	101 (26.9)
Stable disease	126 (33.8)	174 (46.3)
Disease control rate	294 (78.8)	284 (75.5)
Progressive disease	43 (11.5)	59 (15.7)
Not evaluable/no assessment	36 (9.6)	33 (8.7)
Median DOR (range), mo	8.3 (1.2+ to 41.7+)	6.0 (1.5+ to 34.9+)
≥ 24 months response duration, %	20.4	6.2

KEYNOTE-590: Adverse Events Summary



Sintilimab plus chemotherapy (chemo) versus chemo as the first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16)

Jianming Xu*, Haiping Jiang, Yueyin Pan, Kangsheng Gu, Sundong Cang, Lei Han, Yongqian Shu, Jiayi Li, Junhui Zhao, Hongming Pan, Suxia Luo, Yanru Qin, Qunyi Guo, Yuxian Bai, Yang Ling, Yingmei Guo, Ziran Li, Ying Liu, Yan Wang, Hui Zhou

*, presenting author, MD, The Fifth Medical Center, Chinese PLA General Hospital

ORIENT-16: Phase III Trial Design

Sintilimab is a recombinant fully humanized anti-PD-1 monoclonal antibody.

1:1

N=323

Previous study has shown encouraging anti-tumor activities of Sintilimab plus chemotherapy in 1L G/GEJ cancer.

ORIENT-16^a is a randomized, double-blind, phase 3 study

Key eligibility criteriaPreviously untreated,

- unresectable advanced, recurrent or metastatic G/GEJ adenocarcinoma
- ECOG PS 0 or 1
- No known Her2 positive

N=327 Sintilimab + XELOX^a Q3W × 6 cycles, then Sintilimab + Capecitabine^a Q3W^b

Placebo + XELOX a Q3W imes 6 cycles, then Placebo + Capecitabine a Q3W b

Primary endpoints:

- OS in the patients with CPS ≥5
- OS in all randomized patients
 Secondary endpoints:
- · PFS, ORR, DCR, and DoR
- Safety profile

Stratification factors

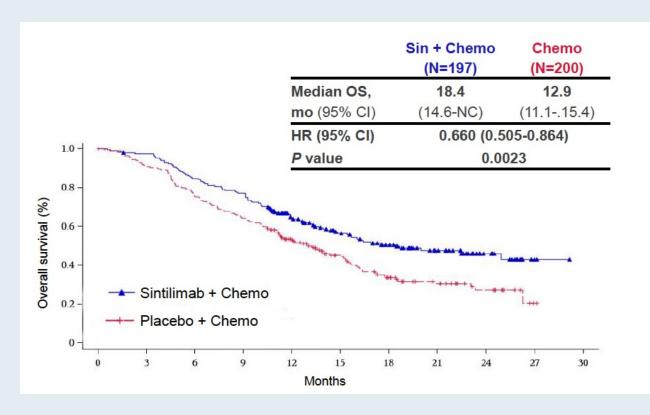
- ECOG PS (0 or 1)
- Liver metastasis (yes or no)
- PD-L1 (CPS <10 or ≥10)

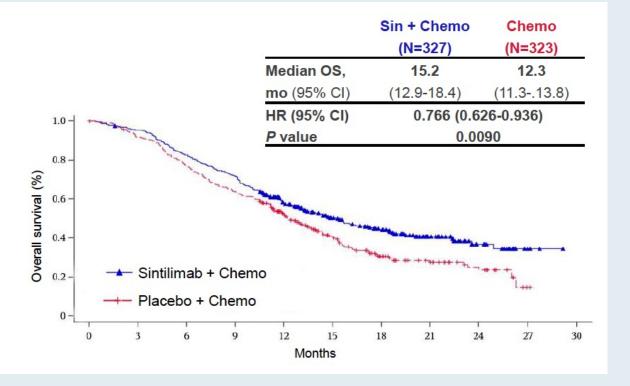
Data cut-off date for interim analysis was June 20, 2021

Median follow-up: 18.8 months

Statistical considerations

- Type I error is strictly controlled using fixed sequence test. OS in CPS≥5 and all randomized are tested hierarchically
- One interim analysis is planned, and O'Brien-Fleming is used for the alpha boundary (alpha=0.0148).


^a ClinicalTrial.gov number, NCT03745170; ^b Sintilimab 3 mg/kg for body weight <60 kg, 200 mg for ≥60 kg; Oxaliplatin 130 mg/m² IV; Capecitabine 1000 mg/m² PO Bid d1-14;


^c Until progressive disease, intolerable toxicity, withdrawal of consent. Treatment is given for a maximum of 2 years.

ORIENT-16: Overall Survival (OS) with Sintilimab and Chemotherapy for Advanced Gastric or GEJ Adenocarcinoma

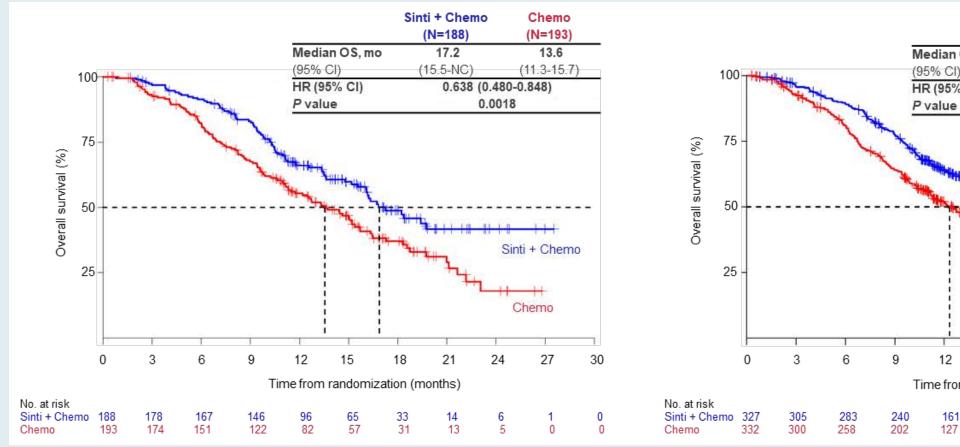
PD-L1 CPS ≥5

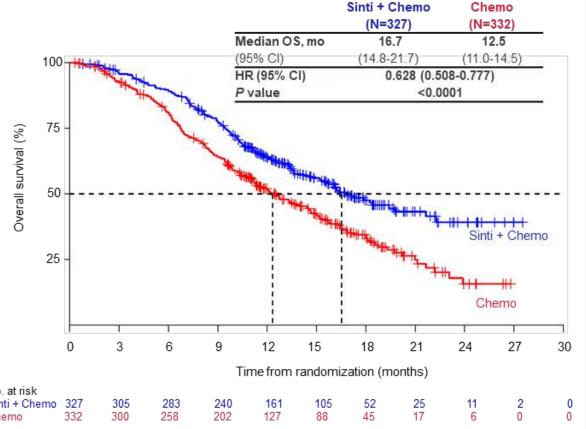
All patients

Sintilimab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced or metastatic esophageal squamous cell cancer: First Results of the Phase 3 ORIENT-15 study

Lin Shen¹, Zhihao Lu², Junye Wang³, Yongqian Shu⁴, Li Kong⁵, Lei Yang⁶, Buhai Wang⁶, Zhiwu Wang՞, Yinghua Ji⁶, Guochun Cao¹⁰, Hu Liu¹¹, Tongjian Cui¹², Na Li¹³, Wensheng Qiu¹⁴, Zhuo Ma¹⁵, Yuling Chen¹⁵, Haoyu Li¹⁵, Xing Sun¹⁵, Yan Wang¹⁵, Hui Zhou¹⁵

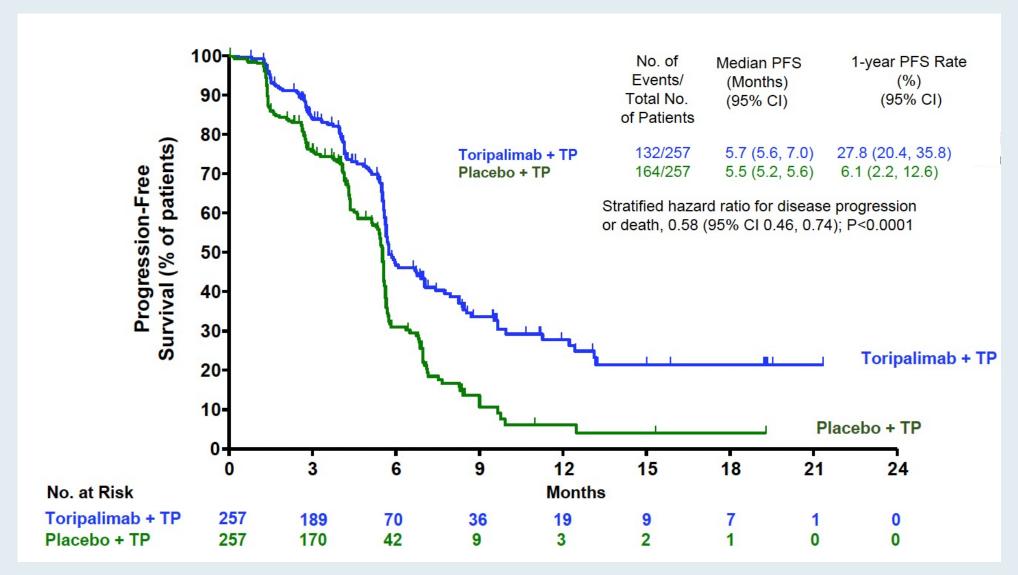
¹Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China, ²Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China, ³Department of Oncology, The Affiliated Hospital of Jining Medical College, Jining, China, ⁴Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, ⁵Special Needs Ward, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China, ⁶Department of Medical Oncology, Nantong Cancer Hospital, Nantong, China, ⁷Department of Medical Oncology, Northern Jiangsu People's Hospital, Affiliated Hospital to Yangzhou University, Yangzhou, China, ⁸Department of Radiotherapy and Chemotherapy, Tangshan People Hospital, Tangshan, China, ⁹Department of Medical Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China, ¹⁰Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China, ¹¹Department of Medical Oncology, Anhui provincial Cancer Hospital, University of Science and Technology of China, 19Department of Medical Oncology, Suining Central Hospital, Suining, China, ¹⁴Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China, ¹⁵Medical Oncology, Innovent Biologics, Inc., Suzhou, China, ¹⁶Biostatistics, Innovent Biologics, Inc., Suzhou, China




ESMO 2021; Abstract LBA52.

