Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Rebecca L Olin, MD, MSCE
Associate Professor of Medicine
Division of Hematology/Oncology
Department of Medicine
University of California, San Francisco
San Francisco, California

Commercial Support

This activity is supported by educational grants from Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, and Servier Pharmaceuticals LLC.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Mersana Therapeutics Inc, Natera Inc, Novartis, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

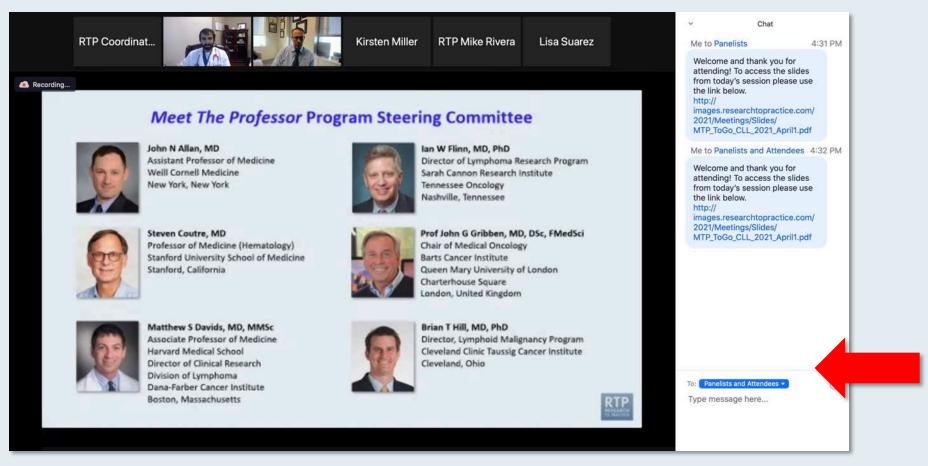
Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Olin — Disclosures

Advisory Committee	Astellas
Consulting Agreements	AbbVie Inc, Actinium Pharmaceuticals Inc, Amgen Inc

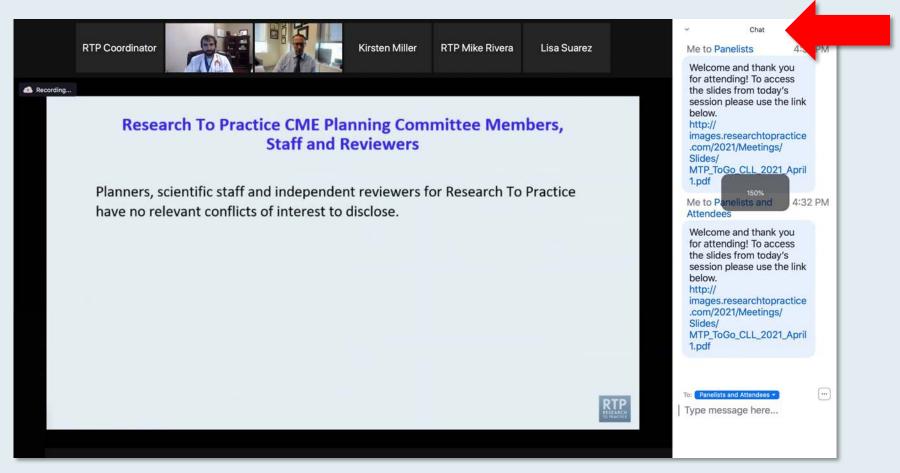
We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY

WITH DR NEIL LOVE

Key Presentations on Acute Myeloid Leukemia and Myelodysplastic Syndromes from ASH 2021

DR ANDREW BRUNNER

MASSACHUSETTS GENERAL HOSPITAL CANCER CENTER

Meet The ProfessorCurrent and Future Management of Myelofibrosis

Thursday, March 10, 2022 5:00 PM - 6:00 PM ET

Faculty
Srdan Verstovsek, MD, PhD

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Tuesday, March 15, 2022 5:00 PM - 6:00 PM ET

Faculty
Sonali M Smith, MD

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

Thursday, March 17, 2022 5:00 PM – 6:00 PM ET

Faculty

Peter Hillmen, MB ChB, PhD

Data + Perspectives: Clinical Investigators Discuss the Current and Future Management of Ovarian Cancer

Saturday, March 19, 2022 2:30 PM – 4:00 PM ET

Faculty

Mansoor Raza Mirza, MD Kathleen N Moore, MD, MS David M O'Malley, MD

Moderator Robert L Coleman, MD

Meet The Professor

Current and Future Role of Immunotherapy in the Management of Lung Cancer

Wednesday, March 30, 2022 5:00 PM - 6:00 PM ET

Faculty
Sarah B Goldberg, MD, MPH

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

Thursday, March 31, 2022 5:00 PM - 6:00 PM ET

Faculty

Kerry Rogers, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Rebecca L Olin, MD, MSCE
Associate Professor of Medicine
Division of Hematology/Oncology
Department of Medicine
University of California, San Francisco
San Francisco, California

Meet The Professor Program Participating Faculty

Naval Daver, MD
Director, Leukemia Research Alliance Program
Associate Professor
Department of Leukemia
The University of Texas MD Anderson Cancer Center
Houston, Texas

Rebecca L Olin, MD, MSCE
Associate Professor of Medicine
Division of Hematology/Oncology
Department of Medicine
University of California, San Francisco
San Francisco, California

Amir Fathi, MD
Director, Leukemia Program
Massachusetts General Hospital
Associate Professor of Medicine
Harvard Medical School
Boston, Massachusetts

Keith W Pratz, MD
Director of Leukemia Program
Hospital of the University of Pennsylvania
Associate Professor of Medicine
University of Pennsylvania
Philadelphia, Pennsylvania

Meet The Professor Program Participating Faculty

Wendy Stock, MD
Anjuli Seth Nayak Professor of
Leukemia Research
University of Chicago Medicine and
Comprehensive Cancer Center
Chicago, Illinois

Moderator Neil Love, MD Research To Practice Miami, Florida

Andrew H Wei, MBBS, PhD
Professor, Department of Haematology
Alfred Hospital
Monash University
Walter and Eliza Hall Institute of Medical Research
Melbourne, Australia

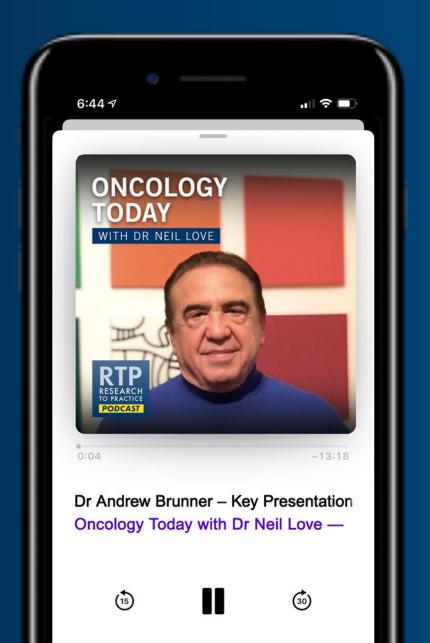
We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

ONCOLOGY TODAY

WITH DR NEIL LOVE

Key Presentations on Acute Myeloid Leukemia and Myelodysplastic Syndromes from ASH 2021


DR ANDREW BRUNNER

MASSACHUSETTS GENERAL HOSPITAL CANCER CENTER

Meet The ProfessorCurrent and Future Management of Myelofibrosis

Thursday, March 10, 2022 5:00 PM - 6:00 PM ET

Faculty
Srdan Verstovsek, MD, PhD

Meet The Professor Optimizing the Clinical Management of Hodgkin and Non-Hodgkin Lymphomas

Tuesday, March 15, 2022 5:00 PM - 6:00 PM ET

Faculty
Sonali M Smith, MD

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

Thursday, March 17, 2022 5:00 PM – 6:00 PM ET

Faculty

Peter Hillmen, MB ChB, PhD

Data + Perspectives: Clinical Investigators Discuss the Current and Future Management of Ovarian Cancer

Saturday, March 19, 2022 2:30 PM – 4:00 PM ET

Faculty

Mansoor Raza Mirza, MD Kathleen N Moore, MD, MS David M O'Malley, MD

Moderator Robert L Coleman, MD

Meet The Professor

Current and Future Role of Immunotherapy in the Management of Lung Cancer

Wednesday, March 30, 2022 5:00 PM - 6:00 PM ET

Faculty
Sarah B Goldberg, MD, MPH

Meet The Professor Current and Future Management of Chronic Lymphocytic Leukemia

Thursday, March 31, 2022 5:00 PM – 6:00 PM ET

Faculty
Kerry Rogers, MD

Meet The Professor Optimizing the Management of Acute Myeloid Leukemia

Rebecca L Olin, MD, MSCE
Associate Professor of Medicine
Division of Hematology/Oncology
Department of Medicine
University of California, San Francisco
San Francisco, California

Commercial Support

This activity is supported by educational grants from Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, and Servier Pharmaceuticals LLC.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Olin — Disclosures

Advisory Committee	Astellas
Consulting Agreements	AbbVie Inc, Actinium Pharmaceuticals Inc, Amgen Inc

Bhavana (Tina) Bhatnagar, DOWest Virginia University Cancer
Institute
Wheeling, West Virginia

Erik J Rupard, MD

Drexel University College of Medicine
West Reading, Pennsylvania

Rachel J Cook, MD OHSU Portland, Oregon

Prashant Sharma, MDIntermountain Healthcare
Salt Lake City, Utah

Amany R Keruakous, MD, MS
Georgia Cancer Center
Augusta University
Augusta, Georgia

Raman Sood, MD Brooks Memorial Hospital Dunkirk, New York

Jeanne Palmer, MD Mayo Clinic Phoenix, Arizona

Agenda

Introduction: Journal Club with Dr Olin – Evaluation of the Older Patient with AML

Module 1: Case Presentations

- Dr Sood: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome
- Dr Keruakous: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations
- Dr Sharma: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation
- Dr Cook: A 57-year-old man with AML receives 7 + 3 induction prior to discovery of complex cytogenetics

Module 2: ASH 2021 Review – Part 1

Module 3: Case Presentations

- Dr Rupard: A 71-year-old man with relapsed AML and an IDH2 mutation
- Dr Bhatnagar: A 58-year-old man with therapy-related AML and a KMT2A rearrangement
- Dr Palmer: A 78-year-old man with AML and a TP53 mutation
- Dr Keruakous: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%

Module 4: ASH 2021 Review – Part 2

Module 5: Faculty Survey

Module 6: Appendix: Key Recent Data Sets

Agenda

Introduction: Journal Club with Dr Olin – Evaluation of the Older Patient with AML

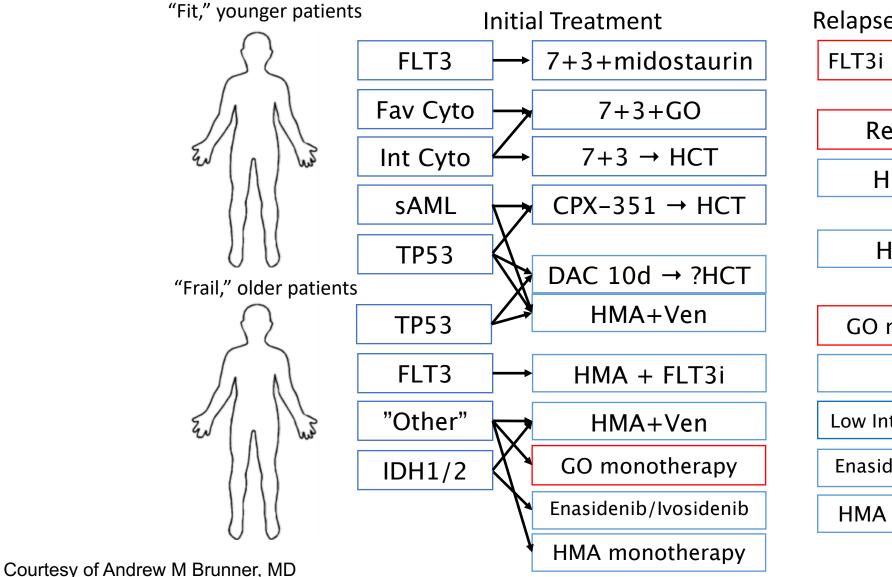
Module 1: Case Presentations

- Dr Sood: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome
- Dr Keruakous: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations
- Dr Sharma: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation
- Dr Cook: A 57-year-old man with AML receives 7 + 3 induction prior to discovery of complex cytogenetics

Module 2: ASH 2021 Review - Part 1

Module 3: Case Presentations

- Dr Rupard: A 71-year-old man with relapsed AML and an IDH2 mutation
- Dr Bhatnagar: A 58-year-old man with therapy-related AML and a KMT2A rearrangement
- Dr Palmer: A 78-year-old man with AML and a TP53 mutation
- Dr Keruakous: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%


Module 4: ASH 2021 Review – Part 2

Module 5: Faculty Survey

Module 6: Appendix: Key Recent Data Sets

Management of AML in 2022

Relapsed/Refractory

FLT3i ± Reinduction

Reinduction

HMA+IDHi

HMA+Ven

GO monotherapy

FLT3i

Low Intensity/Palliative

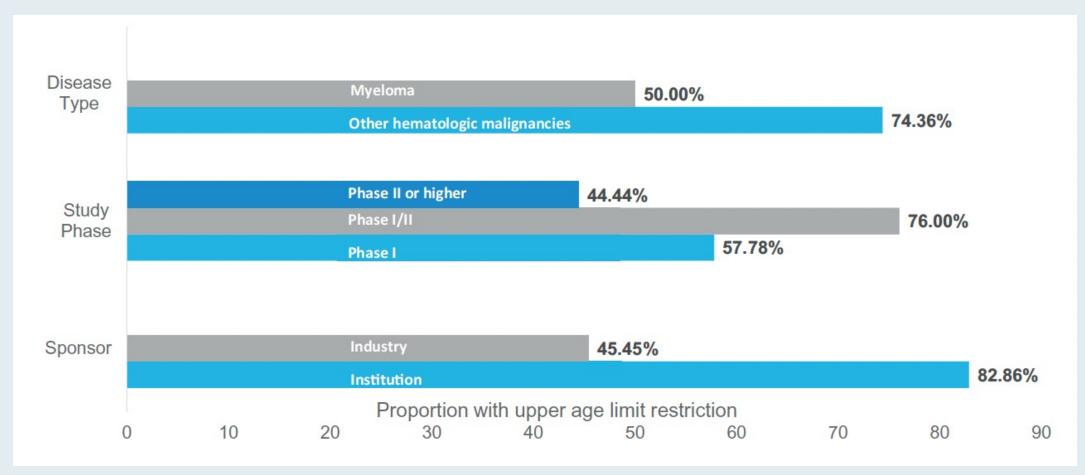
Enasidenib/Ivosidenib

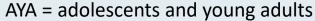
HMA monotherapy

Journal of Geriatric Oncology 12 (2021) 235-238

Contents lists available at ScienceDirect

Journal of Geriatric Oncology




Characterizing inclusion and exclusion criteria in clinical trials for chimeric antigen receptor (CAR) T-cell therapy among adults with hematologic malignancies

Jordon L. Jaggers ^a, Smith Giri ^b, Heidi D. Klepin ^c, Tanya M. Wildes ^d, Rebecca L. Olin ^e, Andrew Artz ^f, Sarah Wall ^g, Samantha Jaglowski ^g, Basem William ^g, Don M. Benson ^g, Ashley E. Rosko ^{g,*}

Impact of Disease, Study Phase and Sponsorship on Age Restriction Among CAR-T Trials (AYA Excluded)

Bone Marrow Transplant 2021;56(11):2628-9.

www.nature.com/bmt

COMMENT

Physically "fit" for allogeneic stem cell transplant?