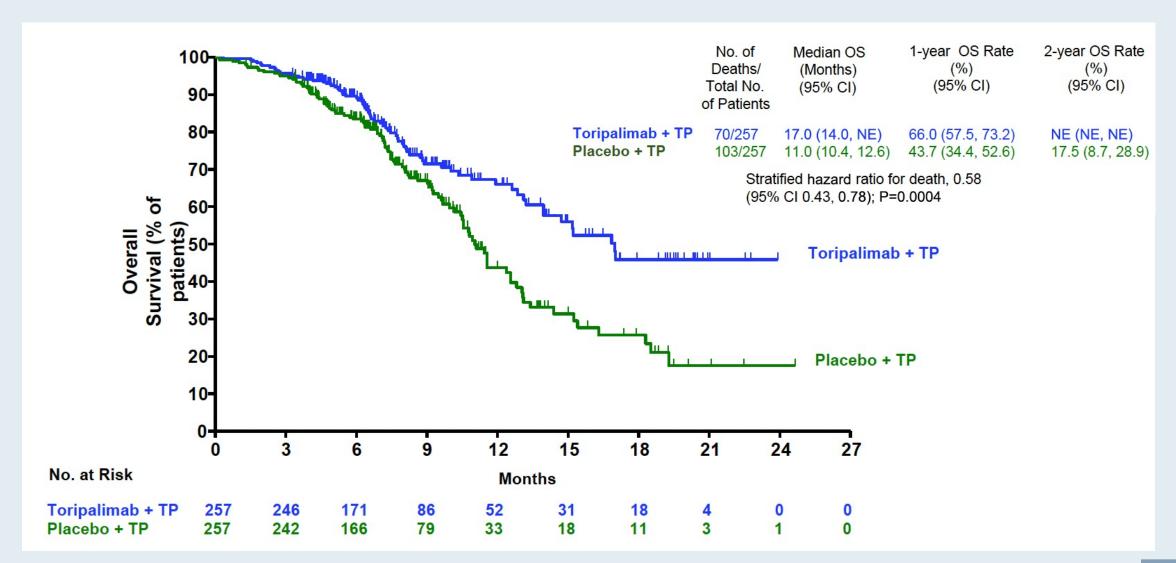
ORIENT-15: Overall Survival with Sintilimab and Chemotherapy for Advanced or Metastatic Esophageal Squamous Cell Carcinoma

PD-L1 CPS ≥10 All patients


Article

Toripalimab plus chemotherapy in treatment-naïve, advanced esophageal squamous cell carcinoma (JUPITER-06): A multi-center phase 3 trial

Zi-Xian Wang,^{1,2,76} Chengxu Cui,^{3,76} Jun Yao,^{4,76} Yanqiao Zhang,^{5,76} Mengxia Li,⁶ Jifeng Feng,⁷ Shujun Yang,⁸ Yun Fan,⁹ Jianhua Shi,¹⁰ Xizhi Zhang,¹¹ Lin Shen,¹² Yongqian Shu,¹³ Cailian Wang,¹⁴ Tianyang Dai,¹⁵ Teng Mao,¹⁶ Long Chen,¹⁷ Zengqing Guo,¹⁸ Bo Liu,¹⁹ Hongming Pan,²⁰ Shundong Cang,²¹ Yi Jiang,²² Junye Wang,²³ Min Ye,²⁴ Zhendong Chen,²⁵ Da Jiang,²⁶ Qin Lin,²⁷ Wei Ren,²⁸ Junsheng Wang,²⁹ Lin Wu,³⁰ Yong Xu,³¹ Zhanhui Miao,³² Meili Sun,³³ Conghua Xie,³⁴ et al



JUPITER-06: Progression-Free Survival (BICR, ITT Population)

JUPITER-06: Overall Survival (ITT Population)

JUPITER-06: Tumor Response

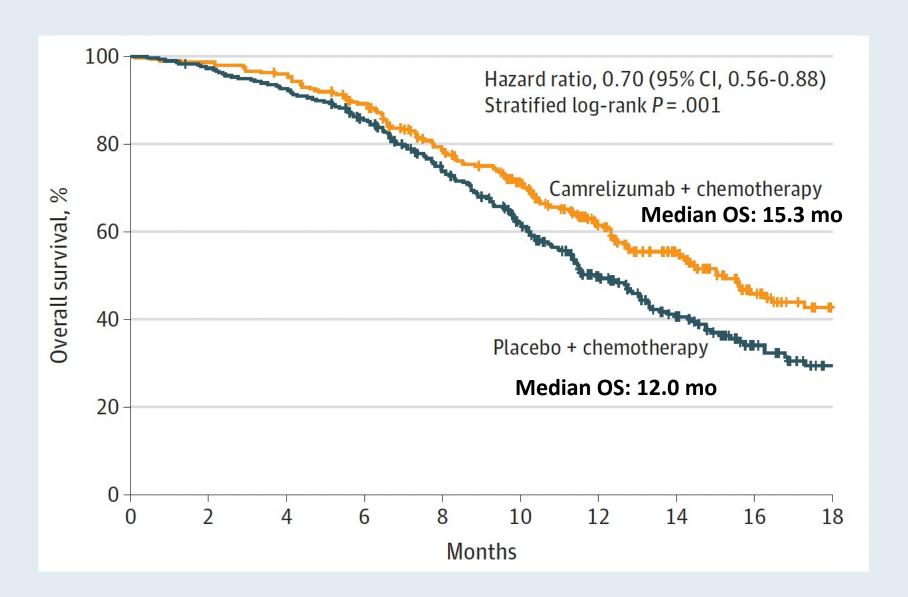
Variable	Toripalimab + TP (n = 257)	Placebo + TP (n = 257)
Best overall response, no. (%)	
Complete response	30 (11.7)	18 (7.0)
Partial response	148 (57.6)	116 (45.1)
Stable disease	51 (19.8)	77 (30.0)
Progressive disease	18 (7.0)	35 (13.6)
Non-CR/non-PD ^a	1 (0.4)	2 (0.8)
Not evaluable ^b	9 (3.5)	9 (3.5)
Objective response rate (OF	RR)	
ORR % (95% CI)	69.3 (63.2-74.8)	52.1 (45.8–58.4)
Difference in ORR % (95% CI)	17.2 (9.0–25.4)	
p value ^c	<0.0001	
Disease control rate (DCR)		
DCR % (95% CI)	89.1 (84.6-92.6)	82.1 (76.9–86.6)
Difference in DCR % (95% CI)	7.1 (1.1–13.1)	
p value ^c	0.0206	

JUPITER-06: Select Treatment-Emergent Adverse Events (TEAEs)

	Toripalimab + TP	(n = 257) no. (%)	Placebo + TP (n =	Placebo + TP (n = 257) no. (%)	
Adverse event, no. of patients (%)	All grades	grade ≥3	all grades	grade ≥3	
Any TEAE	255 (99.2)	188 (73.2)	255 (99.2)	180 (70.0)	
Anemia	201 (78.2)	28 (10.9)	207 (80.5)	38 (14.8)	
Leukopenia	174 (67.7)	52 (20.2)	138 (53.7)	34 (13.2)	
Neutropenia	173 (67.3)	109 (42.4)	139 (54.1)	85 (33.1)	
Nausea	111 (43.2)	0 (0)	118 (45.9)	5 (1.9)	
Fatigue	110 (42.8)	11 (4.3)	101 (39.3)	5 (1.9)	
Neuropathy peripheral	104 (40.5)	3 (1.2)	111 (43.2)	10 (3.9)	
Vomiting	103 (40.1)	5 (1.9)	94 (36.6)	5 (1.9)	
Decreased appetite	101 (39.3)	3 (1.2)	118 (45.9)	5 (1.9)	

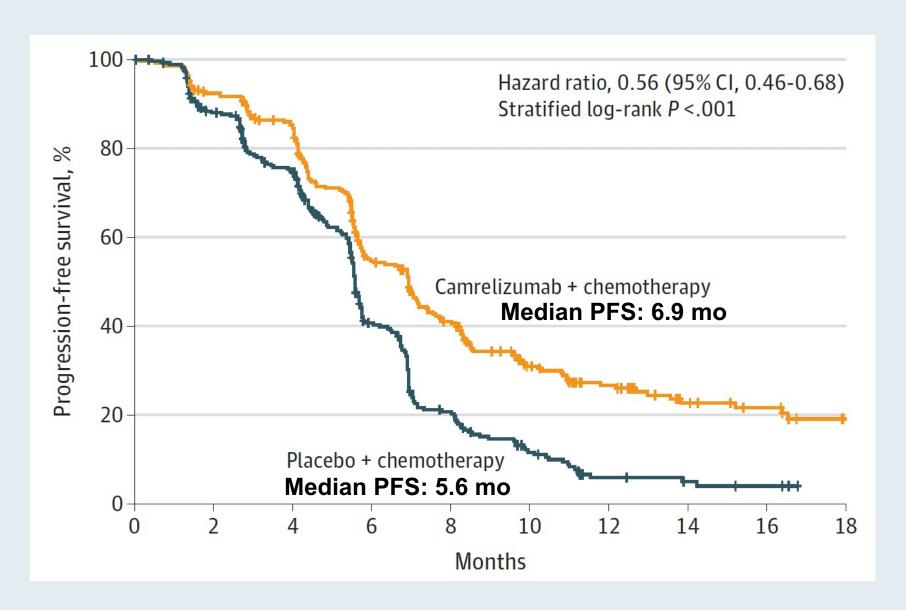
Research

JAMA 2021;326(10):916-25.


JAMA | Original Investigation

Effect of Camrelizumab vs Placebo Added to Chemotherapy on Survival and Progression-Free Survival in Patients With Advanced or Metastatic Esophageal Squamous Cell Carcinoma The ESCORT-1st Randomized Clinical Trial

Huiyan Luo, MD, PhD; Jin Lu, BS; Yuxian Bai, MD; Teng Mao, MM; Jun Wang, MD; Qingxia Fan, BS; Yiping Zhang, MB; Kuaile Zhao, MD; Zhendong Chen, MB; Shegan Gao, MD; Jiancheng Li, MD; Zhichao Fu, MD; Kangsheng Gu, MD; Zhihua Liu, MD; Lin Wu, MD; Xiaodong Zhang, MD; Jifeng Feng, PhD; Zuoxing Niu, MM; Yi Ba, MD; Helong Zhang, MD; Ying Liu, MD; Li Zhang, MB; Xuhong Min, BS; Jing Huang, MD; Ying Cheng, MD; Dong Wang, MD; Yu Shen, PhD; Qing Yang, MD; Jianjun Zou, MD; Rui-Hua Xu, MD, PhD; for the ESCORT-1st Investigators



ESCORT-1st: Overall Survival (Coprimary Endpoint)

ESCORT-1st: Progression-Free Survival (Coprimary Endpoint)

ESCORT-1st: Select Adverse Events

	No. (%) of patie	nts			
	Camrelizumab + chemotherapy (n = 298)		Placebo + chemotherapy (n = 297)		
	Any grade ^a	≥Grade 3	Any grade	≥Grade 3	
Treatment-related adverse events ^b	296 (99.3) ^c	189 (63.4)	288 (97.0)	201 (67.7)	
Reactive cutaneous capillary endothelial proliferation	238 (79.9)	3 (1.0)	32 (10.8)	0	
Anemia	229 (76.8)	52 (17.4)	217 (73.1)	40 (13.5)	
White blood cell count decreased	202 (67.8)	72 (24.2)	194 (65.3)	79 (26.6)	
Neutrophil count decreased	201 (67.4)	119 (39.9)	186 (62.6)	129 (43.4)	
Nausea	150 (50.3)	4 (1.3)	154 (51.9)	5 (1.7)	
Asthenia	141 (47.3)	6 (2.0)	129 (43.4)	8 (2.7)	
Alopecia	135 (45.3)	1 (0.3)	147 (49.5)	0	
Decreased appetite	129 (43.3)	2 (0.7)	134 (45.1)	5 (1.7)	
Vomiting	117 (39.3)	10 (3.4)	106 (35.7)	6 (2.0)	
Platelet count decreased	77 (25.8)	8 (2.7)	73 (24.6)	6 (2.0)	

ESCORT-1st: Immune-Related Adverse Events

	No. (%) of patients					
	Camrelizumab + chemotherapy (n = 298)		Placebo + chemotherapy (n = 297)			
	Any grade ^a	≥Grade 3	Any grade	≥Grade 3		
mmune-related adverse events ^d	252 (84.6)		98 (33.0)			
Reactive capillary endothelial proliferation	238 (79.9)		32 (10.8)			
Hypothyroidism	34 (11.4)		13 (4.4)			
Pruritus	20 (6.7)		7 (2.4)			
Hyperthyroidism	16 (5.4)		3 (1.0)			
Rash	16 (5.4)		6 (2.0)			
Pneumonitis	15 (5.0)		9 (3.0)			
Blood thyroid stimulating hormone decreased	10 (3.4)		1 (0.3)			

Lancet 2014;383(9911):31-9.

Ramucirumab monotherapy for previously treated advanced ((1) (1) gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial

Charles S Fuchs, Jiri Tomasek, Cho Jae Yong, Filip Dumitru, Rodolfo Passalacqua, Chanchal Goswami, Howard Safran, Lucas Vieira dos Santos, Giuseppe Aprile, David R Ferry, Bohuslav Melichar, Mustapha Tehfe, Eldar Topuzov, John Raymond Zalcberg, Ian Chau, William Campbell, Choondal Sivanandan, Joanna Pikiel, Minori Koshiji, Yanzhi Hsu, Astra M Liepa, Ling Gao, Jonathan D Schwartz, Josep Tabernero, for the REGARD Trial Investigators*

Lancet Oncol 2014;15(11):1224-35.

Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial

Hansjochen Wilke, Kei Muro, Eric Van Cutsem, Sang-Cheul Oh, György Bodoky, Yasuhiro Shimada, Shuichi Hironaka, Naotoshi Sugimoto, Oleg Lipatov, Tae-You Kim, David Cunningham, Philippe Rougier, Yoshito Komatsu, Jaffer Ajani, Michael Emiq, Roberto Carlesi, David Ferryt, Kumari Chandrawansa, Jonathan D Schwartz, Atsushi Ohtsu, for the RAINBOW Study Group*

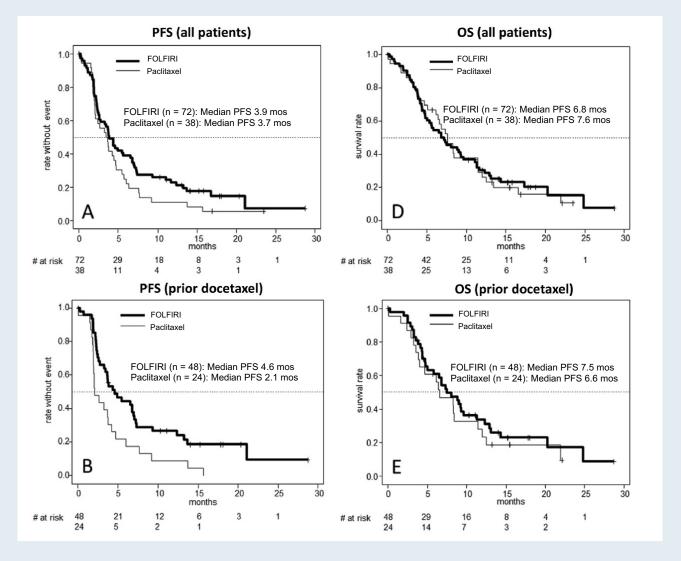
Pivotal Phase III Studies of Ramucirumab for Advanced Gastric or GEJ Adenocarcinoma

Study	N	Setting	Treatment	Median OS	Hazard ratio (p-value)
REGARD	355	PD after first-line therapy	Ramucirumab Placebo	5.2 mo 3.8 mo	HR: 0.776 (p = 0.047)
RAINBOW	665	PD after first-line therapy	Ramucirumab/paclitaxel Placebo/paclitaxel	9.6 mo 7.4 mo	HR: 0.807 (p = 0.017)

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.ejcancer.com

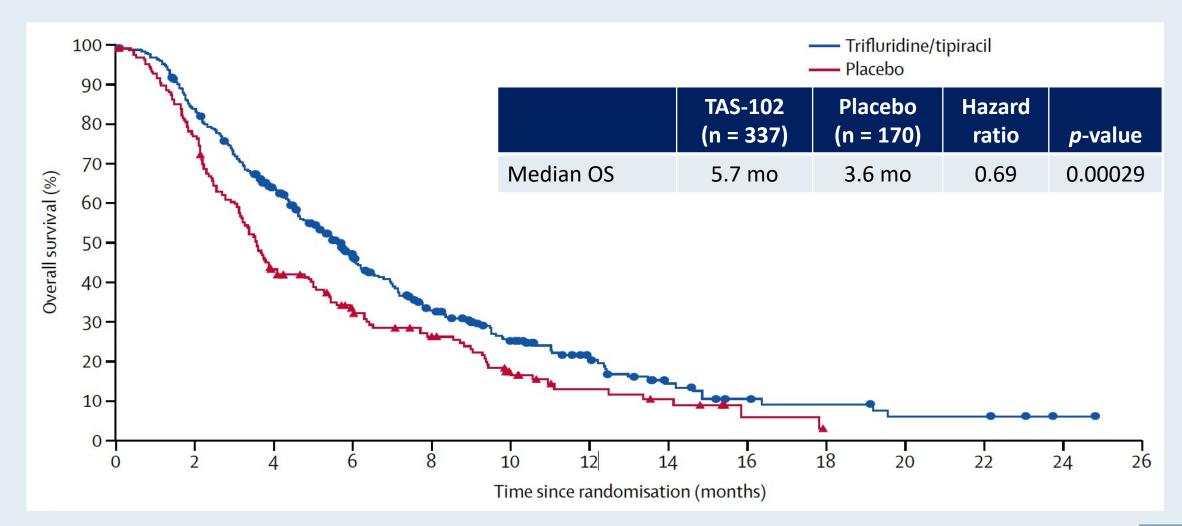

Original Research

FOLFIRI plus ramucirumab versus paclitaxel plus ramucirumab as second-line therapy for patients with advanced or metastatic gastroesophageal adenocarcinoma with or without prior docetaxel — results from the phase II RAMIRIS Study of the German Gastric Cancer Study Group at AIO

Sylvie Lorenzen ^{a,*}, Peter Thuss-Patience ^b, Claudia Pauligk ^c, Eray Gökkurt ^d, Thomas Ettrich ^e, Florian Lordick ^f, Michael Stahl ^g, Peter Reichardt ^h, Martin Sökler ⁱ, Daniel Pink ^{j,k}, Stefan Probst ^l, Axel Hinke ^m, Thorsten O. Goetze ^{c,n,1}, Salah E. Al-Batran ^{c,n,1}

Phase II RAMIRIS Trial of Second-Line Ramucirumab with FOLFIRI: Patients with Advanced or Metastatic Gastroesophageal Adenocarcinoma with or without Prior Docetaxel

Lancet Oncol 2018;19(11):1437-48.


Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): a randomised, double-blind, placebo-controlled, phase 3 trial

Kohei Shitara, Toshihiko Doi, Mikhail Dvorkin, Wasat Mansoor, Hendrik-Tobias Arkenau, Aliaksandr Prokharau, Maria Alsina, Michele Ghidini, Catia Faustino, Vera Gorbunova, Edvard Zhavrid, Kazuhiro Nishikawa, Ayumu Hosokawa, Şuayib Yalçın, Kazumasa Fujitani, Giordano D Beretta, Eric Van Cutsem, Robert E Winkler, Lukas Makris, David H Ilson, Josep Tabernero

TAGS: Overall Survival (Intent-to-Treat Population)

Phase III RATIONALE 306 Trial of First-Line Tislelizumab with Chemotherapy for Advanced Esophageal Cancer Meets Its Primary Overall Survival Endpoint

Press Release – April 27, 2022

"[Positive topline results were announced] from an interim analysis of the Phase III RATIONALE 306 study, which showed anti-PD-1 immune checkpoint inhibitor tislelizumab plus chemotherapy significantly improved overall survival (OS) compared to chemotherapy in patients with previously untreated unresectable, locally advanced, recurrent or metastatic esophageal squamous cell carcinoma (ESCC), regardless of PD-L1 expression. These data will be submitted to regulatory authorities, and will be presented at an upcoming medical meeting.

RATIONALE 306 (NCT03783442) is a multi-regional Phase III, randomized, placebo-controlled, double-blind study of tislelizumab in combination with chemotherapy versus chemotherapy alone in patients with unresectable, locally advanced recurrent or metastatic ESCC. Approximately 649 study participants were randomized 1:1 to receive either tislelizumab plus chemotherapy or chemotherapy alone. The primary endpoint is OS. Secondary endpoints include progression-free survival, objective response rate, duration of response, health-related quality of life measures and safety."

Surgical and Pathological Outcome, and Pathological Regression, in Patients Receiving Perioperative Atezolizumab in Combination with FLOT Chemotherapy versus FLOT Alone for Resectable Esophagogastric Adenocarcinoma: Interim Results from DANTE, a Randomized, Multicenter, Phase IIb Trial of the FLOT-AIO German Gastric Cancer Group and Swiss SAKK

Al-Batran SE et al.

ASCO 2022; Abstract 4003

Primary Track: Gastrointestinal Cancer—Gastroesophageal, Pancreatic, and Hepatobiliary
Oral Session: June 5, 2022, 9:12 AM

HER2-Positive Gastroesophageal Cancers

Recent FDA Approvals in HER2-Positive Gastric, GEJ and Esophageal Cancer

Regimen/FDA approval date/Pivotal trial	Location	Histology	Setting	PD-L1
Pembrolizumab + trastuzumab + chemotherapy 5/5/2021 (KN-811)	Gastric, GEJ	Adenocarcinoma	First-line treatment for locally advanced, unresectable or metastatic HER2-positive gastric or GEJ adenocarcinoma	Not required
Trastuzumab deruxtecan 1/15/2021 (DESTINY-Gastric01)	Gastric, GEJ	Adenocarcinoma	Patients who have received a prior trastuzumab-based regimen	Not required

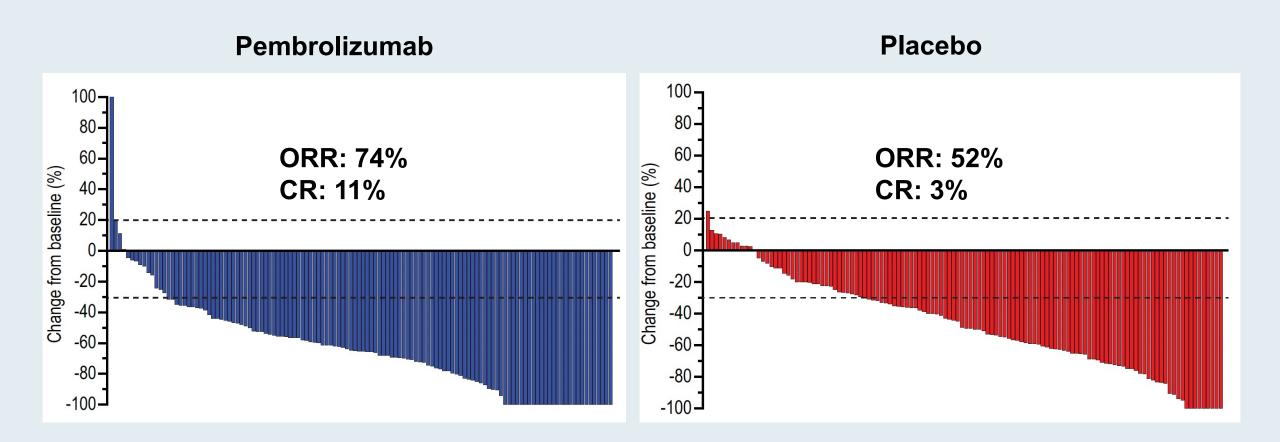
Nature 2021;600(7890):727-30.

Article

The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer

https://doi.org/10.1038/s41586-021-04161-3

Received: 25 May 2021


Accepted: 30 September 2021

Published online: 15 December 2021

Yelena Y. Janjigian^{1⊠}, Akihito Kawazoe², Patricio Yañez³, Ning Li⁴, Sara Lonardi⁵, Oleksii Kolesnik⁶, Olga Barajas⁷, Yuxian Bai⁸, Lin Shen⁹, Yong Tang¹⁰, Lucjan S. Wyrwicz¹¹, Jianming Xu¹², Kohei Shitara², Shukui Qin¹³, Eric Van Cutsem¹⁴, Josep Tabernero¹⁵, Lie Li¹⁶, Sukrut Shah¹⁶, Pooja Bhagia¹⁶ & Hyun Cheol Chung¹⁷

KEYNOTE-811: Overall Response Rate (ORR)

KEYNOTE-811: Summary of Adverse Events

Number of events (%)	Any cause		Immune-mediated events and infusion reactions ^a		
	Pembrolizumab group ($n = 217$)	Placebo group (n = 216)	Pembrolizumab group (n = 217)	Placebo group (n = 216)	
Any grade	211 (97.2)	212 (98.1)	73 (33.6)	45 (20.8)	
Grade 3–5	124 (57.1)	124 (57.4)	21 (9.7)	7 (3.2)	
Serious	68 (31.3)	83 (38.4)	19 (8.8)	7 (3.2)	
Led to death	7 (3.2)	10 (4.6)	3 (1.4)	1(0.5)	
Led to discontinuation of any drug	53 (24.4)	56 (25.9)	12 (5.5)	5 (2.3)	
Pembrolizumab or placebo	12 (5.5)	15 (6.9)	7 (3.2)	2 (0.9)	
Trastuzumab	12 (5.5)	16 (7.4)	7 (3.2)	2 (0.9)	
Any chemotherapy	50 (23.0)	52 (24.1)	12 (5.5)	5 (2.3)	
All drugs	8 (3.7)	12 (5.6)	6 (2.8)	2 (0.9)	

The treatment regimen included trastuzumab and chemotherapy in both groups.

^aEvents with a possible immune-mediated cause and infusion reactions were considered regardless of attribution to study treatment or immune relatedness by the investigator and are based on a list of terms provided by the sponsor.

ASCO Gastrointestina 2022 Cancers Symposium

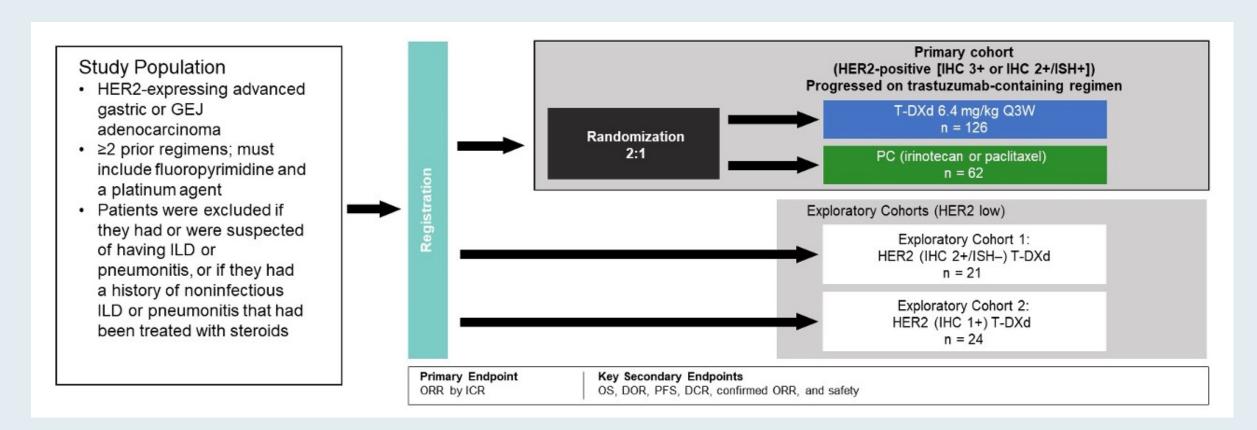
Trastuzumab Deruxtecan (T-DXd; DS-8201) in Patients With HER2-Positive Advanced Gastric or Gastroesophageal Junction (GEJ) Adenocarcinoma: Final Overall Survival (OS) Results From a Randomized, Multicenter, Open-Label, Phase 2 Study (DESTINY-Gastric01)