Reena V. Jayani (D^{1™} and Rebecca L. Olin (D²

Bone Marrow Transplant 2021;56(12):2897-903.

ARTICLE

Objective and subjective physical function in allogeneic hematopoietic stem cell transplant recipients

Asmita Mishra (1) Noseph Pidala¹, Ram Thapa², Brian C. Betts³, Hugo Fernandez⁴, Frederick L. Locke (1) Taiga Nishihori (1) Lia Perez¹, Xuefeng Wang², Claudio Anasetti and Heather Jim (1) S

Haematological Malignancies in Older People 3

Haematopoietic stem-cell transplantation in older adults: geriatric assessment, donor considerations, and optimisation of care

Vanessa E Kennedy, Rebecca L Olin

Lancet Haematol 2021;8:e853-61.

Utility of Individual Geriatric Assessment Components in Predicting Transplant Outcomes

	Effect on post-HSCI outcomes	Effect on post-HSCT outcomes		
	Autologous HSCT	Allogeneic HSCT		
Physical function				
Activities of Daily Living	Not available	Not predictive ^{31,33,34}		
Instrumental Activities of Daily Living	Decreased overall survival ³² Decreased progression-free survival ³² Increased length of hospitalisation ³⁶ Increased readmissions ³⁶	Decreased overall survival ^{31,33,35} Decreased progression-free survival ^{33,35} Not predictive ^{34,37}		
Timed Up and Go test	Not predictive ³²	Decreased overall survival ³⁴ Decreased progression-free survival Not predictive ³⁷		
Grip strength	Increased readmissions ³⁶	Not predictive ³¹		
Walk speed	Not available	Decreased overall survival ³¹ Increased relapse ³¹		
Number of falls	Increased readmissions ³⁶ Not predictive ³²	Not predictive ^{33,35}		
Patient-reported physical function	Decreased overall survival ³² Decreased progression-free survival ³² Increased readmissions ³²	Decreased overall survival ³⁵ Decreased progression-free survival ³ Increased short-term toxicity ³⁵ Increased length of stay ³⁵		
Cognition				
Mini-Mental State Exam	Not predictive ³⁶	Not predictive ³⁴		
Blessed Orientation Memory Concentration Test	Increased short term toxicity ³² Increased readmissions ³²	Decreased overall survival ^{35,37} Decreased progression-free survival Decreased non-relapse mortality ³⁷		

· ·	A. t. I UCCT	All	
	Autologous HSCT	Allogeneic HSCT	
Mental health			
Mental Health Inventory-5	Not predictive ³²	Not predictive ³⁵	
Medical Outcomes Study: Mental Health component	Not available	Decreased overall survival ³¹	
Hospital Anxiety and Depression Scale	Increased readmissions ³⁶	Not available	
Clinician-assessed depression	Not available	Not predictive ³³	
Polypharmacy			
More than nine medications	Not available	Inferior overall survival38	
Use of potentially inappropriate medications	Not available	Not predictive ³³ Inferior overall survival ³⁸	
Drug-drug interactions	Not available	Longer hospitalisation ³⁸	
Nutrition			
Mini Nutritional Assessment	Not available	Decreased progression-free survival ³⁴ Decreased overall survival ³⁴	
Weight loss	Decreased event-free survival ³⁶ Increased readmissions ³⁶ Not predictive ³²	Not predictive ^{31,35}	
Body-mass index	Not predictive ³²	Not predictive ³⁵	
Social support			
Medical Outcomes Study Social Support Survey	Not predictive ^{32,36}	Not predictive ³⁵	

Transplantation and Cellular Therapy

journal homepage: www.tctjournal.org

The Bottom Line

Transplantation for Older Adults-More Questions than Answers

Shannon R. McCurdy¹, Rebecca L. Olin^{2,*}

Transplantation and Cellular Therapy 27 (2021) 1008-1014

Transplantation and Cellular Therapy

journal homepage: www.tctjournal.org

Full Length Article Quality of Care

Feasibility and Implementation of a Multimodal Supportive Care Program to Improve Outcomes in Older Patients Undergoing Allogeneic Stem Cell Transplantation

Nicholas A. Szewczyk, An Ngo-Huang, Tacara N. Soones, Latoya M. Adekoya, Rhodora C. Fontillas, Jill K. Ferguson, Haley E. Gale-Capps, Brittany C. Kurse, Richard J. Lindsay, Rachel Ombres, Zandra R. Rivera, Alison M. Gulbis, Joyce L. Neumann, Brent H. Braveman, David Marin, Terri Lynn Shigle, Laura Whited, Whitney D. Wallis, Hilary Sullivan, Lihui Cao, Richard E. Champlin, Elizabeth Shpall, Uday R. Popat*

Transplantation and Cellular Therapy

journal homepage: www.tctjournal.org

Full Length Article Analysis

Breaking the Age Barrier: Physicians' Perceptions of Candidacy for Allogeneic Hematopoietic Cell Transplantation in Older Adults

Asmita Mishra^{1,*}, Jaime M. Preussler^{2,3}, Vijaya Raj Bhatt⁴, Christopher Bredeson⁵, Saurabh Chhabra⁶, Anita D'Souza⁶, Parastoo B. Dahi⁷, Eileen Danaher Hacker⁸, Lohith Gowda⁹, Shahrukh K. Hashmi¹⁰, Dianna S. Howard¹¹, Ann Jakubowski⁷, Reena Jayani¹², Thuy Koll⁴, Richard J. Lin⁷, Rebecca L. Olin¹³, Uday R. Popat¹⁴, Cesar Rodriguez¹¹, Ashley Rosko¹⁵, Mitchell Sabloff⁵, Mohamed L. Sorror¹⁶, Anthony D. Sung¹⁷, Celalettin Ustun¹⁸, William A. Wood¹⁹, Linda Burns^{2,3}, Andrew Artz²⁰

Transplantation and Cellular Therapy

journal homepage: www.tctjournal.org

Full Length Article Analysis

Impact of Polypharmacy Prior to Allogeneic Hematopoietic Stem Cell Transplantation in Older Adults

Matthew Sugidono¹, Mimi Lo², Rebecca Young², Kimberly Rosario³, Yoonie Jung³, Chiung-Yu Huang⁴, Ying Sheng⁴, Li-Wen Huang^{5,6}, Rebecca L. Olin^{6,7,*}

Agenda

Introduction: Journal Club with Dr Olin – Evaluation of the Older Patient with AML

Module 1: Case Presentations

- Dr Sood: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome
- Dr Keruakous: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations
- Dr Sharma: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation
- Dr Cook: A 57-year-old man with AML receives 7 + 3 induction prior to discovery of complex cytogenetics

Module 2: ASH 2021 Review – Part 1

Module 3: Case Presentations

- Dr Rupard: A 71-year-old man with relapsed AML and an IDH2 mutation
- Dr Bhatnagar: A 58-year-old man with therapy-related AML and a KMT2A rearrangement
- Dr Palmer: A 78-year-old man with AML and a TP53 mutation
- Dr Keruakous: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%

Module 4: ASH 2021 Review – Part 2

Module 5: Faculty Survey

Module 6: Appendix: Key Recent Data Sets

In general, which treatment would you recommend for an 88-year-old patient who is receiving azacitidine for myelodysplastic syndrome and develops AML (25% blasts) with no actionable mutations?

- 1. Continue azacitidine and add venetoclax
- 2. Venetoclax
- 3. Decitabine
- 4. Decitabine + venetoclax
- 5. CPX-351
- 6. Low-dose cytarabine + venetoclax
- 7. Other

Case Presentation: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome

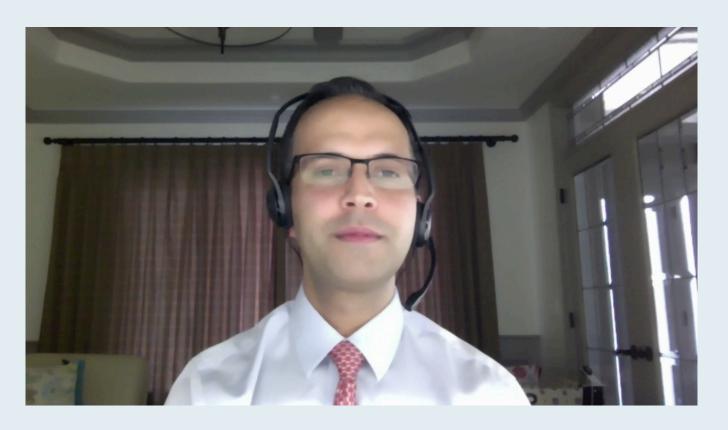
Dr Raman Sood (Dunkirk, New York)

Regulatory and reimbursement issues aside, which initial treatment would you recommend for a 75-year-old patient who is not eligible for intensive chemotherapy who presents with poor-risk AML and <u>FLT3-ITD</u> and <u>IDH1</u> mutations?

- 1. Gilteritinib
- 2. Ivosidenib
- 3. Hypomethylating agent (HMA) alone
- 4. HMA + venetoclax
- 5. HMA + venetoclax + FLT3 inhibitor
- 6. HMA + venetoclax + ivosidenib
- 7. CPX-351
- 8. Other

Case Presentation: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations

Dr Amany Keruakous (Augusta, Georgia)


Case Presentation: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations (continued)

Dr Amany Keruakous (Augusta, Georgia)

Case Presentation: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation

Dr Prashant Sharma (Salt Lake City, Utah)

Case Presentation: A 57-year-old man with AML receives 7 + 3 induction therapy prior to discovery of trisomy 8, t(8;21) and a KIT mutation

Dr Rachel Cook (Portland, Oregon)

Agenda

Introduction: Journal Club with Dr Olin – Evaluation of the Older Patient with AML

Module 1: Case Presentations

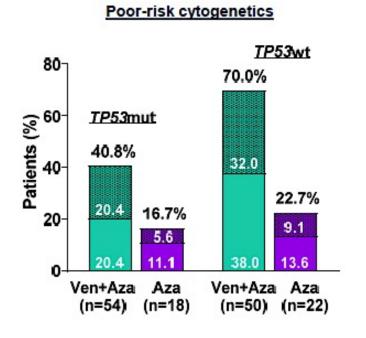
- Dr Sood: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome
- Dr Keruakous: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations
- Dr Sharma: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation
- Dr Cook: A 57-year-old man with AML receives 7 + 3 induction prior to discovery of complex cytogenetics

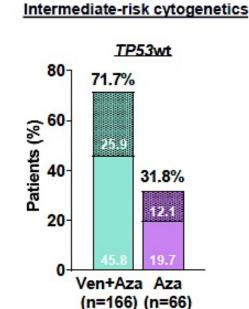
Module 2: ASH 2021 Review - Part 1

Module 3: Case Presentations

- Dr Rupard: A 71-year-old man with relapsed AML and an IDH2 mutation
- Dr Bhatnagar: A 58-year-old man with therapy-related AML and a KMT2A rearrangement
- Dr Palmer: A 78-year-old man with AML and a TP53 mutation
- Dr Keruakous: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%

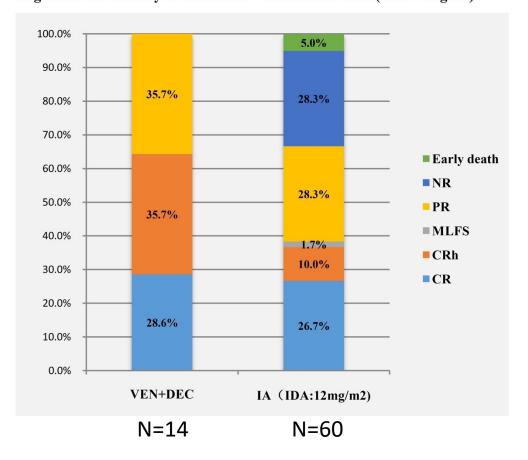
Module 4: ASH 2021 Review – Part 2


Module 5: Faculty Survey


Module 6: Appendix: Key Recent Data Sets

Outcomes in Patients with Poor-Risk Cytogenetics with or without TP53 Mutations Treated with Venetoclax Combined with Hypomethylating Agents

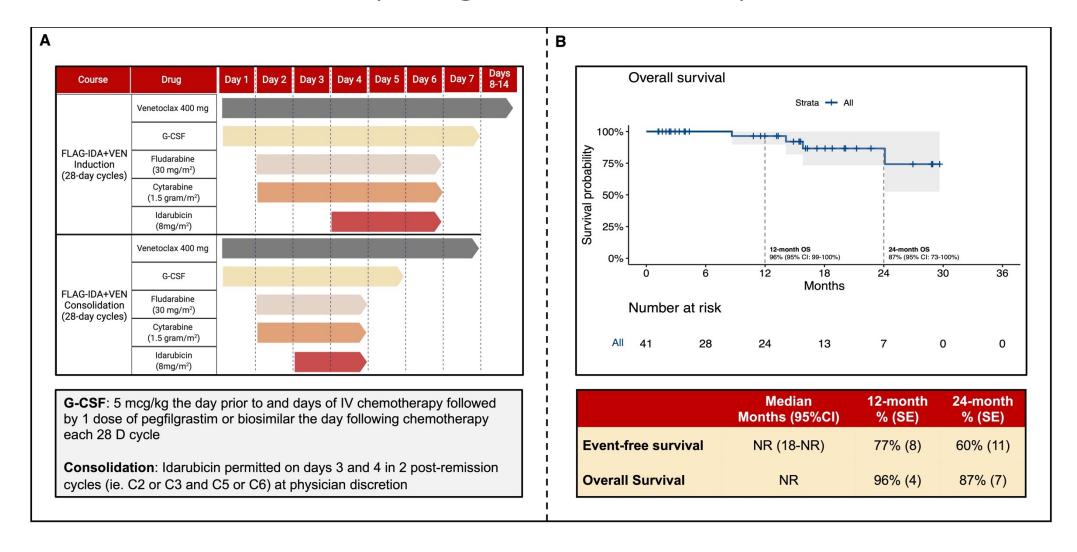
- Pooled analysis of patients with poor and int risk cytogenetics
 - VIALE-A and Ph1b trial of patients with NCCN int/poor risk (n=232/144)



Venetoclax Plus Decitabine for Young Adults with Newly Diagnosed ELN Adverse-Risk Acute Myeloid Leukemia: Interim Analysis of a Prospective, Multicenter, Single-Arm, Phase 2 Trial

- Patients 18-59 with newly diagnosed ELN Adverse Risk AML
 - Decitabine 20mg/m² d1-5, Venetoclax 100, 200, 400 continued through 28d
 - Patients with FLT3-ITD received
 Decitabine+Venetoclax +/- Sorafenib
- Primary endpoint: superiority of composite remission vs. historic 7+3

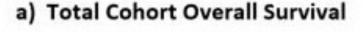
Figure 1. The efficacy of venetoclax + decitabine vs IA (IDA 12mg/m²)

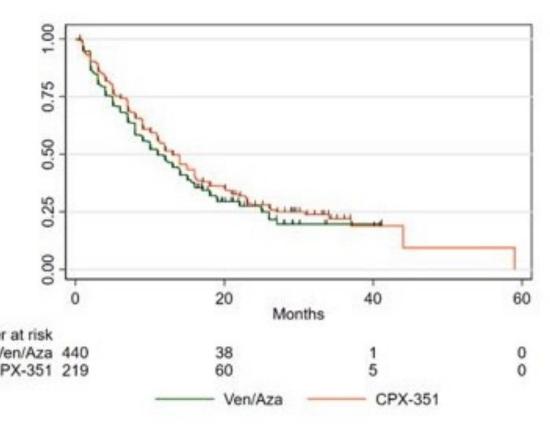


Comparing Outcomes between Liposomal Daunorubicin/Cytarabine (CPX-351) and HMA+Venetoclax As Frontline Therapy in Acute Myeloid Leukemia

 Retrospective study from 4 academic centers of patients treated with CPX-351 or HMA+Ven

	CPX-351 (n=211)	HMA+Ven (n=226)
CR	98 (46%)	62 (27%)
CRi	24 (11%)	66 (29%)
RFS	33.7mo	15.8mo
OS	17.3mo	11.1mo


Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed Acute Myeloid Leukemia



Real World Survival Outcomes of CPX-351 Versus Venetoclax and Azacitadine for Initial Therapy in Adult Acute Myeloid Leukemia

- HUP and Flatiron HER
- CPX-351 (n=219)
- Aza+Ven (n=440)

- Overall survival similar at 13mo (CPX-351) vs 11mo (AzaVen) (p=0.18)
- Higher rates of F&N with CPX351

Agenda

Introduction: Journal Club with Dr Olin – Evaluation of the Older Patient with AML

Module 1: Case Presentations

- Dr Sood: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome
- Dr Keruakous: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations
- Dr Sharma: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation
- Dr Cook: A 57-year-old man with AML receives 7 + 3 induction prior to discovery of complex cytogenetics

Module 2: ASH 2021 Review – Part 1

Module 3: Case Presentations

- Dr Rupard: A 71-year-old man with relapsed AML and an IDH2 mutation
- Dr Bhatnagar: A 58-year-old man with therapy-related AML and a KMT2A rearrangement
- Dr Palmer: A 78-year-old man with AML and a TP53 mutation
- Dr Keruakous: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%

Module 4: ASH 2021 Review – Part 2

Module 5: Faculty Survey

Module 6: Appendix: Key Recent Data Sets

Case Presentation: A 71-year-old man with relapsed AML and an IDH2 mutation

Dr Erik Rupard (West Reading, Pennsylvania)

Case Presentation: A 58-year-old man with therapyrelated AML and a KMT2A rearrangement

Dr Tina Bhatnagar (Wheeling, West Virginia)

Case Presentation: A 58-year-old man with therapy-related AML and a KMT2A rearrangement (continued)

Dr Tina Bhatnagar (Wheeling, West Virginia)

Case Presentation: A 78-year-old man with AML and a TP53 mutation

Dr Jeanne Palmer (Phoenix, Arizona)

Case Presentation: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%

Dr Amany Keruakous (Augusta, Georgia)

Case Presentation: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35% (continued)

Dr Amany Keruakous (Augusta, Georgia)

Agenda

Introduction: Journal Club with Dr Olin – Evaluation of the Older Patient with AML

Module 1: Case Presentations

- Dr Sood: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome
- Dr Keruakous: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations
- Dr Sharma: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation
- Dr Cook: A 57-year-old man with AML receives 7 + 3 induction prior to discovery of complex cytogenetics

Module 2: ASH 2021 Review – Part 1

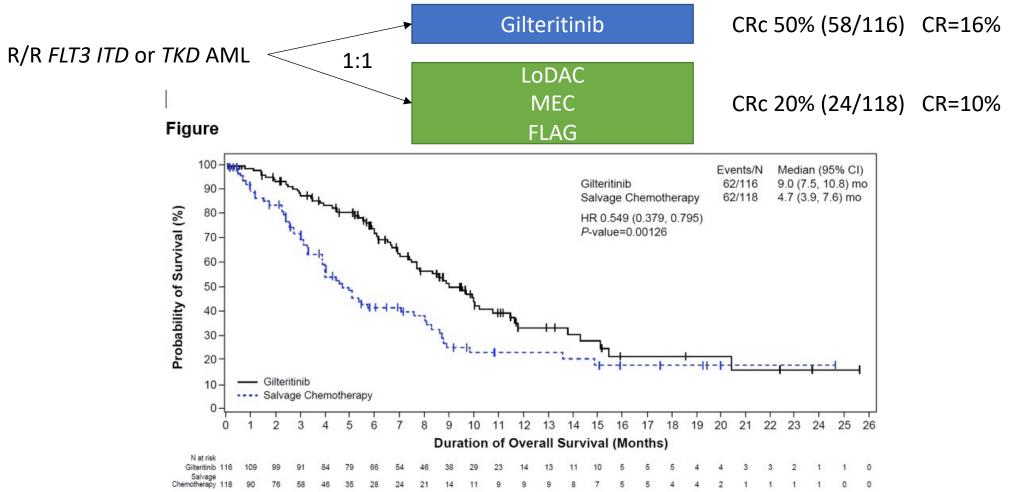
Module 3: Case Presentations

- Dr Rupard: A 71-year-old man with relapsed AML and an IDH2 mutation
- Dr Bhatnagar: A 58-year-old man with therapy-related AML and a KMT2A rearrangement
- Dr Palmer: A 78-year-old man with AML and a TP53 mutation
- Dr Keruakous: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%

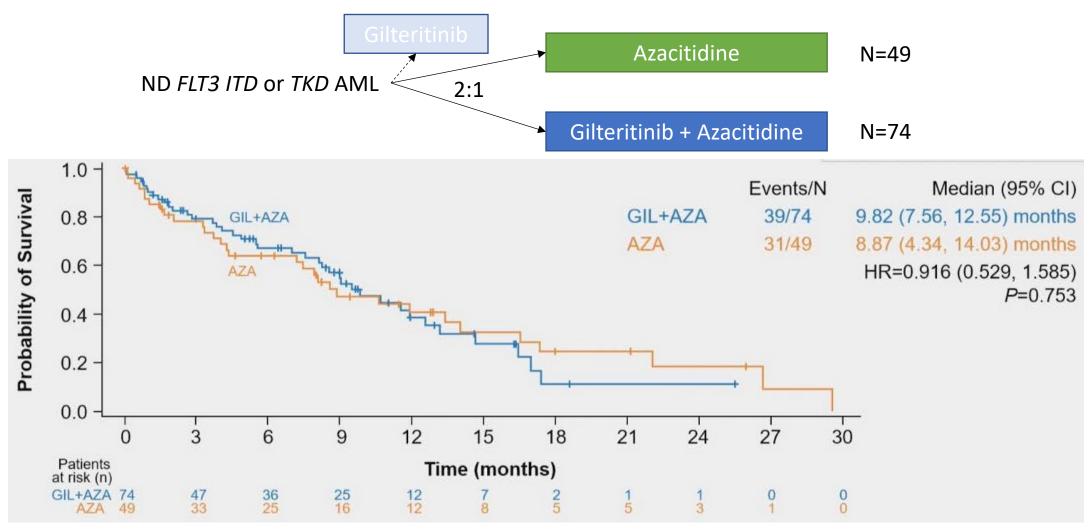
Module 4: ASH 2021 Review – Part 2

Module 5: Faculty Survey

Module 6: Appendix: Key Recent Data Sets

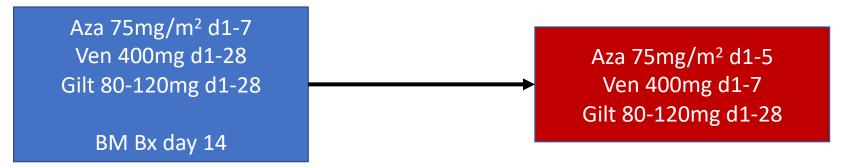

AGILE: A Global, Randomized, Double-Blind, Phase 3 Study of Ivosidenib + Azacitidine Versus Placebo + Azacitidine in Patients with Newly Diagnosed Acute Myeloid Leukemia with an *IDH1* Mutation

- Randomize 1:1 Aza+Ivosidenib vs Aza+Placebo
 - Aza 75mg/m² d1-7 of 28, Ivo 500mg d1-28

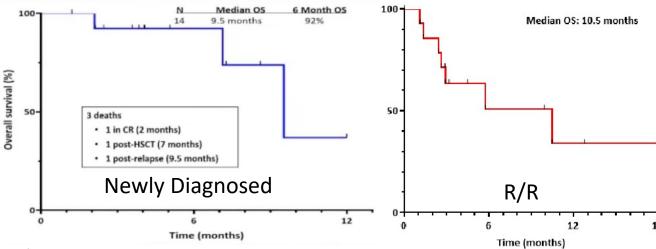

	Azacitidine+Ivosidenib (n=72)	Azacitidine (n=74)
CR	34 (47%)	11 (15%)
CR+CRh	38 (53%)	13 (18%)
ORR	45 (63%)	14 (19%)

- Toxicities balanced; fewer infections in the AZA+IVO arm
- HRQoL favored AZA+IVO

Gilteritinib Versus Salvage Chemotherapy for Relapsed/Refractory FLT3-Mutated Acute Myeloid Leukemia: A Phase 3, Randomized, Multicenter, Open-Label Trial in Asia


Phase 3, Open-Label, Randomized Study of Gilteritinib and Azacitidine Vs Azacitidine for Newly Diagnosed FLT3-Mutated Acute Myeloid Leukemia in Patients Ineligible for Intensive Induction Chemotherapy

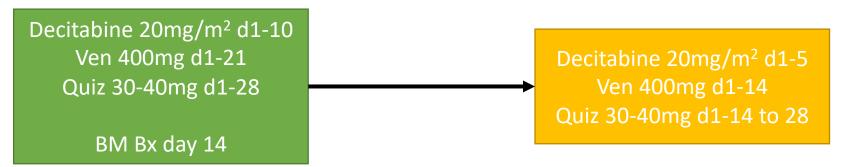
Wang ES et al. ASH Annual Meeting 2021, Atlanta GA. Abstract 700


A Triplet Combination of Azacitidine, Venetoclax and Gilteritinib for Patients with *FLT3*-Mutated Acute Myeloid Leukemia: Results from a Phase I/II Study

• R/R FLT3 AML (n=14), HR-MDS/CMML (n=1), and ND FLT3 AML (n=11)

• Myelosuppression (MLFS) at Gilt 120 -> Gilt 80mg used in PhII

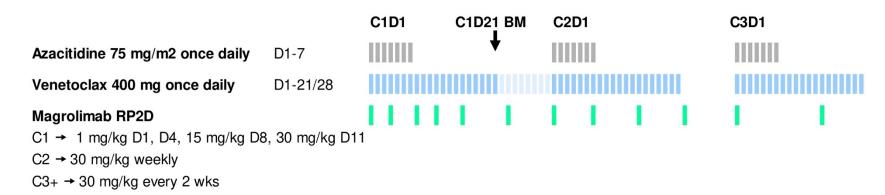
	Frontline (n=14)	R/R (n=16)	
CR	13	11	
CRi	0	2	
MLFS	1	6	
PR	0	1	
No Response	0	4	



Courtesy of Andrew M Brunner, MD

Short N et al. ASH Annual Meeting 2021, Atlanta GA. Abstract 696

Quizartinib (Quiz) with Decitabine (DAC) and Venetoclax (VEN) Is Highly Active in Patients (pts) with FLT3-ITD Mutated Acute Myeloid Leukemia (AML) — RAS/MAPK Mutations Continue to Drive Primary and Secondary Resistance


• R/R *FLT3* AML (n=23), or ND *FLT3* AML (n=5)

G4 Myelosuppression at Quizartinib 40 -> Quiz 30mg used in PhII

	Frontline (n=5)	R/R (n=23)	
CR	2	3	
CRi	3	5	
MLFS	0	10	
Bridge to Allo	3	8	
Median OS	14.5 mo	7.6 mo	

Phase I/II Study of Azacitidine (AZA) with Venetoclax (VEN) and Magrolimab (Magro) in Patients (pts) with Newly Diagnosed Older/Unfit or High-Risk Acute Myeloid Leukemia (AML) and Relapsed/Refractory (R/R) AML

	Frontline TP53mut (n=14)	Frontline TP53wt (n=11)	RR Ven Naïve (n=8)	RR Prior Ven (n=15)
ORR	12	11	75	3
CR	9	7	3	0
CRi	0	3	2	3
MLFS	3	1	1	0
MRD negative	5/9	4/9	2/6	0
CCyR	4/9	5/6	3/5	1/2

Agenda

Introduction: Journal Club with Dr Olin – Evaluation of the Older Patient with AML

Module 1: Case Presentations

- Dr Sood: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome
- Dr Keruakous: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations
- Dr Sharma: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation
- Dr Cook: A 57-year-old man with AML receives 7 + 3 induction prior to discovery of complex cytogenetics

Module 2: ASH 2021 Review – Part 1

Module 3: Case Presentations

- Dr Rupard: A 71-year-old man with relapsed AML and an IDH2 mutation
- Dr Bhatnagar: A 58-year-old man with therapy-related AML and a KMT2A rearrangement
- Dr Palmer: A 78-year-old man with AML and a TP53 mutation
- Dr Keruakous: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%

Module 4: ASH 2021 Review – Part 2

Module 5: Faculty Survey

Module 6: Appendix: Key Recent Data Sets

In what clinical situations, if any, do you recommend HMA/ venetoclax for a patient with AML who is <u>eligible</u> for intensive chemotherapy (eg, adverse cytogenetics)?