Kensei Yamaguchi

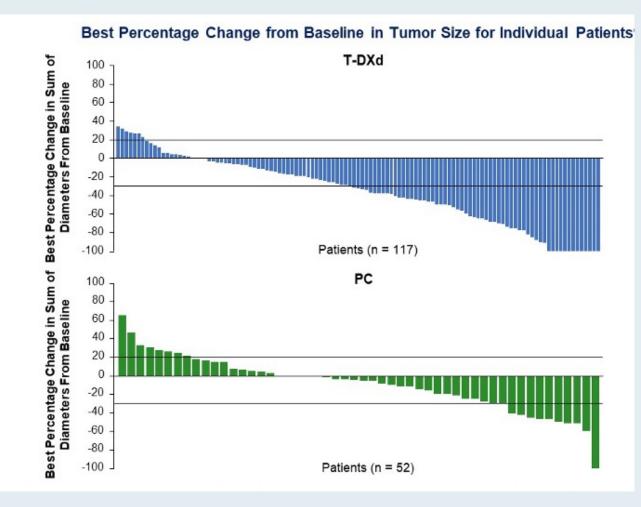
The Cancer Institute Hospital of JFCR, Tokyo, Japan

ON BEHALF OF THE DESTINY-GASTRICO1 INVESTIGATORS

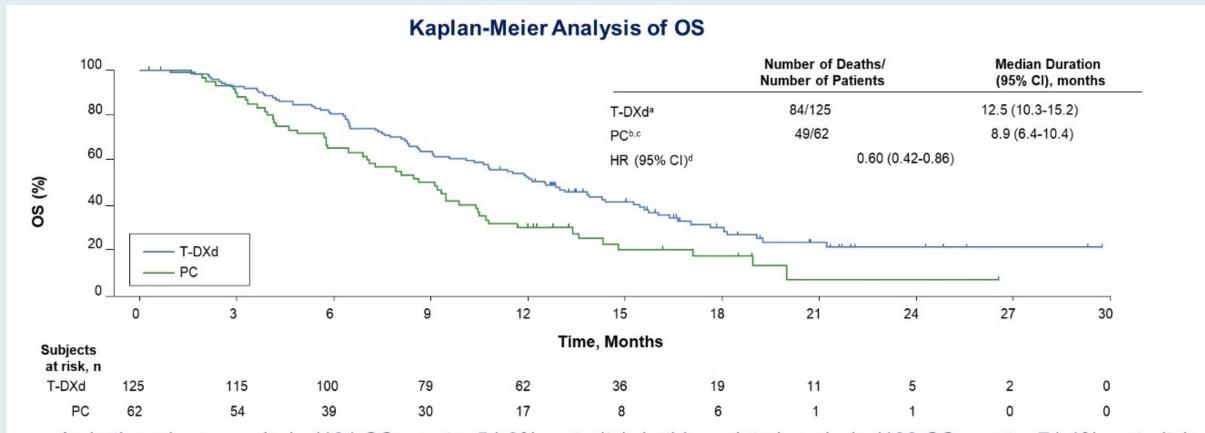
Additional authors: Yung-Jue Bang, Satoru Iwasa, Naotoshi Sugimoto, Min-Hee Ryu, Daisuke Sakai, Hyun Cheol Chung, Hisato Kawakami, Hiroshi Yabusaki, Jeeyun Lee, Kaku Saito, Yoshinori Kawaguchi, Takahiro Kamio, Akihito Kojima, Masahiro Sugihara, Kohei Shitara



DESTINY-Gastric01 Randomized, Phase II Study Design



PC = physician's choice


DESTINY-Gastric01: Antitumor Activity

	T-DXd n = 119	PC Overall n = 56
ORR (CR + PR) by ICR, n (%)a	61 (51.3)	8 (14.3)
	95% CI, 41.9-60.5	95% CI, 6.4-26.2
		0.0001 ^b
CR	11 (9.2)	0
PR	50 (42.0)	8 (14.3)
SD	42 (35.3)	27 (48.2)
PD	14 (11.8)	17 (30.4)
Not evaluable	2 (1.7)	4 (7.1)
Confirmed ORR (CR + PR) by ICR, n	50 (42.0)	7 (12.5)
(%) ^a	95% CI, 33.0-51.4	95% CI, 5.2-24.1
CR	10 (8.4)	0
PR	40° (33.6)	7 (12.5)
SD	52 (43.7)	28 (50.0)
PD	14 (11.8)	17 (30.4)
Not evaluable	3 (2.5)	4 (7.1)
Confirmed DCR (CR + PR + SD),	102 (85.7)	35 (62.5)
n (%) ^a	95% CI, 78.1-91.5	95% CI, 48.5-75.1
Confirmed DOR,	12.5	3.9
median, months	95% CI, 5.6-NE	95% CI, 3.0-4.9
TTR, median, months	1.5	1.6
	95% CI, 1.4-1.7	95% CI, 1.3-1.7

DESTINY-Gastric01: Final Overall Survival (OS)

As in the primary analysis (101 OS events; 54.0% maturity), in this updated analysis (133 OS events; 71.1% maturity), T-DXd showed superior antitumor activity compared to PC

DESTINY-Gastric01: Select Adverse Events

	T-D (n =	Xd 125)	PC overall (n = 62)			
Adverse event	Any grade	Grade ≥3	Any grade	Grade ≥3		
Neutrophil count decrease	65%	51%	36%	24%		
Nausea	63%	6%	47%	2%		
Decreased appetite	61%	17%	45%	13%		
Anemia	58%	38%	31%	23%		
Platelet count decrease	40%	11%	7%	3%		
WBC count decrease	38%	21%	36%	11%		
Lymphocyte count decrease	23%	12%	3%	2%		

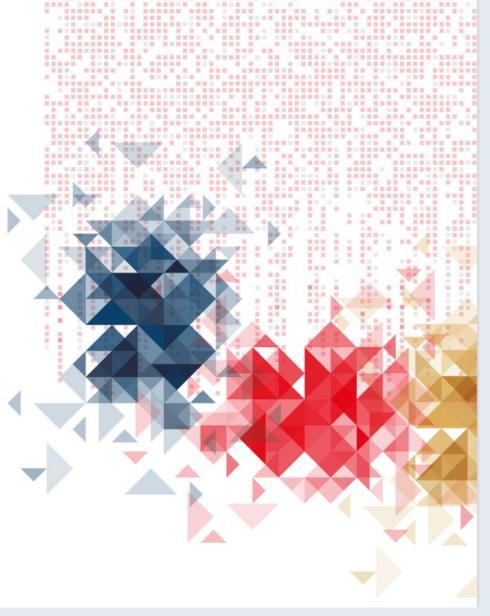
16 patients (13%) had T-DXd-related interstitial lung disease/pneumonitis

- 13/16 were Grade 1 or 2
- Median time to first onset: 102.5 days

DESTINY-Gastric01: Exploratory Biomarker Analysis of OS in HER2-Positive or HER2-Low Advanced Gastric or GEJ Cancer

Exploratory biomarker in primary HER2-positive cohort	Median OS
Plasma HER2 amplification Not amplified Amplified	12.1 mo 13.0 mo
Plasma HER2 copy number* Above 6.0 Below 6.0	21.2 mo 12.0 mo
Exploratory biomarker in exploratory HER2-low cohort	
Plasma HER2 extracellular domain† Above 11.6 ng/mL Below 11.6 ng/mL	10.1 mo 4.3 mo

^{*}An exploratory cutoff (copy number = 6.0) value was determined, which minimized p-value, estimated by log-rank test. Below 6.0 includes patients without amplification; † An exploratory cutoff value of 11.6 ng/mL in exploratory cohorts was determined, which minimized p-value, estimated by log-rank test.



Primary Analysis of a Phase 2 Single-Arm
Trial of Trastuzumab Deruxtecan (T-DXd) in
Western Patients With HER2-Positive
(HER2+) Unresectable or Metastatic Gastric
or Gastroesophageal Junction (GEJ)
Cancer Who Progressed on or After a
Trastuzumab-containing Regimen

Eric Van Cutsem, MD³ Maria di Bartolomeo, Elizabeth Smyth, Ian Chau, Haeseong Park, Salvatore Siena, Sara Lonardi, Zev A. Wainberg, Jaffer Ajani, Joseph Chao, Jabed Seraj, Yoshinori Kawaguchi, Amy Qin, Jasmeet Singh, Gerold Meinhardt, Geoffrey Ku

On behalf of the DESTINY-Gastric02 investigators

^aUniversity Hospital Gasthuisberg, Leuven and KU Leuven, Leuven, Belgium

DESTINY-Gastric02 Phase II Study Design

Key eligibility criteria

- Pathologically documented, unresectable or metastatic gastric or GEJ cancer
- Centrally confirmed HER2
 positive disease (defined as IHC
 3+ or IHC 2+/ISH+) on biopsy
 after progression on first-line
 trastuzumab-containing regimen
- ECOG PS 0 or 1