Dr Daver

TP53 mut, adverse cytogenetics, PS ≥3, severe cardiac, renal or other comorbidity

Dr Pratz

Age >65, complex karyotype, TP53, IDH2 mutations, INV3 or t(3;3)

Dr Fathi

Possibly if TP53 mutation present

Dr Stein

Adverse-risk AML, anticipated response to induction tx < 30%

Dr Olin

If patient prefers nonintensive therapy

Dr Stock

Adverse cytogenetics/ molecular genetics, TP53 mutation

Dr Pollyea

Age >65, ELN adverse risk, secondary or tAML, IDH mutations

Prof Wei

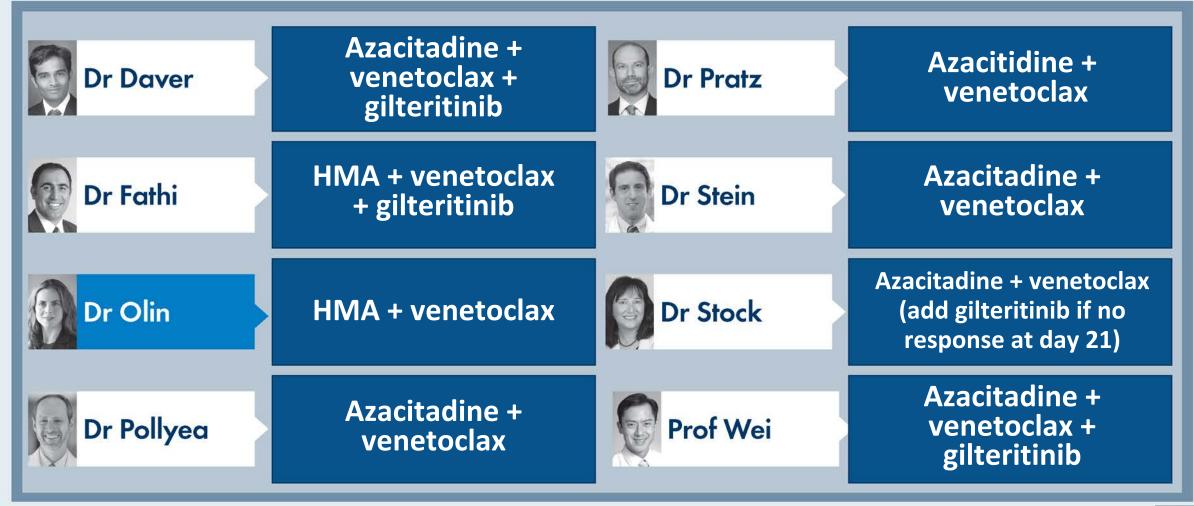
Age ≥70 if not CBF, FLT3-ITD, TP53 mut, prior MPN

Do you generally admit to the hospital all patients with AML who are receiving venetoclax in combination with a hypomethylating agent (HMA)?

For a patient with AML who is pancytopenic and is receiving venetoclax in combination with an HMA or low-dose cytarabine(LDAC), when do you perform the first bone marrow evaluation?

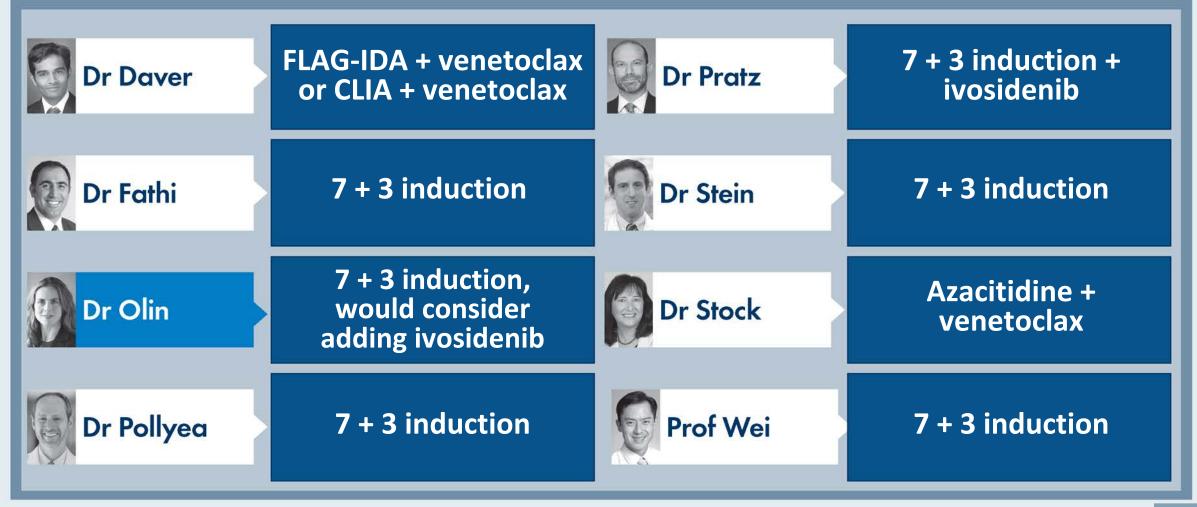
A 65-year-old patient with intermediate-risk AML, no actionable mutations, PS 0, receives 7 + 3 induction therapy, achieves a complete remission after 2 cycles and then receives 2 cycles of high-dose cytarabine consolidation but declines transplant. Would you offer this patient maintenance therapy?

Dr Daver	Yes, azacitidine + venetoclax or CC-486	Dr Pratz	Yes, CC-486
Dr Fathi	Yes, CC-486	Dr Stein	Yes, CC-486
Dr Olin	Yes, CC-486	Dr Stock	Yes, CC-486
Dr Pollyea	Yes, CC-486	Prof Wei	Yes, CC-486

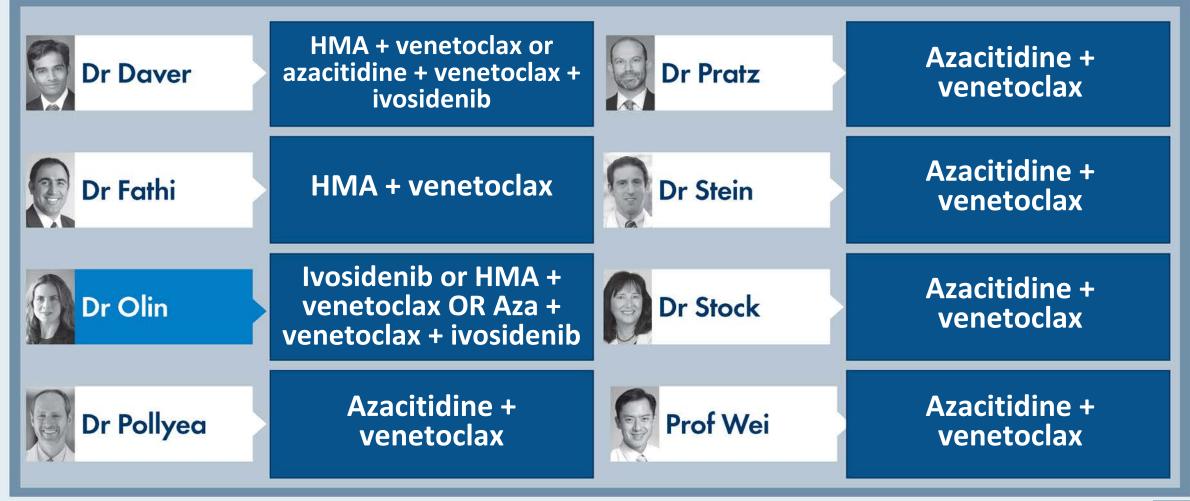


Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is eligible for intensive</u> <u>chemotherapy</u> who presents with AML and a <u>FLT3-ITD mutation</u>?

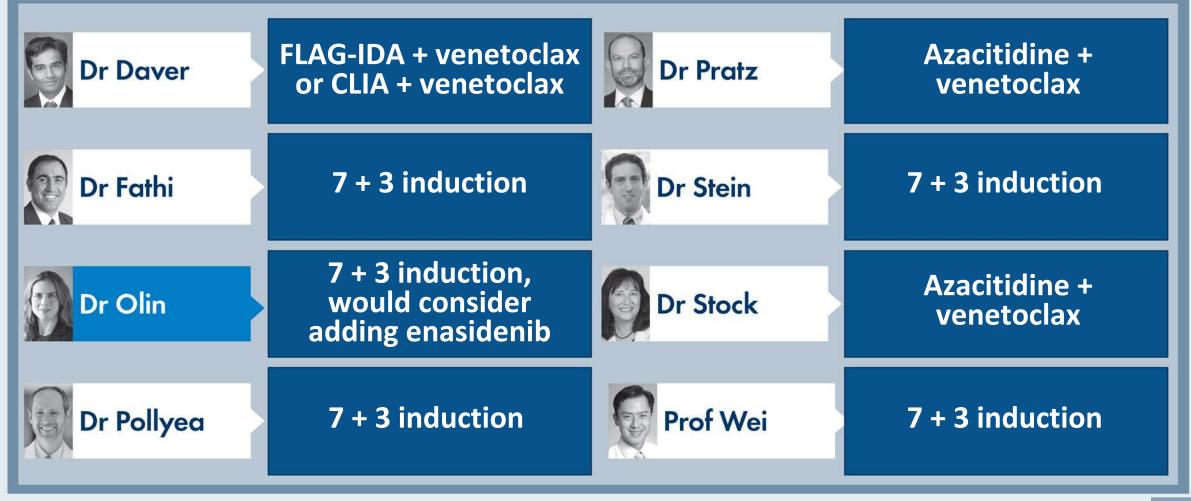
Dr Daver	CLIA + gilteritinib FLAG-IDA + gilteritinib	Dr Pratz	7 + 3 + midostaurin
Dr Fathi	7 + 3 + midostaurin	Dr Stein	7 + 3 + midostaurin
Dr Olin	7 + 3 + midostaurin	Dr Stock	7 + 3 + midostaurin
Dr Pollyea	7 + 3 + midostaurin	Prof Wei	7 + 3 + midostaurin


Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not eligible for intensive</u> <u>chemotherapy</u> who presents with AML and a <u>FLT3-ITD mutation</u>?

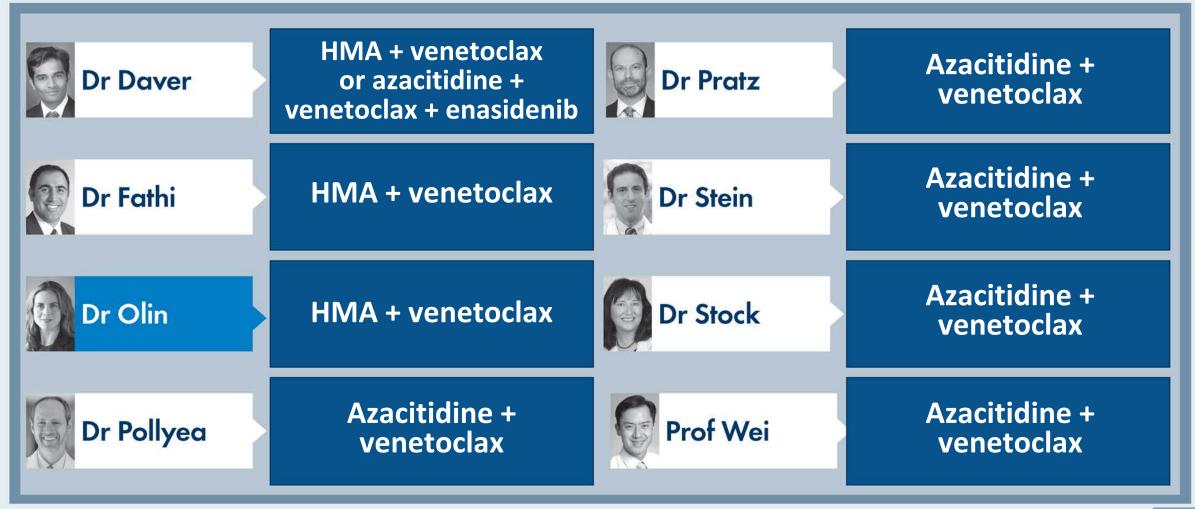
HMA: azacitidine or decitabine



Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is eligible for intensive</u> <u>chemotherapy</u> who presents with AML and an <u>IDH1 mutation</u>?


Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not eligible for intensive</u> <u>chemotherapy</u> who presents with AML and an <u>IDH1 mutation</u>?

HMA: azacitidine or decitabine



Regulatory and reimbursement issues aside, what initial treatment would you recommend for a <u>younger patient who is eligible for intensive</u> <u>chemotherapy</u> who presents with AML and an <u>IDH2 mutation</u>?

Regulatory and reimbursement issues aside, what initial treatment would you recommend for an <u>older patient who is not eligible for intensive</u> <u>chemotherapy</u> who presents with AML and an <u>IDH2 mutation</u>?

HMA: azacitidine or decitabine

Agenda

Introduction: Journal Club with Dr Olin – Evaluation of the Older Patient with AML

Module 1: Case Presentations

- Dr Sood: An 88-year-old woman with transfusion-dependent AML secondary to myelodysplastic syndrome
- Dr Keruakous: A frail 75-year-old man with newly diagnosed poor-risk AML and FLT3-ITD and IDH1 mutations
- Dr Sharma: A 67-year-old woman with relapsed AML and a FLT3-ITD mutation
- Dr Cook: A 57-year-old man with AML receives 7 + 3 induction prior to discovery of complex cytogenetics

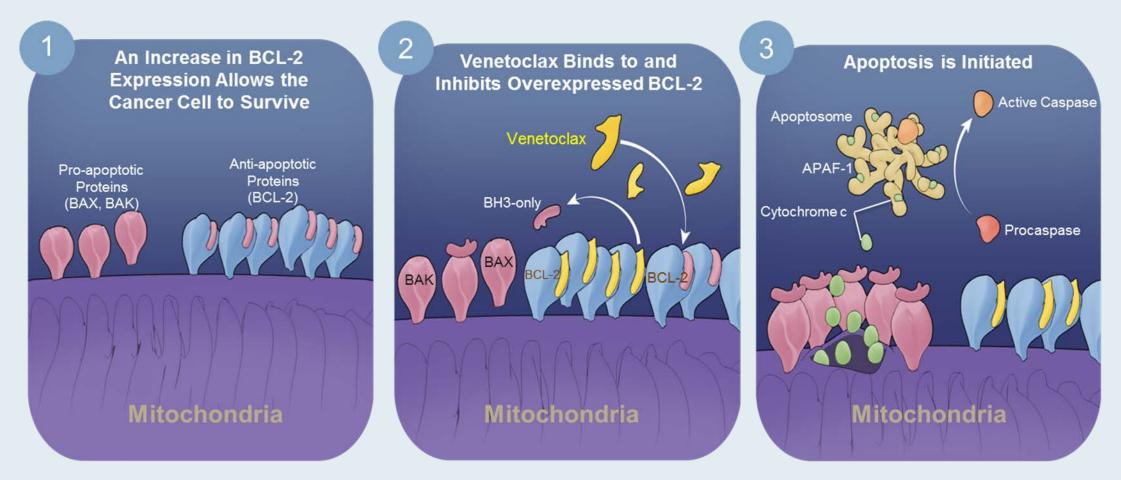
Module 2: ASH 2021 Review - Part 1

Module 3: Case Presentations

- Dr Rupard: A 71-year-old man with relapsed AML and an IDH2 mutation
- Dr Bhatnagar: A 58-year-old man with therapy-related AML and a KMT2A rearrangement
- Dr Palmer: A 78-year-old man with AML and a TP53 mutation
- Dr Keruakous: A 46-year-old woman with newly diagnosed poor-risk AML and an ejection fraction of 35%

Module 4: ASH 2021 Review - Part 2

Module 5: Faculty Survey


Module 6: Appendix: Key Recent Data Sets

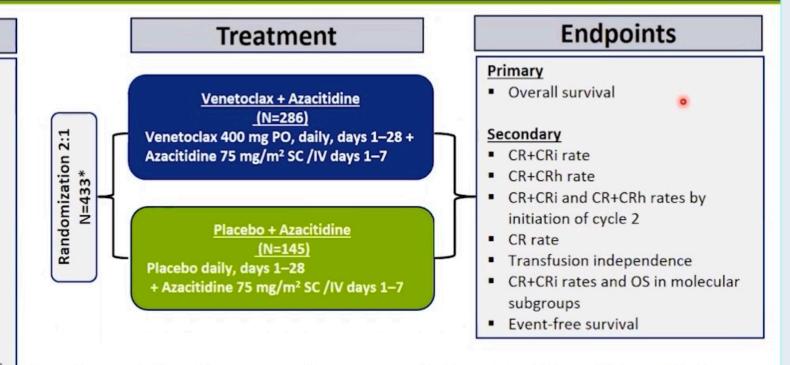
Optimal Management of Newly Diagnosed Acute Myeloid Leukemia (AML) Not Eligible for Intensive Therapy

Venetoclax Mechanism of Action

- Cancer cells increase the expression of anti-apoptotic proteins to offset the increase in pro-apoptotic proteins, tipping the balance toward cell survival
- The large # of pro-apoptotic proteins bound and sequestered by Bcl-2 in AML make them "primed" for death

VIALE-A Study Design

(NCT02993523)


Eligibility

Inclusion

- Patients with newly diagnosed confirmed AML
- Ineligible for induction therapy defined as either
 - ♦ ≥75 years of age
 - 18 to 74 years of age with at least one of the co-morbidities:
 - CHF requiring treatment or Ejection Fraction ≤50%
 - Chronic stable angina
 - DLCO ≤ 65% or FEV1 ≤ 65%
 - ECOG 2 or 3

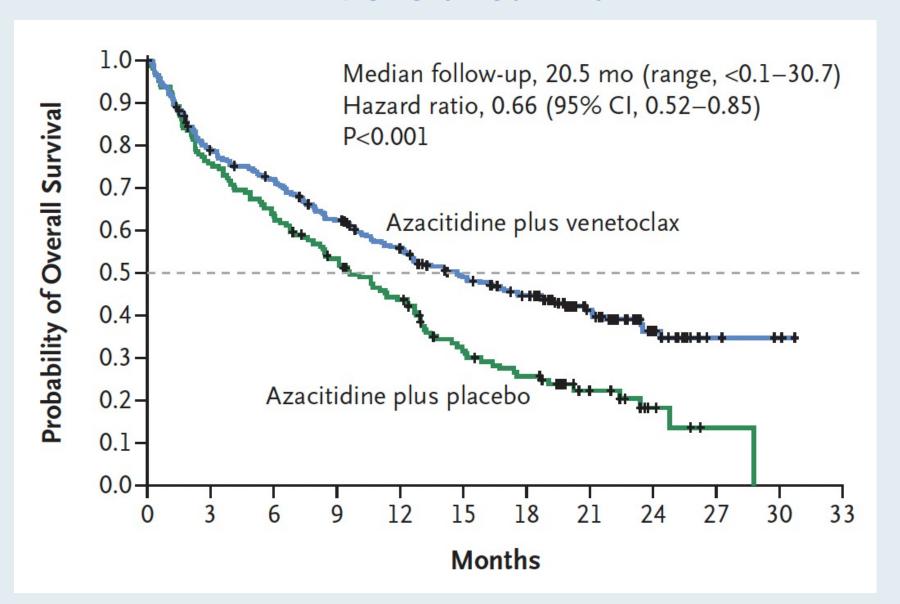
Exclusion

- Prior receipt of any HMA, venetoclax, or chemotherapy for myelodysplastic syndrome
- Favorable risk cytogenetics per NCCN
- Active CNS involvement

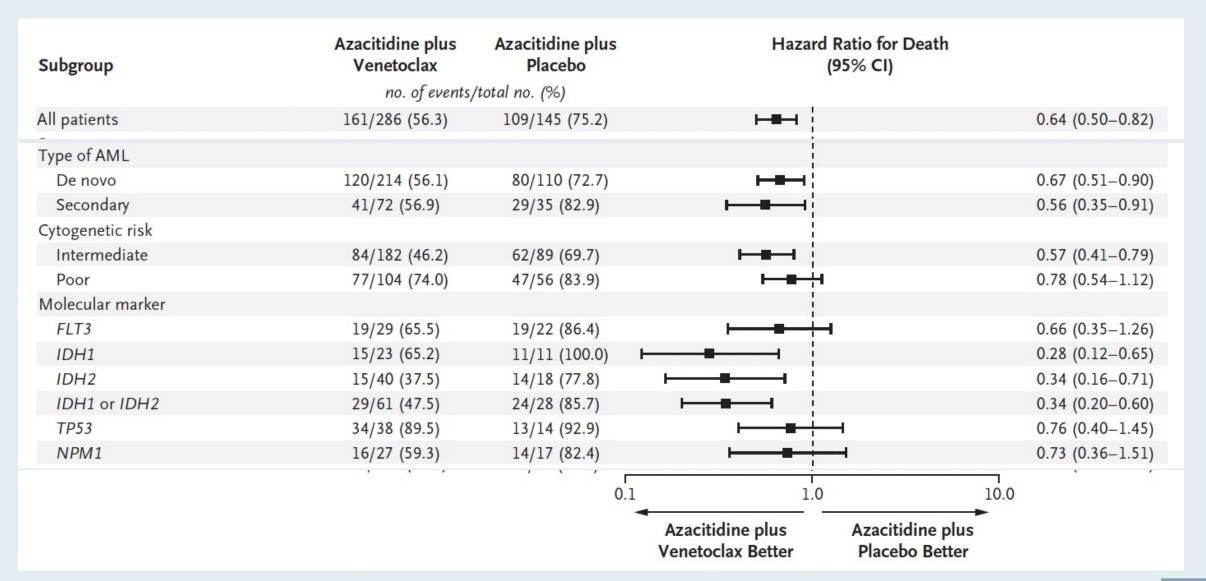
Randomization Stratification Factors Age (<75 vs. ≥75 years); Cytogenetic Risk (intermediate, Poor); Region

Venetoclax dosing ramp-up

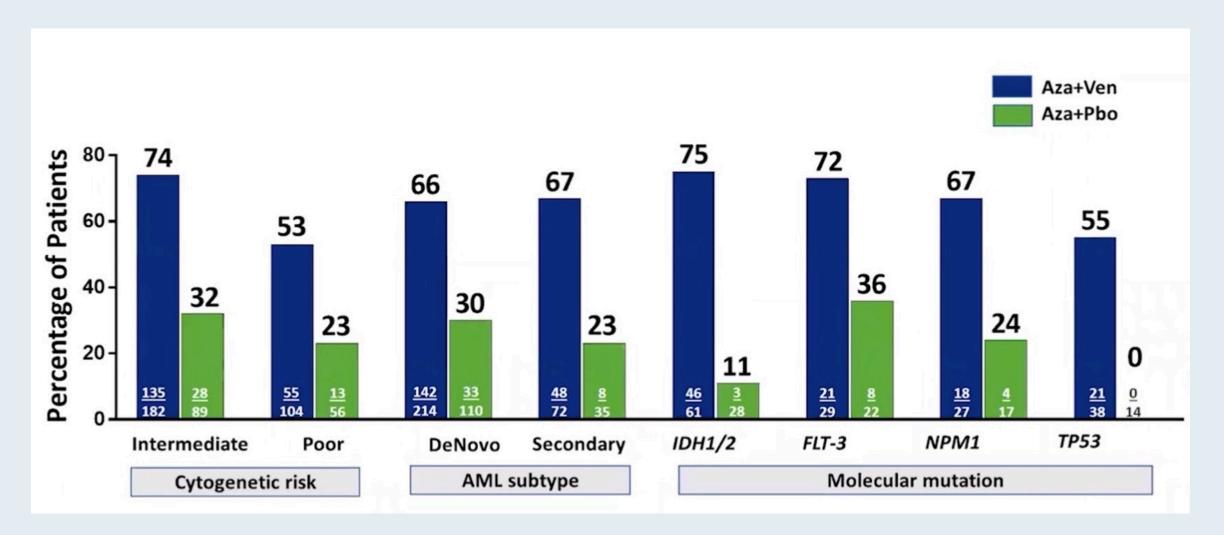
Cycle 1 ramp-up Day 1: 100 mg, Day 2: 200 mg, Day 3 - 28: 400 mg


Cycle 2 --- Day 1-28: 400 mg

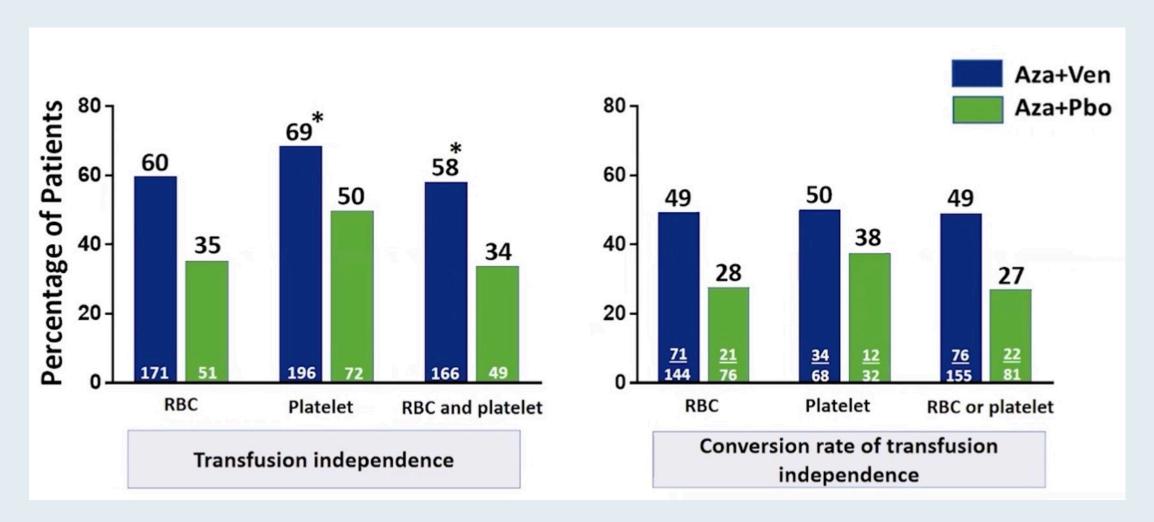
AML: Acute myeloid leukemia; CHF: Congestive heart failure; CNS: Central nervous system; CR: Complete remission; CRi: CR+ incomplete marrow remission; CRh: CR+ incomplete hematologic recovery; DCLO: diffusion lung capacity for carbon monoxide; ECOG: Eastern Cooperative Oncology Group; FEV1: Forced expiratory volume; HMA: Hypomethylating agent; NCCN: National Comprehensive Cancer Network


^{* 2} patients were not stratified by cytogenetic risk. They were excluded from efficacy analysis but included in the safety analysis. 6 patients who did not receive treatment were excluded from the safety analysis set

VIALE-A: Overall Survival

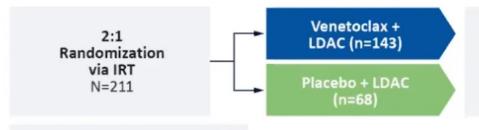


VIALE-A: Overall Survival Subgroup Analysis



VIALE-A: Response Rates (CR + CRi) in Subgroups

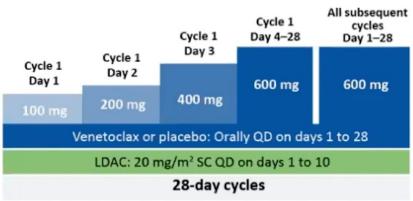
VIALE-A: Patients with ≥8 Weeks Transfusion-Free Interval


VIALE-A: Selected Adverse Events

Event	Azacitidine–Venetoclax Group (N = 283)			⊢Placebo Group N=144)
	All Grades†	≥Grade 3‡	All Grades†	≥Grade 3‡
		number of patient	ts (percent)	
Hematologic adverse events	236 (83)	233 (82)	100 (69)	98 (68)
Thrombocytopenia	130 (46)	126 (45)	58 (40)	55 (38)
Neutropenia	119 (42)	119 (42)	42 (29)	41 (28)
Febrile neutropenia	118 (42)	118 (42)	27 (19)	27 (19)
Anemia	78 (28)	74 (26)	30 (21)	29 (20)
Leukopenia	58 (21)	58 (21)	20 (14)	17 (12)
Serious adverse events∫	235 (83)	232 (82)	105 (73)	102 (71)
Febrile neutropenia	84 (30)	84 (30)	15 (10)	15 (10)
Anemia	14 (5)	14 (5)	6 (4)	6 (4)
Neutropenia	13 (5)	13 (5)	3 (2)	3 (2)
Atrial fibrillation	13 (5)	10 (4)	2 (1)	2 (1)
Pneumonia	47 (17)	46 (16)	32 (22)	31 (22)
Sepsis	16 (6)	16 (6)	12 (8)	12 (8)

VIALE-C Phase 3 Study Design

Randomized 2:1, double-blind, placebo-controlled trial



Patients could continue receiving treatment until progression or until study treatment discontinuation criteria were met