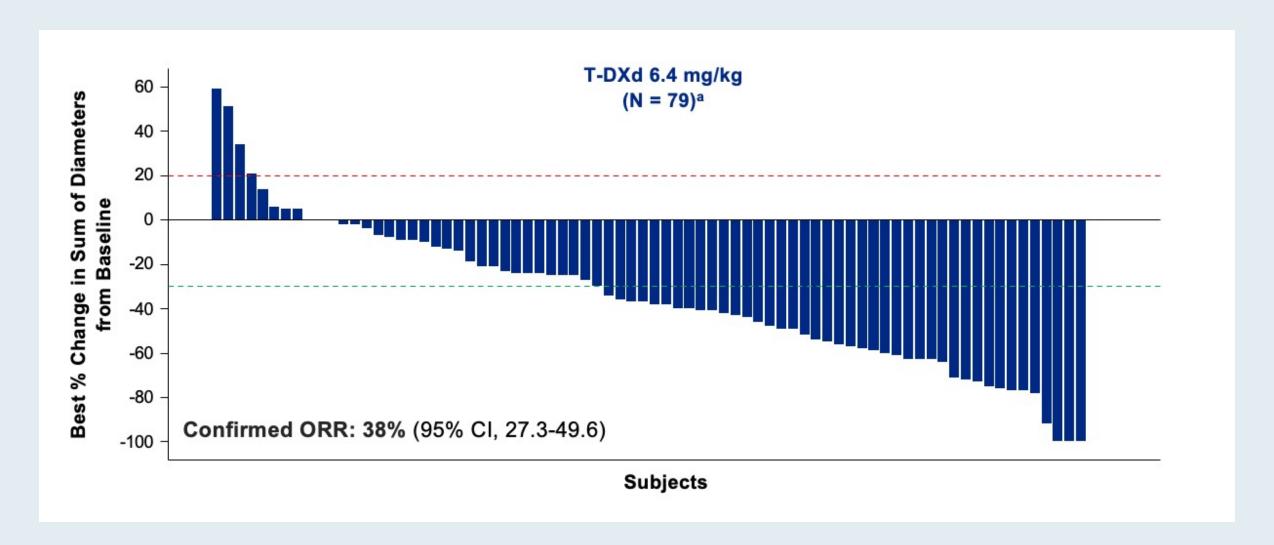
- Primary endpointConfirmed ORR by
 - ICR

Secondary endpoints^b

- PFS by ICR
- OS
- DOR by ICR
- Safety and tolerability

 DESTINY-Gastric02 is the first study focused only on second-line T-DXd monotherapy in Western patients with HER2+ gastric/GEJ cancer who have progressed on a trastuzumab-containing regimen

T-DXd


6.4 mg/kg Q3W

 $N = 79^a$

- It is the follow-on study to DESTINY-Gastric01, which evaluated T-DXd third-line or later in Asian patients¹
- Patients were enrolled in Europe (Belgium, Great Britain, Italy, Spain) and the United States (data cutoff: April 9, 2021)

DESTINY-Gastric02: Best Percent Change in Tumor Size from Baseline

DESTINY-Gastric02: Safety Summary

n (%)	Patients (N = 79)
Any drug-related TEAE	74 (93.7)
Drug-related TEAE Grade ≥3	21 (26.6)
Serious drug-related TEAE	8 (10.1)
Drug-related TEAE associated with discontinuation	7 (8.9)
Drug-related TEAE associated with dose reduction	15 (19.0)
Drug-related TEAE associated with an outcome of death	1 (1.3)

- Median treatment duration was 4.3 months (range, 0.7-15.9 months)
- The most common drug-related TEAEs associated with treatment discontinuation were investigatorreported pneumonitis (3.8%) and ILD (2.5%)
- The most common drug-related TEAEs associated with dose reduction were nausea (7.6%) and decreased neutrophil count (5.1%)

DESTINY-Gastric02: Treatment-Emergent Adverse Events (TEAEs)

	Patients (N = 79)				
n (%)	Any Grade	Grade ≥3			
Patients with ≥1 drug-related TEAEs	74 (93.7)	21 (26.6)			
Drug-related TEAEs with ≥15% incidend	e in all patients				
Nausea	46 (58.2)	3 (3.8)			
Fatigue	29 (36.7)	3 (3.8)			
Vomiting	26 (32.9)	1 (1.3)			
Diarrhea	22 (27.8)	1 (1.3)			
Decreased appetite	18 (22.8)	1 (1.3)			
Alopecia	17 (21.5)	0			
Anemia	15 (19.0)	6 (7.6)			
Decreased platelet count	13 (16.5)	1 (1.3)			
Decreased neutrophil count	12 (15.2)	6 (7.6)			

DESTINY-Gastric02: Adjudicated Drug-Related Interstitial Lung Disease (ILD)/Pneumonitis

	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
n (%)	2 (2.5)	3 (3.8)	0	0	1 (1.3)	6 (7.6)

- Median time to onset of adjudicated drug-related ILD/pneumonitis was 80.5 days (range, 53-85 days), with a median duration of 38.0 days (range, 15-142 days)
- 83% of adjudicated drug-related ILD/pneumonitis cases were low grade (Grade 1-2)

Novel Targeted Agents

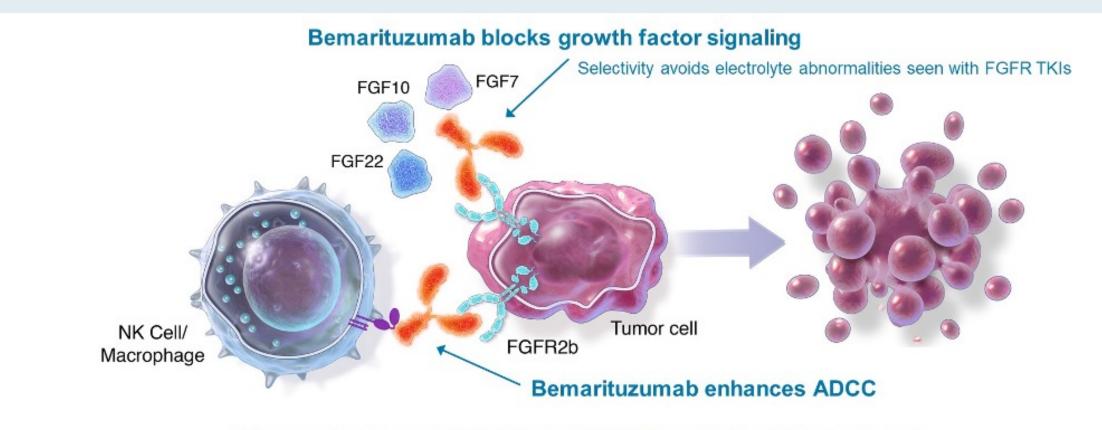
FDA Grants Bemarituzumab Breakthrough Therapy Designation as First-Line Treatment for Gastric and Gastroesophageal Cancers that Overexpress FGFR2b

Press Release – April 19, 2021

"The US Food and Drug Administration (FDA) granted Breakthrough Therapy Designation for investigational bemarituzumab as first-line treatment for patients with fibroblast growth factor receptor 2b (FGFR2b) overexpressing and human epidermal growth factor receptor 2 (HER2)-negative metastatic and locally advanced gastric and gastroesophageal (GEJ) adenocarcinoma in combination with modified FOLFOX6 (fluoropyrimidine, leucovorin, and oxaliplatin), based on an FDA-approved companion diagnostic assay showing at least 10% of tumor cells overexpressing FGFR2b."

This designation is supported by results from the Phase 2 FIGHT trial.

FIGHT: A RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED, PHASE 2 STUDY OF BEMARITUZUMAB (BEMA) COMBINED WITH MODIFIED FOLFOX6 IN 1L FGFR2B+ADVANCED GASTRIC/GASTROESOPHAGEAL JUNCTION ADENOCARCINOMA (GC) (NCT03694522)


Presenter: Daniel Catenacci, MD University of Chicago

Authors: Catenacci DV¹, Kang YK², Saeed A³, Yamaguchi K⁴, Qin S⁵, Lee KW⁶, Kim IH⁷, Oh SC⁸, Li J⁹, Turk HM¹⁰, Teixeira AC¹¹, Borg C¹², Hitre E¹³, Udrea AA¹⁴, Cardellino GG¹⁵, Guardeño Sanchez R¹⁶, Mitra S¹⁷, Yang Y¹⁷, Enzinger PC¹⁸, Wainberg ZA¹⁹

¹University of Chicago, Chicago, USA; ²Asan Medical Center, Seoul, South Korea; ³Kansas University Cancer Center, Westwood, KS, USA; ⁴The Cancer Institute Hospital of JFCR, Koto-Ku, Tokyo, Japan; ⁵81 Hospital Nanjing University of Chinese Medicine, Nanjing, China; ⁶Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, South Korea; ⁷The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, South Korea; ⁸Korea University Guro Hospital, Seoul, South Korea; ⁹Shanghai East Hospital, Shanghai, China; ¹¹Department of Medical Oncology, Bezmialem Vakif University, School of Medicine, Istanbul, Turkey; ¹¹Hospital Senhora Da Oliveira, Guimarães, Portugal; ¹²Centre Hospitalier Régional Universitaire de Besançon, Besançon France; ¹³National Institute of Oncology, Budapest, Hungary; ¹⁴SC Medisprof SRL, Cluj-Napoca, Romania; ¹⁵Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy; ¹⁶Institut Català d'Oncologia, Girona, Spain; ¹¬FivePrime Therapeutics, Inc., South San Francisco, USA; ¹⁶Dana Farber Cancer Institute, Boston, USA; ¹⁶University of California, Los Angeles, USA

Bemarituzumab Mechanism of Action

18% overall response rate in late-line FGFR2b+ gastroesophageal cancer1

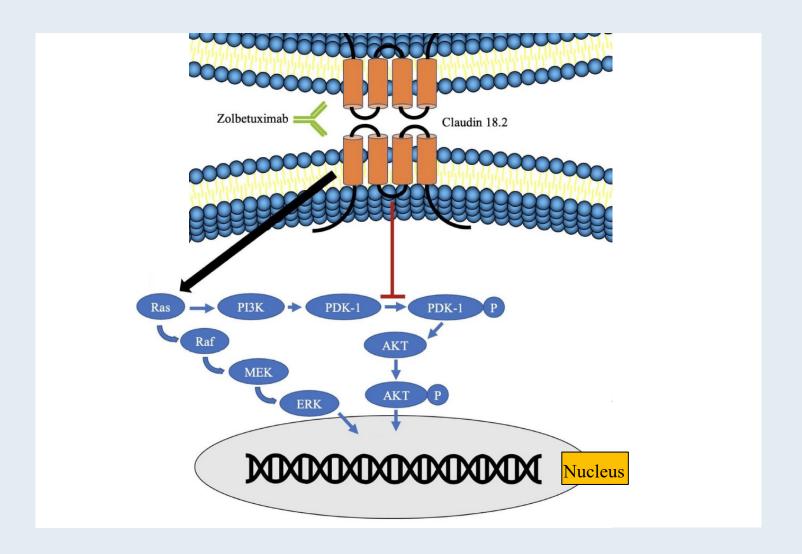
ADCC, antibody-dependent cell-mediated cytotoxicity; FGF, fibroblast growth factor; IgG1, Immunoglobulin G1; NK, natural killer; TKIs, tyrosine kinase inhibitors.