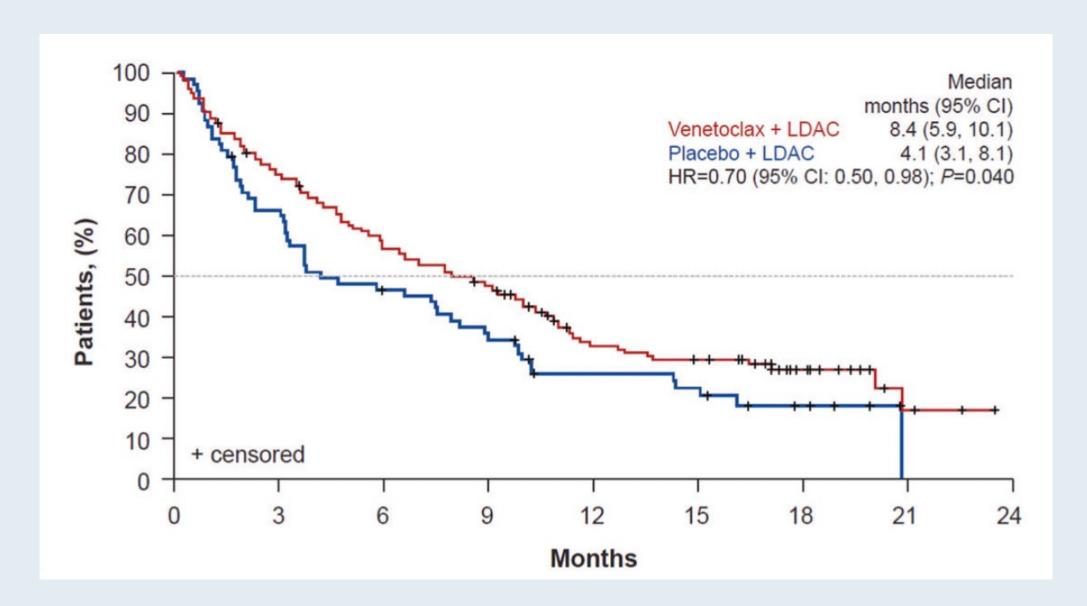
Patients remained on study for OS assessment and follow-up, even if they initiated additional lines of treatment

Stratification factors

- AML status (secondary vs de novo)
- Age (18 to <75 vs ≥75)
- · Region (US, EU, China, Japan, ROW)

Primary endpoint: overall survival Secondary endpoints

- CR, CRh, and CRi (modified IWG criteria¹)
- Rate of transfusion independence
- EFS
- MRD


Progressive disease was defined per ELN recommendations.²

AML, acute myeloid leukemia; CR, complete remission; CRh, CR with partial hematologic recovery; CRi, CR with incomplete blood count recovery; EFS, event-free survival; ELN, European LeukemiaNet; IRT, Interactive Response Technology; IWG, International Working Group; LDAC, low-dose cytarabine; MRD, minimal residual disease; OS, overall survival; QD, once a day; ROW, rest of world; SC, subcutaneous.

1. Cheson BD, et al. J Clin Oncol. 2003;21:4642-4649; 2. Döhner H, et al. Blood. 2017;129:424-447.

VIALE-C: Overall Survival

VIALE-C: Overall Survival Subgroup Analysis

	Venetoclax + LDAC		Placebo + LDAC				
	n/N (%)	Median months (95% CI)	n/N (%)	Median months (95% CI)	,		HR (95% CI
All Subjects	99/143 (69.2)	8.4 (5.9, 10.1)	54/68 (79.4)	4.1 (3.1, 8.1)	H=-		0.72 /0.64 .17
Age (years)					i		0.72 (0.51, 1.0
18 - < 75	41/61 (67.2)	9.8 (5.6, 11.2)	20/28 (71.4)	6.5 (2.0, 9.7)	- 1	-	
≥ 75	58/82 (70.7)	6.6 (4.6, 9.7)	34/40 (85.0)		<u> </u>		0.80 (0.47, 1.3
AML Status							0.67 (0.44, 1.0
De novo	53/85 (62.4)	9.2 (7.2, 11.3)	36/45 (80.0)	6.5 (3.1, 9.8)	⊢ ■—		0.65 (0.42.0)
Secondary	46/58 (79.3)	5.6 (3.4, 9.8)	18/23 (78.3)	3.2 (1.8, 7.9)		—	0.65 (0.42, 0.9 0.77 (0.45, 1.9
Prior HMA	,	, , , , , , ,	, , ,	,			0.77 (0.45, 1.
Yes	24/28 (85.7)	5.6 (3.4, 9.6)	11/14 (78.6)	4.1 (2.2, 9.7)	m		0.91 (0.44, 1.8
No	75/115 (65.2)	8.9 (6.6, 10.9)	43/54 (79.6)	4.7 (2.2, 8.8)	⊢		0.67 (0.46, 0.9
Cytogenetic Risk					1		
Favorable	1/1 (100.0)	NA	2/3 (66.7)	NA	1		NA
Intermediate	54/90 (60.0)	10.9 (7.9, 16.4)	36/43 (83.7)	6.5 (2.2, 8.9)	⊢− −1i		0.57 (0.37, 0.5)
Poor	40/47 (85.1)	4.4 (3.0, 6.4)	15/20 (75.0)	3.6 (1.2, 9.7)	H		1.04 (0.58, 1.8
					Favors	Favors	
					Venetoclax + LDAC	Placebo + LDAC	_
				F			Ť
				0.1	1		10

VIALE-T: Phase III Trial Design

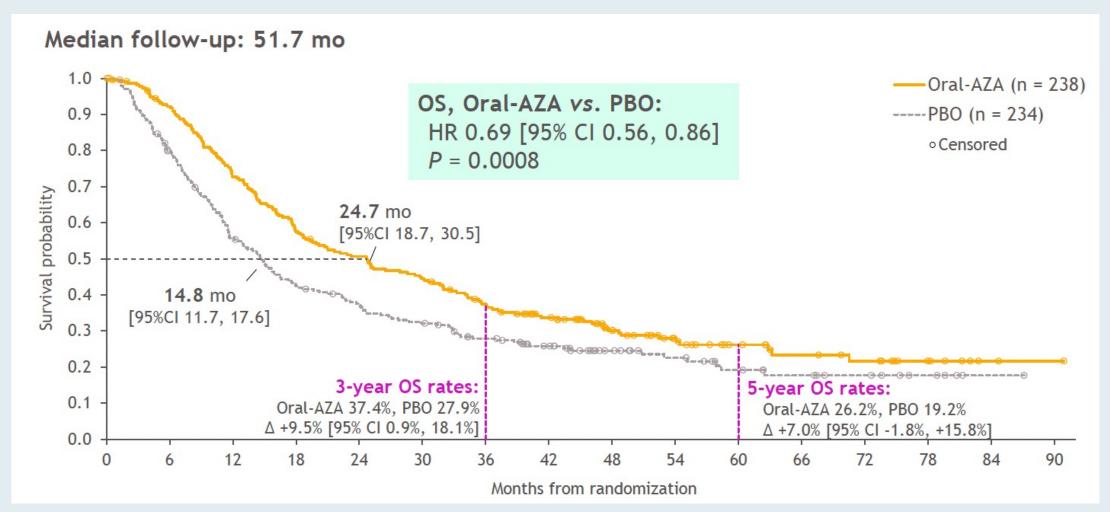
Key eligibility criteria (N = 424)

- Newly diagnosed AML
- ASCT within the past 30 days or planned
- Adequate renal, hepatic and hematologic criteria
- KPS score >50
- Age ≥17 years

- Primary endpoints: Dose-limiting toxicities (Part 1), relapse-free survival (Part 2)
- Select secondary endpoints: Overall survival (Part 2), graft versus host disease-free survival (Part 2)

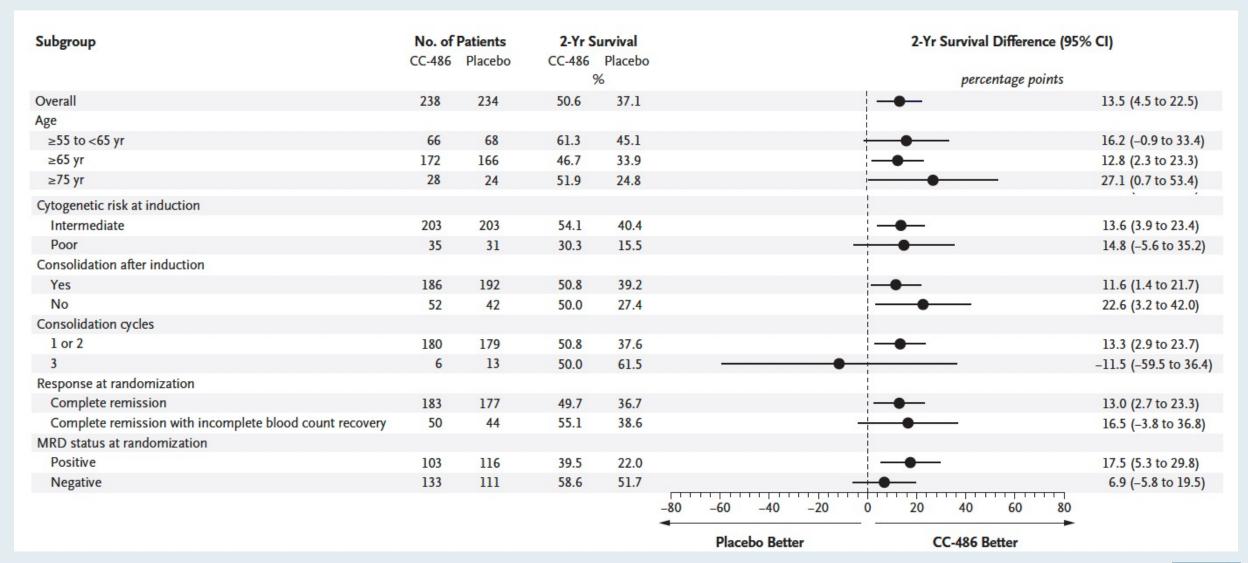
Long-term overall survival with oral azacitidine in patients with acute myeloid leukemia in first remission after intensive chemotherapy: updated results from the phase 3 QUAZAR AML-001 trial

Andrew H Wei,^{1,2} Hartmut Döhner,³ Hamid Sayar,⁴ Farhad Ravandi,⁵ Pau Montesinos,⁶ Hervé Dombret,^{7,8} Dominik Selleslag,⁹ Kimmo Porkka,^{10,11} Jun-Ho Jang,¹² Barry Skikne,^{13,14} CL Beach,¹⁴ Olivia Yu Tian,¹⁴ and Gail J Roboz^{15,16}


¹The Alfred Hospital, Melbourne, Australia; ²Australian Centre for Blood Diseases, Monash University, Melbourne, Australia; ³Ulm University Hospital, Ulm, Germany; ⁴Indiana University Cancer Center, Indianapolis, IN; ⁵The University of Texas MD Anderson Cancer Center, Houston, TX; ⁶Hospital Universitario La Fe de Valencia, Valencia, Spain; ¬Institut de Recherche Saint Louis, Université de Paris, Paris, France; ⁶AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium; ¹ºiCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland; ¹¹Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; ¹²Samsung Medical Center, Seoul, Republic of Korea; ¹³University of Kansas Medical Center, Kansas City, KS; ¹⁴Bristol Myers Squibb, Princeton, NJ; ¹⁵Weil Cornell Medical College, New York, NY; ¹⁶New York Presbyterian Hospital, New York, NY

Presentation 871

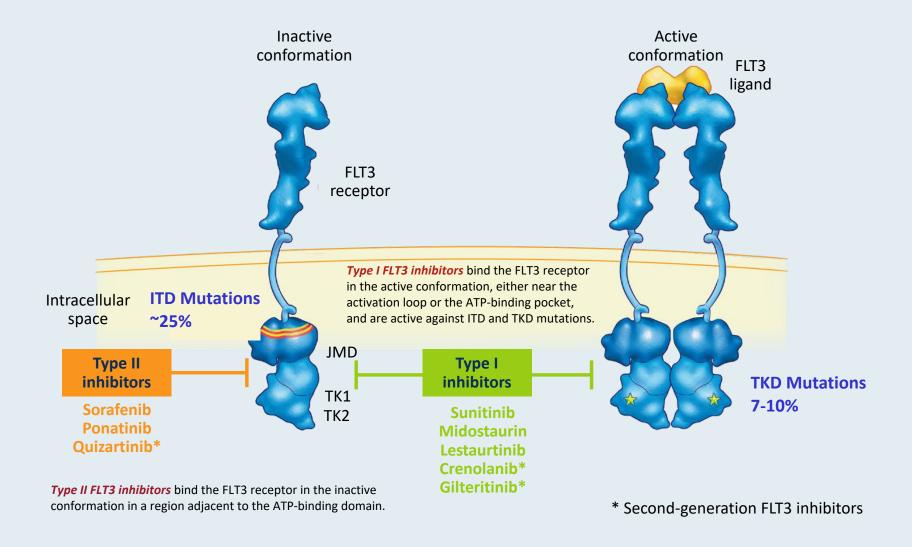
ASH 2021



QUAZAR AML-001: Long-Term Overall Survival with Oral Azacitidine in AML in First-Remission after Intensive Chemotherapy

QUAZAR AML-001: Overall Survival Subgroup Analysis

QUAZAR AML-001: Safety Summary and Select Adverse Events (AEs)


	CC-486 (N = 236)		Placebo (N = 233)	
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4
AEs leading to dose interruptions	43%	_	17%	_
AEs leading to dose reductions	16%	_	3%	_
AEs leading to discontinuation	13%	_	4%	_
Nausea	65%	3%	24%	<1%
Vomiting	60%	3%	10%	0
Diarrhea	50%	5%	21%	1%
Neutropenia	44%	41%	26%	24%
Thrombocytopenia	33%	22%	27%	21%
Anemia	20%	14%	18%	13%

Current Management Approaches for Patients with AML and a FLT3 and/or IDH Mutation

FLT3 Mutations (ITD and TKD) Occur in Approximately 30% to 35% of Patients with AML

Characteristics of Select FLT3 Inhibitors

FLT3 inhibitor	Inhibitory type	FLT3 kinase inhibition IC50 (nmol/L)	Non-FLT3 targets	FLT3-TKD mutation activity	Major toxicities
Sorafenib 400 mg BID	=	58	c-KIT PDGFR RAF VEGFR	No	Rash Hemorrhage Myelosuppression
Midostaurin 50 mg BID	I	6.3	c-KIT PDGFR PKC VEGFR	Yes	GI toxicity Myelosuppression
Quizartinib 30 – 60 mg QD	=	1.6	c-KIT	No	QTc prolongation Myelosuppression
Gilteritinib 120 mg QD	I	0.29	AXL LTK ALK	Yes	Elevated transaminases Diarrhea

Key Clinical Trials of FLT3 Inhibitors

Study	Agents	FLT3 inhibitor generation	Inhibits	N	Population	OS hazard ratio
SORAML Ph II	Sorafenib Placebo	First	ITD	267	Treatment naïve	0.82, n.s.
RATIFY Ph III	Midostaurin Placebo	First	ITD, TKD	717	Treatment naïve	0.78
QuANTUM-First Ph III	Quizartinib Placebo	Second	ITD	NR	Treatment naïve	NR
QuANTUM-R Ph III	Quizartinib SC	_	_	_	R/R	0.76
ARO-021 Ph III	Crenolanib Placebo	Second	ITD, TKD	510	Treatment naïve	Not yet reported
ADMIRAL Ph III	Gilteritinib SC	Second	ITD, TKD	371	R/R	0.64

OS = overall survival; SC = salvage chemotherapy; R/R = relapsed/refractory

Novatcheva ED et al. *Clin Lymphoma, Myeloma & Leuk* 2021;[Online ahead of print]. Rollig C et al. *Leukemia* 2021;35:2517-25.

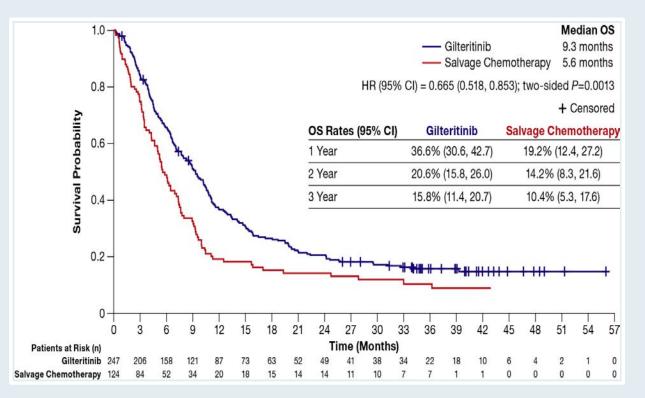
Quizartinib Added to Chemotherapy Demonstrates Superior Overall Survival Compared to Chemotherapy Alone for Adult Patients with Newly Diagnosed FLT3-ITD Positive AML

Press Release: November 18, 2021

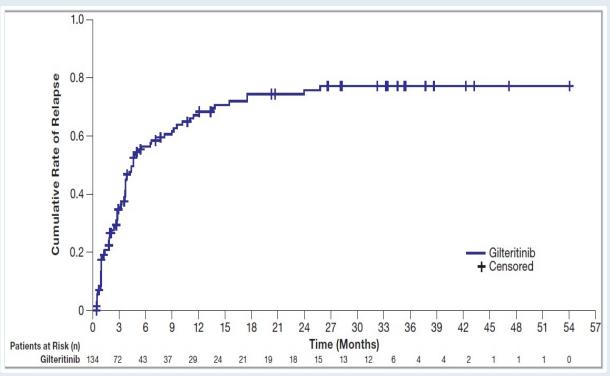
"Positive topline results [were announced] from the global pivotal QuANTUM-First phase 3 trial evaluating quizartinib, a highly potent and selective FLT3 inhibitor, in patients with newly diagnosed *FLT3*-ITD positive acute myeloid leukemia (AML).

QuANTUM-First met its primary endpoint, demonstrating that patients who received quizartinib in combination with standard induction and consolidation chemotherapy and then continued with single agent quizartinib had a statistically significant and clinically meaningful improvement in overall survival (OS) compared to those who received standard treatment alone. The safety of quizartinib was shown to be manageable and consistent with the known safety profile."

Follow-Up of Patients with FLT3-Mutated R/R AML in the Phase 3 ADMIRAL Trial

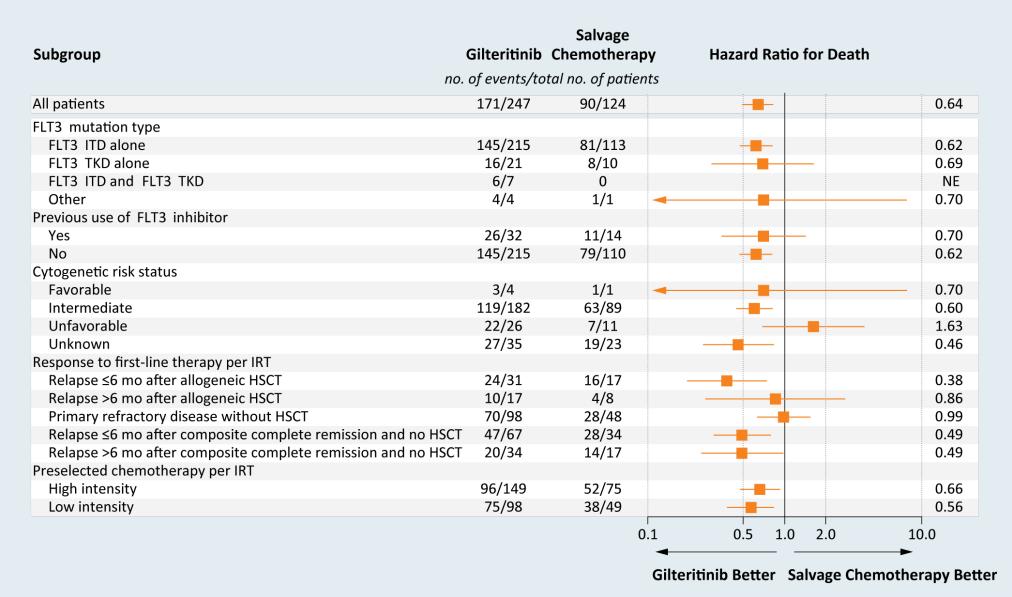

Perl AE et al.

ASCO 2021; Abstract 7013.



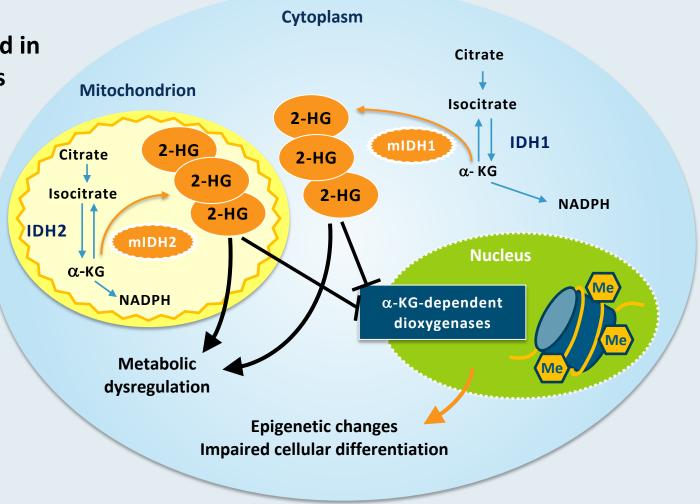
ADMIRAL: Updated Overall Survival and Cumulative Relapse Rate

Overall Survival in R/R *FLT3*^{mut+} AML Patients (ITT Population; N=371)


Cumulative Incidence of Relapse in Patients Achieving CRc With Gilteritinib

- With a median follow-up of 37.1 months, the median OS remained longer with gilteritinib than with salvage chemotherapy
- Most relapses after CRc occurred within 12 months and rarely occurred after 18 months

ADMIRAL: Subgroup Analysis of Overall Survival



IDH1 and IDH2 Mutations in AML

IDH mutations are found in ~16%-20% of AML cases

• IDH1 mutations in ~7.5%

IDH2 mutations in ~8-19%

Pivotal Studies of IDH Inhibitor Monotherapy for AML with IDH Mutations

IDH inhibitor	Enasidenib	lvoside	enib
FDA approval	Aug 1, 2017	July 20, 2018	May 2, 2019
Setting	Relapsed/refractory	Relapsed/refractory	Newly diagnosed
Trial	AG221-C-001	AG120-C-001	AG120-C-001
IDH mutation	IDH2	IDH1	IDH1
N	109	179	28
Dose	100 mg qd	500 mg qd	500 mg qd
CR + CRh	23%	30.4%	42.9%
Median duration of response	8.2 mo	8.2 mo	Not estimable
Median OS, ITT	9.3 mo	8.8 mo	12.6 mo
Median OS, complete remission	19.7 mo	Not reached	Not reported

CRh = CR with partial hematologic recovery

AG-221-AML-005: A Phase II Study of Enasidenib + Azacitidine for Newly Diagnosed AML with an IDH2 Mutation

Clinical endpoint	Enasidenib + azacitidine (n = 68)	Azacitidine (n =33)			
Overall response*	50 (74%)	12 (36%)			
CR	37 (54%)	4 (12%)			
CR + CRh	39 (57%)	6 (18%)			
12-month survival estimate (%)	72%	70%			
Select Grade ≥3 treatment-emergent AEs, n (%)					
Thrombocytopenia	25 (37%)	6 (19%)			
Anemia	13 (19%)	7 (22%)			
Febrile neutropenia	11 (16%)	5 (16%)			
IDH differentiation syndrome	7 (10%)	_			

^{*} Overall response defined as proportion of patients with complete remission, complete remission with incomplete blood count or platelet recovery, partial remission or morphological leukemia-free state

Phase Ib Trial of Ivosidenib in Combination with Azacitidine for Newly Diagnosed AML

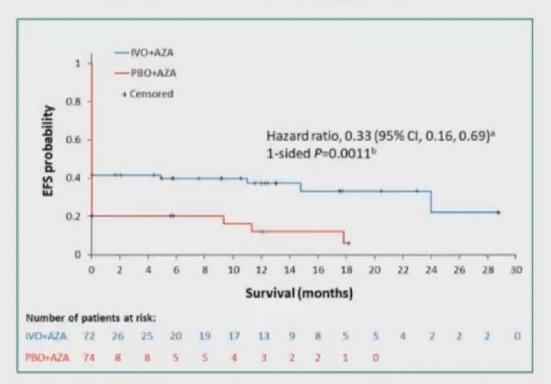
Clinical endpoint	N = 23			
CR + CRh, n (%)	16 (70%)			
CR	14 (61%)			
CRh	2 (9%)			
ORR, n (%)	18 (73%)			
12-month survival estimate (%)	82%			
Select Grade ≥3 treatment-emergent AEs, n (%)				
Thrombocytopenia	14 (61%)			
Anemia	10 (43.5%)			
Febrile neutropenia	10 (43.5%)			
ECG QT prolongation	3 (13%)			
IDH differentiation syndrome	2 (9%)			

CRh = CR with partial hematologic recovery

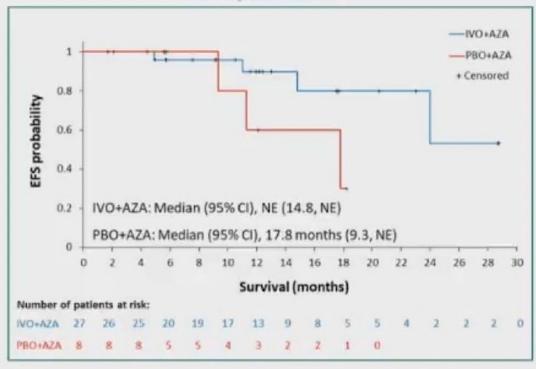
ASH 2021; Abstract 697

AGILE: A global, randomized, double-blind, phase 3 study of ivosidenib + azacitidine versus placebo + azacitidine in patients with newly diagnosed acute myeloid leukemia with an *IDH1* mutation

Pau Montesinos,^{1a} Christian Recher,^{2a} Susana Vives,³ Ewa Zarzycka,⁴ Jianxiang Wang,⁵ Giambattista Bertani,⁶ Michael Heuser,⁷ Rodrigo T Calado,⁸ Andre C Schuh,⁹ Su-Peng Yeh,¹⁰ Scott R Daigle,¹¹ Jianan Hui,¹¹ Vickie Zhang,¹¹ Shuchi S Pandya,¹¹ Diego A Gianolio,¹¹ Stephane de Botton,^{12b} Hartmut Döhner^{13b}

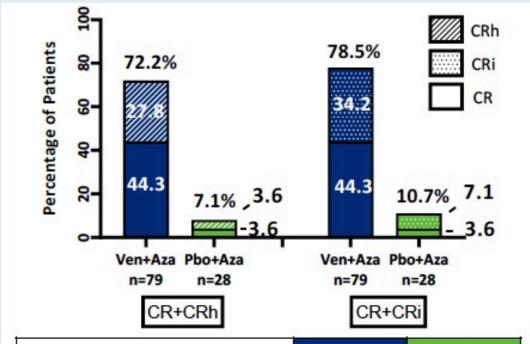

¹Hospital Universitari i Politècnic La Fe, Valencia, Spain; ²Institut Universitaire du Cancer de Toulouse Oncopole, CHU de Toulouse, Toulouse, France;
³Hospital Universitario Germans Trias i Pujol-ICO Badalona, Josep Carreras Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain;
⁴Klinika Hematologii i Transplantologii, Uniwersyteckie Centrum Kliniczne, Gdansk, Poland; ⁵Institute of Hematology & Hospital of Blood Disease – Peking Union Medical College, Tianjin, China; ⁸ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ⁷Hannover Medical School, Hannover, Germany;
⁸Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil; ⁹Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹⁰China Medical University, Taichung, Taiwan; ¹³Servier Pharmaceuticals, Boston, MA, USA; ¹²Institut Gustave Roussy, Villejuif, France; ¹³Ulm University Hospital, Ulm, Germany

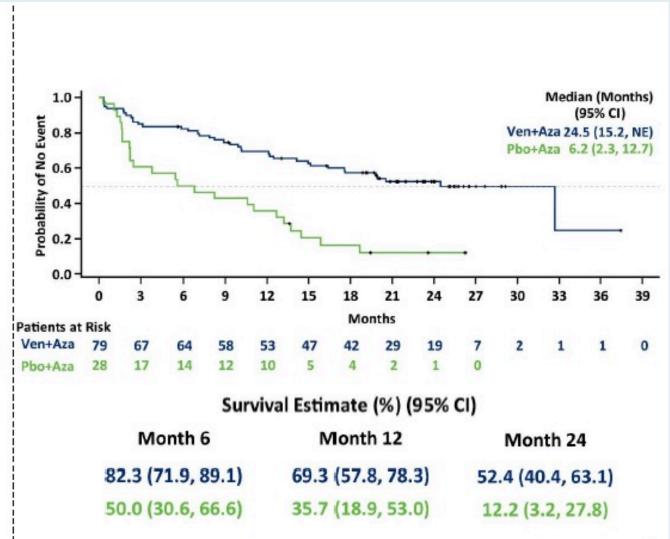
*Co-first authors; *Co-senior authors



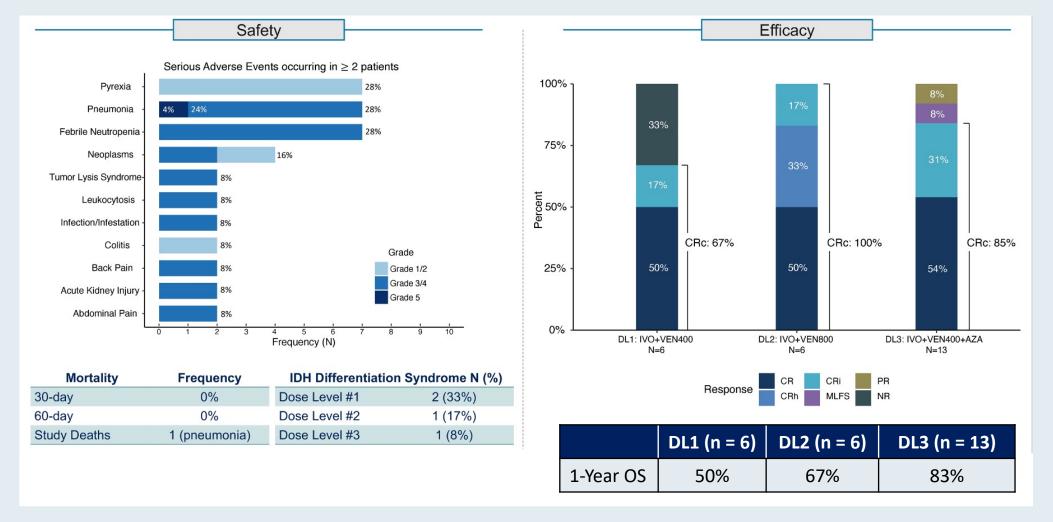
AGILE: Event-Free Survival

EFS in the intent-to-treat population


EFS among patients who achieved CR by 24 weeks


- · Patients who did not achieve CR by week 24 were considered to have had an event at day 1 of randomization.
- EFS benefit was consistent across subgroups: de novo status, region, age, baseline ECOG PS score, sex, race, baseline
 cytogenetic risk status, WHO classification of AML, baseline white blood cell count, baseline percentage of bone
 marrow blasts.