Catenacci D, et al. J Clin Oncol. 2020.

FIGHT: Efficacy of First-Line Bemarituzumab with Modified FOLFOX6 for Gastric/GEJ Adenocarcinoma

Subgroup	Median PFS/OS (months) Response rate	HR (95% CI) Difference in ORR (95% CI)	0_	0.25	0.5	0.75	1	1.25	1.5	1.75	
Overall*	Bema: 9.5 Placebo: 7.4	0.68 (0.44, 1.04)		_			7				
IHC 2+ or 3+ ≥5% [†]	Bema: 10.2 Placebo: 7.3	0.54 (0.33, 0.87)		_							
IHC 2+ or 3+ ≥10% [‡]	Bema: 14.1 Placebo: 7.3	0.44 (0.25, 0.77)					4				
Overall	Bema: NR Placebo: 12.9	0.58 (0.35, 0.95)	ema	_	_						
IHC 2+ or 3+ ≥5%	Bema: NR Placebo: 12.5	0.52 (0.30, 0.91)		<u> </u>	_						
IHC 2+ or 3+ ≥10%	Bema: NR Placebo: 11.1	0.41 (0.22, 0.79)	Щ.	_		•					
Overall	Bema: 36 (46.8%) Placebo: 26 (33.3%)	-13.1%§ (-29.0%, 2.8%)			_		<u> </u>				
IHC 2+ or 3+ ≥5%	Bema: 30 (51.7%) Placebo: 22 (36.7%)	-15.1%§ (-32.8%, 2.7%)	-		-		_				
IHC 2+ or 3+ ≥10%	Bema: 24 (54.5%) Placebo: 19 (36.5%)	-18.0%§ (-37.7%, 1.7%)			-	1		1		-	0.
	Overall* IHC 2+ or $3+ \ge 5\%^{\dagger}$ IHC 2+ or $3+ \ge 10\%^{\ddagger}$ Overall IHC 2+ or $3+ \ge 5\%$ IHC 2+ or $3+ \ge 10\%$ Overall IHC 2+ or $3+ \ge 5\%$	Subgroup (months) Response rate Overall* Bema: 9.5 Placebo: 7.4 Placebo: 7.4 IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 Placebo: 7.3 Overall Bema: NR Placebo: 12.9 Placebo: 12.9 IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 Placebo: 11.1 Overall Bema: 36 (46.8%) Placebo: 26 (33.3%) Placebo: 26 (33.3%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) Placebo: 22 (36.7%)	Subgroup (months) Difference in ORR (95% CI) Overall* Bema: 9.5 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: 14.1 Placebo: 7.3 0.44 (0.25, 0.77) Overall Bema: NR Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 0.52 (0.30, 0.91) IHC 2+ or 3+ ≥10% Bema: NR Placebo: 11.1 0.41 (0.22, 0.79) Overall Bema: 36 (46.8%) Placebo: 26 (33.3%) -13.1%§ (-29.0%, 2.8%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) IHC 2+ or 3+ ≥10% Bema: 24 (54.5%) -18.0%§ (-37.7%, 1.7%)	Subgroup (months) Difference in ORR (95% CI) Overall* Bema: 9.5 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: 14.1 Placebo: 7.3 0.44 (0.25, 0.77) Overall Bema: NR Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 0.52 (0.30, 0.91) IHC 2+ or 3+ ≥10% Bema: NR Placebo: 11.1 0.41 (0.22, 0.79) Overall Bema: 36 (46.8%) Placebo: 26 (33.3%) -13.1%§ (-29.0%, 2.8%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) IHC 2+ or 3+ ≥10% Bema: 24 (54.5%) -18.0%§ (-37.7%, 1.7%)	Subgroup (months) Difference in ORR (95% CI) Overall* Bema: 9.5 Placebo: 7.4 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 Placebo: 7.3 Placebo: 7.3 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: NR Placebo: 12.9 Placebo: 12.9 Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 Placebo: 12.5 0.41 (0.22, 0.79) IHC 2+ or 3+ ≥10% Bema: 36 (46.8%) Placebo: 26 (33.3%) Placebo: 26 (33.3%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) Placebo: 19 (36.5%) Placebo: 19 (36.5%)	Subgroup (months) Difference in ORR Response rate (95% CI) Overall* Bema: 9.5 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: 14.1 Placebo: 7.3 0.44 (0.25, 0.77) Overall Bema: NR Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 0.52 (0.30, 0.91) IHC 2+ or 3+ ≥10% Bema: NR Placebo: 26 (33.3%) 0.41 (0.22, 0.79) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 19 (36.5%) -18.0%§ (-37.7%, 1.7%)	Subgroup (months) Response rate Difference in ORR (95% CI) Overall* Bema: 9.5 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: 14.1 Placebo: 7.3 0.44 (0.25, 0.77) Overall Bema: NR Placebo: 12.9 Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 Placebo: 12.5 0.52 (0.30, 0.91) IHC 2+ or 3+ ≥10% Bema: 36 (46.8%) Placebo: 11.1 Placebo: 11.1 Placebo: 26 (33.3%) -13.1%§ (-29.0%, 2.8%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) Placebo: 19 (36.5%) IHC 2+ or 3+ ≥10% Bema: 24 (54.5%) Placebo: 19 (36.5%) -18.0%§ (-37.7%, 1.7%)	Subgroup (months) Response rate Difference in ORR (95% CI) Overall* Bema: 9.5 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: 14.1 Placebo: 7.3 0.44 (0.25, 0.77) Overall Bema: NR Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 0.52 (0.30, 0.91) IHC 2+ or 3+ ≥10% Bema: NR Placebo: 11.1 0.41 (0.22, 0.79) Overall Bema: 36 (46.8%) Placebo: 26 (33.3%) -13.1%§ (-29.0%, 2.8%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) IHC 2+ or 3+ ≥10% Bema: 24 (54.5%) Placebo: 19 (36.5%) -18.0%§ (-37.7%, 1.7%)	Subgroup (months) Response rate Difference in ORR (95% CI) Overall* Bema: 9.5 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: 14.1 Placebo: 7.3 0.44 (0.25, 0.77) Overall Bema: NR Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 0.52 (0.30, 0.91) IHC 2+ or 3+ ≥10% Bema: 36 (46.8%) Placebo: 26 (33.3%) -13.1%§ (-29.0%, 2.8%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) IHC 2+ or 3+ ≥10% Bema: 24 (54.5%) Placebo: 19 (36.5%) -18.0%§ (-37.7%, 1.7%)	Subgroup (months) Response rate Difference in ORR (95% CI) Overall* Bema: 9.5 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%1 Bema: 10.2 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: 14.1 Placebo: 7.3 0.44 (0.25, 0.77) Overall Bema: NR Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 0.52 (0.30, 0.91) IHC 2+ or 3+ ≥10% Bema: NR Placebo: 11.1 0.41 (0.22, 0.79) Overall Bema: 36 (46.8%) Placebo: 22 (36.7%) -13.1%§ (-29.0%, 2.8%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) IHC 2+ or 3+ ≥10% Bema: 24 (54.5%) Placebo: 19 (36.5%) -18.0%§ (-37.7%, 1.7%)	Subgroup (months) Response rate Difference in ORR (95% CI) Overall* Bema: 9.5 Placebo: 7.4 0.68 (0.44, 1.04) IHC 2+ or 3+ ≥5%† Bema: 10.2 Placebo: 7.3 0.54 (0.33, 0.87) IHC 2+ or 3+ ≥10%‡ Bema: 14.1 Placebo: 7.3 0.44 (0.25, 0.77) Overall Bema: NR Placebo: 12.9 0.58 (0.35, 0.95) IHC 2+ or 3+ ≥5% Bema: NR Placebo: 12.5 0.52 (0.30, 0.91) IHC 2+ or 3+ ≥10% Bema: NR Placebo: 11.1 0.41 (0.22, 0.79) Overall Bema: 36 (46.8%) Placebo: 26 (33.3%) -13.1%§ (-29.0%, 2.8%) IHC 2+ or 3+ ≥5% Bema: 30 (51.7%) Placebo: 22 (36.7%) -15.1%§ (-32.8%, 2.7%) IHC 2+ or 3+ ≥10% Bema: 24 (54.5%) Placebo: 19 (36.5%) -18.0%§ (-37.7%, 1.7%)

Median OS was reached in the overall population with longer follow-up – 5.7-mo improvement


FIGHT: Selected Treatment-Related Adverse Event Summary

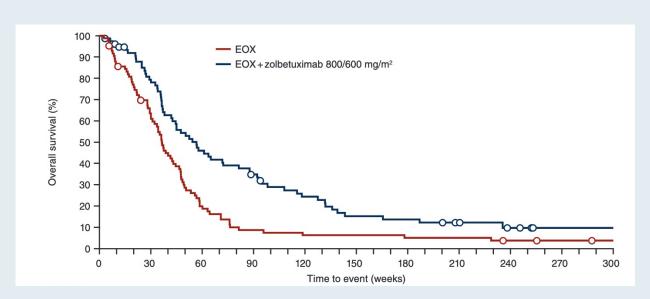
Selected AE	Any	Grade	Gra	de ≥3
(Preferred term)	Bema (N = 76)	Placebo (N = 77)	Bema (N = 76)	Placebo (N = 77)
Total Events	76 (100.0%)	76 (98.7%)	63 (82.9%)	57 (74.0%)
Nausea	36 (47.4%)	41 (53.2%)	0	3 (3.9%)
Vomiting	22 (28.9%)	24 (31.2%)	2 (2.6%)	2 (2.6%)
Diarrhea	31 (40.8%)	24 (31.2%)	2 (2.6%)	1 (1.3%)
Stomatitis	24 (31.6%)	10 (13.0%)	7 (9.2%)	1 (1.3%)
Peripheral sensory neuropathy	15 (19.7%)	15 (19.5%)	4 (5.3%)	3 (3.9%)
Neutrophil count decreased	31 (40.8%)	33 (42.9%)	23 (30.3%)	27 (35.1%)
Platelet count decreased	14 (18.4%)	21 (27.3%)	1 (1.3%)	0
Aspartate aminotransferase increased	23 (30.3%)	15 (19.5%)	4 (5.3%)	2 (2.6%)
Alanine aminotransferase increased	22 (28.9%)	11 (14.3%)	2 (2.6%)	1 (1.3%)
Dry eye	20 (26.3%)	5 (6.5%)	2 (2.6%)	0

AE, adverse event.