VIALE-A: Outcomes with Venetoclax + Azacitidine for AML with IDH1/2 Mutations


	Ven + Aza n = 79	Pbo + Aza n = 28
CR+CRh:		
Median time to first response, mo. (min, max)	1.0 (0.7, 9.6)	2.6 (2.1, 3.1)
Median DoR, mo. (95% CI)*	29.6 (16.7, NE)	15.5 (NE)
CR + CRi:	S D	
Median time to first response, mo. (min, max)	1.1 (0.7, 8.8)	3.4 (2.1, 7.1)
Median DoR, mo. (95% CI)*	29.5 (16.7, NE)	9.5 (3.5, 15.5)
Median treatment cycles (min,max)	8.0 (1, 37)	2.5 (1, 18)

Phase Ib/II Study of Ivosidenib with Venetoclax with or without Azacitidine in Patients with Myeloid Cancer and an IDH1 Mutation

 3 x 3 dose escalation/de-escalation study exploring 4 dose levels in 25 patients with advanced MDS or MPN or newly diagnosed or R/R AML

Commonly Observed and Noteworthy IDH Inhibitor-Related Adverse Events (AEs)

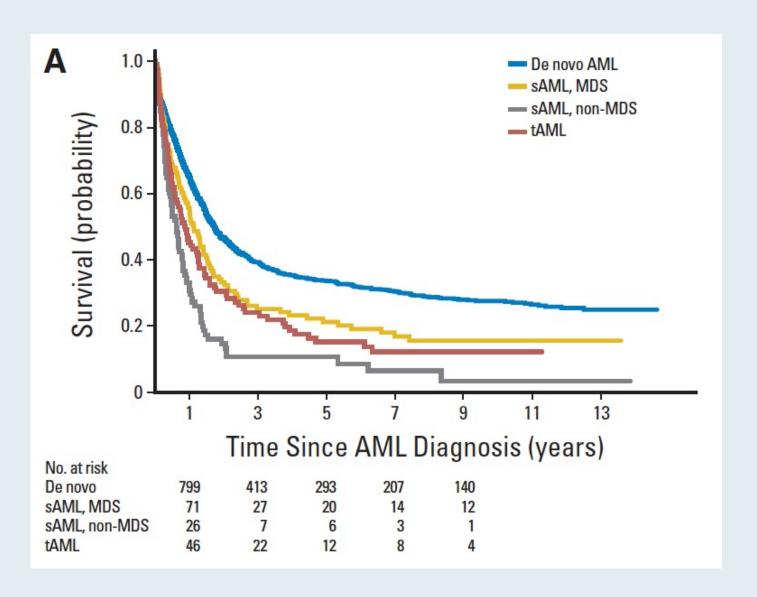
Commonly Observed Treatment-Emergent AEs (Any Grade, >20%)

- Enasidenib: Hyperbilirubinemia, nausea
- Ivosidenib: Diarrhea, leukocytosis, nausea, fatigue, febrile neutropenia, dyspnea, anemia, QT prolongation, peripheral edema

Noteworthy Grade 3 and 4 AEs

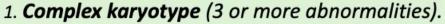
- IDH differentiation syndrome: 5%-6%
- Prolongation of the QT interval
 - Enasidenib: Not reported
 - Ivosidenib: ~8%
- Leukocytosis: 2%-3%
- Hyperbilirubinemia
 - Enasidenib: 12%
 - Ivosidenib: Not reported

IDH Differentiation Syndrome (IDH-DS)


- Potentially fatal complication of effective leukemia treatment
 - First described in patients with APL treated with ATRA
- Signs and symptoms of IDH-DS not specific
 - Fever, edema, weight gain, leukocytosis, rash, hypotension, renal dysfunction, and pleural and pericardial effusions
 - A rising leukocyte count, comprising increasing neutrophils with a parallel decrease in leukemic blasts
- Median time to onset: ~30 days (range: 5-340 days)
- **Frequency:** 5%-6% Grade 3 or higher
 - Frequent dose interruptions but not associated with treatment discontinuation
- Treatment
 - Corticosteroids for IDH-DS
 - Hydroxyurea for leukocytosis, which frequently accompanies IDH-DS
 - Hyperuricemia agents for tumor lysis syndrome, which may co-occur

Incidence and Management of Secondary AML (sAML)

Survival by AML Diagnosis

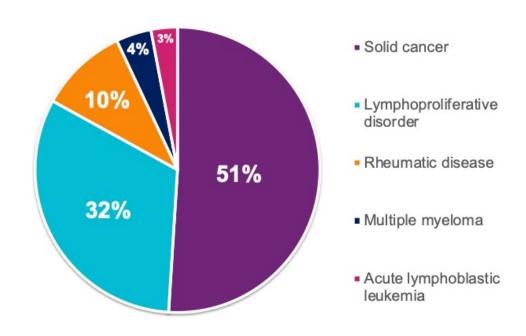


AML-MRC: AML with MDS-Related Changes

Definition: AML with a history of MDS or myelodysplasia-related cytogenetic findings, specifically ≥ 20% blasts in the peripheral blood or bone marrow and any of the following:

- Previously documented MDS or MDS/MPN
- Myelodysplasia-related cytogenetic abnormalities
- Morphologic detection of multilineage dysplasia

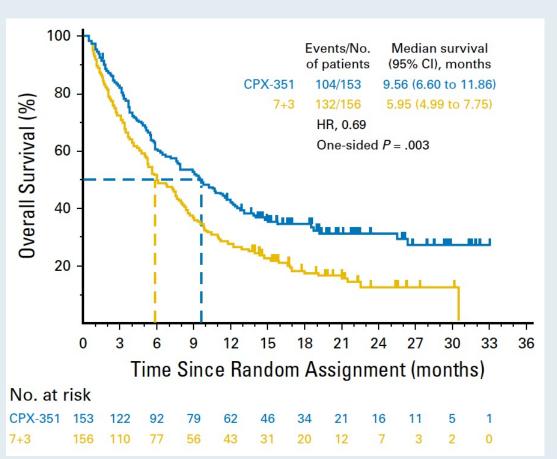
- 2.**Unbalanced abnormalities**: -7/del(7q), del(5q)/t(5q), i(17q)/t(17p), -13/del(13q), del(11q), del(12p)/t(12p), idic(X)(q13).
- 3. **Balanced abnormalities**: t(11;16)(q23.3;p13.3), t(3:21)(q26.2;q22.1), t(1;3)(p36.3;q21.2), t(2;11)(p21;q23.3), t(5;12)(q32;p13.2), t(5;7)(q32;q11.2), t(5;17)(q32;p13.2), t(5;10)(q32;q21.2), t(3;5)(q25.3;q35.1)


Footnote 1. The presence of 50% or more dysplastic cells in at least 2 cell lines, excluding cases when a mutation of NPM1 or biallelic mutation of CEBPA is present.

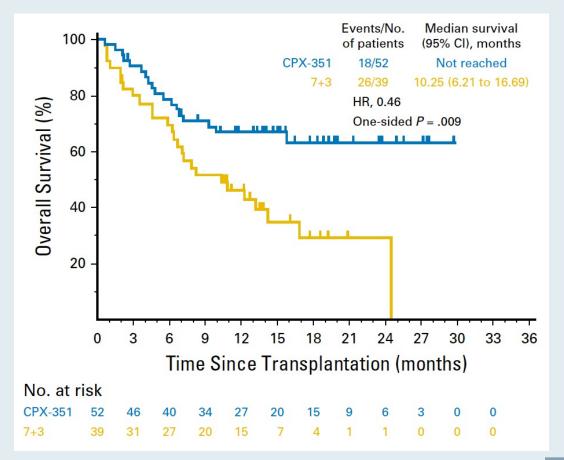
Therapy-Related AML

The WHO defines t-AML as AML that arises from prior cytotoxic therapy or ionizing radiotherapy for an unrelated disease. Estimated to account for 5-10% of all AML cases.

Primary malignancy prior to tAML

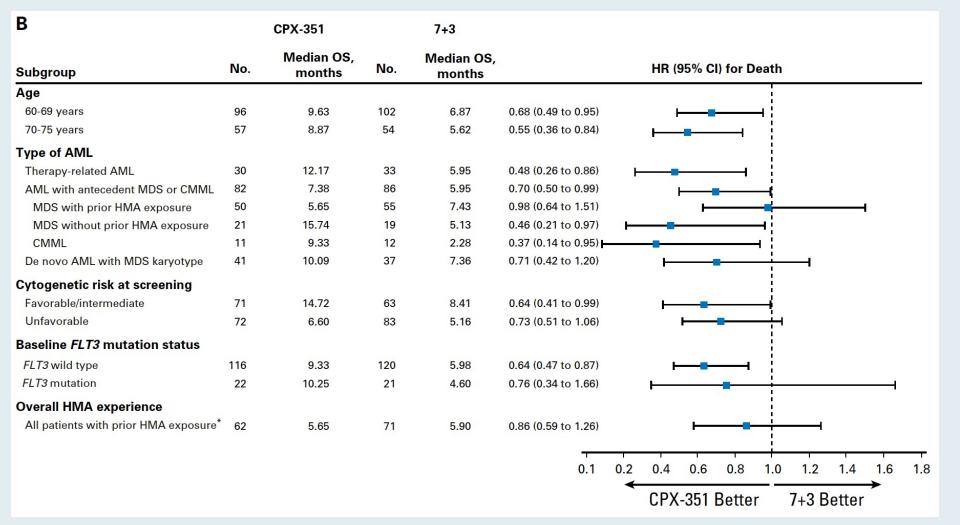

Cytotoxic therapy ^a	МОА	Examples	Latency period
Alkylating agents and radiation	Induce chromosomal deletions, commonly in 5 and/or 7	Cyclophosphamide, mechlorethamine, procarbazine, chlorambucil, melphalan, carmustine, busulfan	5-10 years
Topoisomerase II inhibitors	Induce chromosomal translocations	Etoposide, teniposide, mitoxantrone, epirubicin, and doxorubicin	2-3 years

Bhatia S. *Semin Oncol.* 2013;40(6):666-675. 2. Czader M, et al. *Am J Clin Pathol.* 2009;132(3):410-425. 3. Leone G, et al. *Haematologica*. 1999;84(10):937-945.

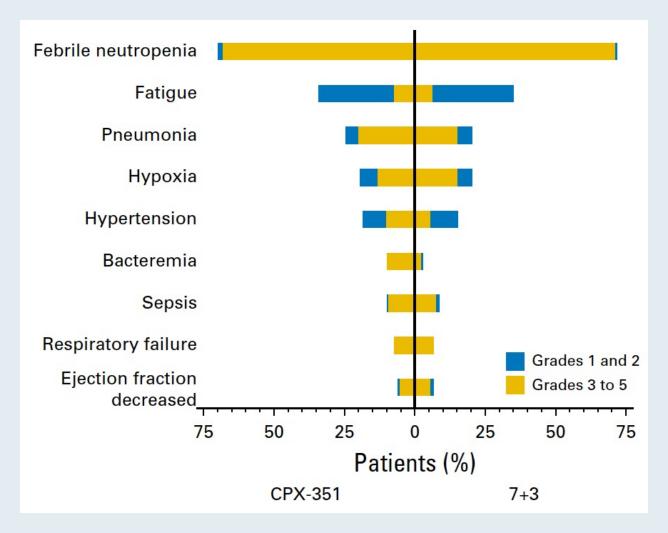


Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML

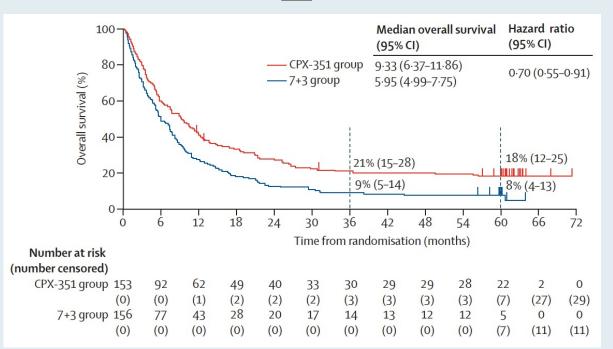
<u>OS</u>

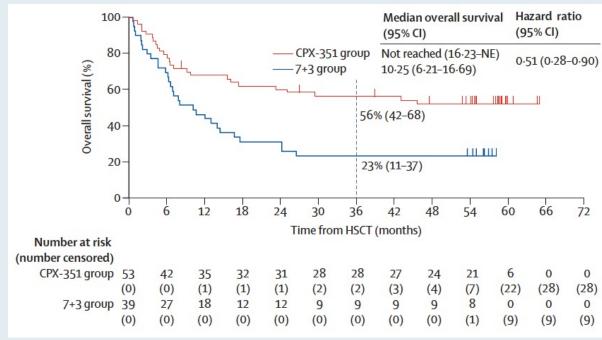


OS landmarked from time of HSCT



Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: Overall Survival by Baseline Characteristics


Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: Most Frequently Reported Adverse Events



Phase III Trial of CPX-351 versus 7 + 3 Cytarabine and Daunorubicin for Older Patients with Newly Diagnosed High-Risk or Secondary AML: 5-Year Overall Survival Results

OS

OS landmarked from time of HSCT

Meet The ProfessorCurrent and Future Management of Myelofibrosis

Thursday, March 10, 2022 5:00 PM - 6:00 PM ET

Faculty
Srdan Verstovsek, MD, PhD

Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