Zolbetuximab Mechanism of Action

Ann Oncol 2021;32(5):609-19.

ORIGINAL ARTICLE

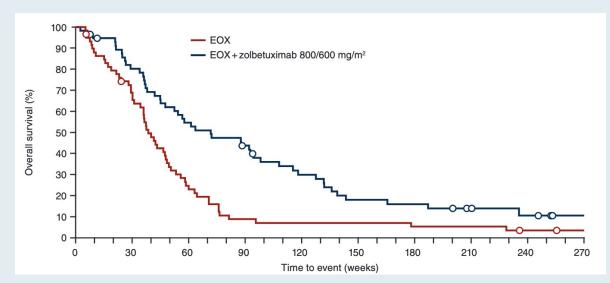

FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma

```
U. Sahin<sup>1,2,3</sup>, Ö. Türeci<sup>3,4</sup>, G. Manikhas<sup>5</sup>, F. Lordick<sup>6</sup>, A. Rusyn<sup>7</sup>, I. Vynnychenko<sup>8</sup>, A. Dudov<sup>9</sup>, I. Bazin<sup>10</sup>, I. Bondarenko<sup>11</sup>, B. Melichar<sup>12</sup>, K. Dhaene<sup>13</sup>, K. Wiechen<sup>14</sup>, C. Huber<sup>1,3,4</sup>, D. Maurus<sup>15</sup>, A. Arozullah<sup>16</sup>, J. W. Park<sup>16</sup>, M. Schuler<sup>17†</sup> & S.-E. Al-Batran<sup>18*†</sup>
```


FAST: Overall Survival with Zolbetuximab in Combination with Chemotherapy for Advanced CLDN18.2-Positive Gastric and Gastroesophageal Adenocarcinoma

Overall population

Median OS


EOX (n = 84): 8.3 months

EOX + zolbetuximab (n = 77): 13.0 months

HR (p-value): 0.55 (<0.0005)

EOX = epirubicin/oxaliplatin/capecitabine

Patients with ≥70% CLDN18.2-positive tumor cells

Median OS

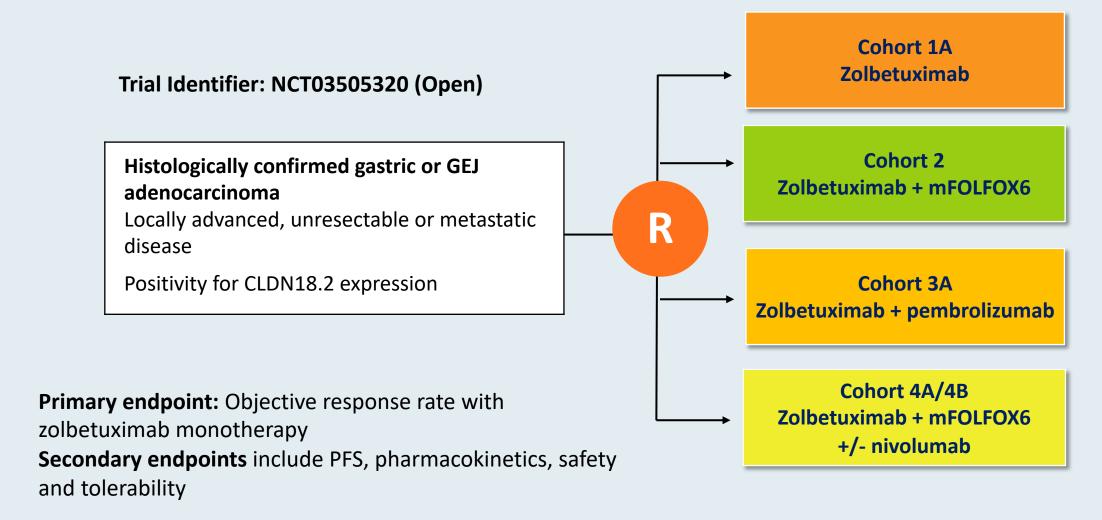
EOX (n = 59): 8.9 months

EOX + zolbetuximab (n = 57): 16.5 months

HR (*p*-value): 0.50 (<0.0005)

FAST: Select Treatment-Emergent Adverse Events

	EOX (r	n = 84)	EOX + zolbetuximab (n = 77)				
Adverse event	Any grade Grade ≥3		Any grade	Grade ≥3			
Nausea	76.2%	4.8%	81.8%	6.5%			
Vomiting	54.8%	3.6%	67.5%	10.4%			
Anemia	35.7%	7.1%	45.5%	11.7%			
Neutropenia	34.5%	21.4%	44.2%	32.5%			
Weight loss	31.0%	3.6%	32.5%	11.7%			
Fatigue	20.2%	3.6%	31.2%	6.5%			
Leukopenia	16.7%	6.0%	15.6%	7.8%			



Ongoing Phase III Trials of Zolbetuximab in Combination with Chemotherapy as First-Line Therapy for Gastric or GEJ Adenocarcinoma

Trial identifier	N	Setting	Study arms
GLOW (NCT03653507)	507	 Locally advanced unresectable or metastatic CLDN18.2-positive HER2-negative 	Zolbetuximab + CAPOXPlacebo + CAPOX
SPOTLIGHT (NCT03504397)	550	 Locally advanced unresectable or metastatic CLDN18.2-positive HER2-negative 	Zolbetuximab + mFOLFOX6Placebo + mFOLFOX6

ILUSTRO: Phase II Study of Zolbetuximab Alone or in Combination with Chemotherapy, Immunotherapy or Both for Metastatic or Locally Advanced Unresectable Gastric or GEJ Adenocarcinoma

Exciting CME Events in Chicago You Do Not Want to Miss

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Acute Myeloid Leukemia and Myelodysplastic Syndromes

Friday, June 3, 2022 11:45 AM – 12:45 PM CT (12:45 PM – 1:45 AM ET)

Faculty

Courtney D DiNardo, MD, MSCE Michael R Savona, MD Eunice S Wang, MD

Lung Cancer

Friday, June 3, 2022 6:30 PM – 9:00 PM CT (7:30 PM – 10:00 PM ET)

Faculty

Justin F Gainor, MD
Corey J Langer, MD
Luis Paz-Ares, MD, PhD
Heather Wakelee, MD
Jared Weiss, MD
Helena Yu, MD

Prostate Cancer

Saturday, June 4, 2022 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Andrew J Armstrong, MD, ScM Alan H Bryce, MD Alicia K Morgans, MD, MPH

Gastrointestinal Cancers

Saturday, June 4, 2022 7:00 PM – 9:30 PM CT (8:00 PM – 10:30 PM ET)

Faculty

Tanios Bekaii-Saab, MD Kristen K Ciombor, MD, MSCI Eileen M O'Reilly, MD Philip A Philip, MD, PhD, FRCP John Strickler, MD Eric Van Cutsem, MD, PhD

Exciting CME Events in Chicago You Do Not Want to Miss

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Ovarian Cancer

Sunday, June 5, 2022 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Antonio González-Martín, MD, PhD Joyce F Liu, MD, MPH Kathleen N Moore, MD, MS

Chronic Lymphocytic Leukemia and Non-Hodgkin Lymphoma

Sunday, June 5, 2022

7:00 PM - 9:30 PM CT (8:00 PM - 10:30 PM ET)

Faculty

Ian W Flinn, MD, PhD
Brian T Hill, MD, PhD
John P Leonard, MD
Matthew Lunning, DO
Laurie H Sehn, MD, MPH
Mitchell R Smith, MD, PhD

Urothelial Bladder Cancer

Monday, June 6, 2022

6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)

Faculty

Yohann Loriot, MD, PhD Elizabeth R Plimack, MD, MS Jonathan E Rosenberg, MD

Breast Cancer

Monday, June 6, 2022

7:00 PM - 9:30 PM CT (8:00 PM - 10:30 PM ET)

Faculty

Javier Cortés, MD, PhD
Matthew P Goetz, MD
Erika Hamilton, MD
Ian E Krop, MD, PhD
Hope S Rugo, MD
Sara M Tolaney, MD, MPH

Exciting CME Events in Chicago You Do Not Want to Miss

A CME Hybrid Symposium Series Held in Conjunction with the 2022 ASCO Annual Meeting

Multiple Myeloma

Tuesday, June 7, 2022 6:45 AM – 7:45 AM CT (7:45 AM – 8:45 AM ET)

Faculty

Ajai Chari, MD Elizabeth O'Donnell, MD Robert Z Orlowski, MD, PhD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

