Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Prostate Cancer

Part 1 of a 2-Part CME Satellite Symposium Series in Conjunction with the AUA 2022 Annual Meeting

Friday, May 13, 2022

8:00 AM - 10:00 AM CT (9:00 AM - 11:00 AM ET)

Faculty

Raoul S Concepcion, MD Fred Saad, MD Matthew R Smith, MD, PhD

Moderator Emmanuel S Antonarakis, MD

Faculty

Raoul S Concepcion, MD
Chief Science Officer
US Urology Partners
Nashville, Tennessee

Matthew R Smith, MD, PhD
Claire and John Bertucci Endowed Chair in
Genitourinary Cancers
Professor of Medicine, Harvard Medical School
Director, Genitourinary Malignancies Program
Massachusetts General Hospital Cancer Center
Boston, Massachusetts

Fred Saad, MD

Professor and Chief of Urology
Director of GU Oncology
Raymond Garneau Chair in Prostate Cancer
University of Montreal Hospital Center (CHUM)
Director, Prostate Cancer Research
Montreal Cancer Institute/CRCHUM
Montréal, Québec, Canada

Moderator
Emmanuel S Antonarakis, MD
Clark Endowed Professor of Medicine
Division of Hematology, Oncology and
Transplantation
University of Minnesota
Minneapolis, Minnesota

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey before the meeting. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the premeeting survey before the meeting. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

 To learn more about our education programs, visit our website, www.ResearchToPractice.com

Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Satellite Symposium Series in Conjunction with the AUA 2022 Annual Meeting

Friday, May 13, 2022 6:00 PM - 8:00 PM CT (7:00 PM - 9:00 PM ET)

Faculty

Matthew D Galsky, MD Ashish M Kamat, MD, MBBS Stephen B Williams, MD, MS

Moderator Sumanta Kumar Pal, MD

Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Prostate Cancer

Part 1 of a 2-Part CME Satellite Symposium Series in Conjunction with the AUA 2022 Annual Meeting

Friday, May 13, 2022

8:00 AM - 10:00 AM CT (9:00 AM - 11:00 AM ET)

Faculty

Raoul S Concepcion, MD Fred Saad, MD Matthew R Smith, MD, PhD

Moderator Emmanuel S Antonarakis, MD

Commercial Support

This activity is supported by educational grants from Astellas and Pfizer Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Merck, and Pfizer Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Antonarakis — Disclosures

Advisory Committee	Alkido Pharma Inc, Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Blue Earth Diagnostics, Bristol-Myers Squibb Company, Constellation Pharmaceuticals, Curium Pharma, Exact Sciences, Foundation Medicine, Invitae, Ismar Healthcare NV, Merck, Orion Corporation, Tempus
Consulting Agreements	EcoR1 Capital LLC, KeyQuest Health
Contracted Research	AstraZeneca Pharmaceuticals LP, Celgene Corporation, Clovis Oncology
Other	QIAGEN: licenser of technology

Dr Concepcion — Disclosures

No relevant conflicts of interest to disclose

Dr Saad — **Disclosures**

Advisory Committee and Consulting Agreements	Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Janssen Biotech Inc, Myovant Sciences, Novartis, Pfizer Inc, Sanofi Genzyme
Contracted Research	Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, Janssen Biotech Inc, Merck, Myovant Sciences, Novartis, Pfizer Inc, Sanofi Genzyme

Dr Smith — **Disclosures**

Advisory Committee, Consulting
Agreements and Contracted Research

Bayer HealthCare Pharmaceuticals, Janssen Biotech Inc, Lilly, Pfizer Inc

Agenda

MODULE 1: Management Approaches for Nonmetastatic Prostate Cancer

Dr Concepcion

MODULE 2: Role of Treatment Intensification in Metastatic Hormone-Sensitive Prostate Cancer (mHSPC) — Dr Smith

MODULE 3: Selection and Sequencing of Therapy for Metastatic CRPC (mCRPC)

Dr Antonarakis

MODULE 4: Current and Future Integration of PARP Inhibitors in the Management of Prostate Cancer — Dr Saad

Laura Bukavina, MD, MPH Fox Chase Cancer Center Philadelphia, Pennsylvania

David S Morris, MDUrology Associates
Nashville, Tennessee

Jason Hafron, MD
Oakland University William
Beaumont School of Medicine
West Bloomfield, Michigan

David A Taub, MD, MBA
Lynn Cancer Institute
Baptist Health South Florida
Boca Raton, Florida

Paul Markowski, MD Atlantic Health System Summit, New Jersey

MODULE 1: Management Approaches for Nonmetastatic Prostate Cancer

For your patients with high-risk biochemical (M0) recurrence after primary radiation therapy, in general, if you could access a PSMA PET scan, would you?

- 1. Yes
- 2. No

Case Presentation: A 70-year-old man with M0 HSPC

Dr Laura Bukavina (Philadelphia, Pennsylvania)

What form of ADT would you most likely recommend for a 53-year-old man with high-risk, node-positive prostate cancer at prostatectomy?

- 1. Relugolix
- 2. Leuprolide
- 3. Goserelin
- 4. Other

Case Presentation: A 53-year-old man with high-risk M0 HSPC and a slowly rising PSA

Dr David Morris (Nashville, Tennessee)

Management Approaches for Nonmetastatic Prostate Cancer

Raoul S. Concepcion, MD, FACS
Chief Science Officer
Nashville TN

Clinical Challenges

- Detection of clinically significant disease
- Management of HG/HR disease, non-metastatic
- How will molecular imaging change the current landscape
- Optimizing therapeutic choices and SE profiles, nmCRPC

Semantics

- Localized Prostate Cancer
 - Very Low Risk
 - Low Risk
 - Favorable Intermediate
 - High Risk
 - Very High Risk

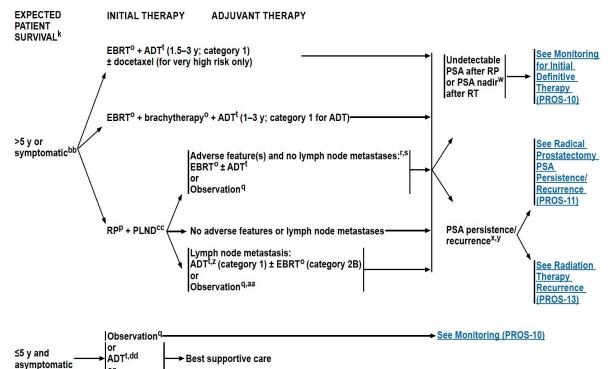
- Advanced Prostate Cancer
 - What defines?
- Metastatic Disease: Yes/No
- Continuous Hormonal Status: Yes/No
- CNPC/CSPC
- CRPC

National NCCN Guidelines Version 1.2022 Comprehensive Prostate Cancer

NCCN Guidelines Index
Table of Contents
Discussion

NCCN Evidence Blocks™

INITIAL RISK STRATIFICATION AND STAGING WORKUP FOR CLINICALLY LOCALIZED DISEASE^d


Risk Group	Clinical/Pathologic Features See Staging (ST-1)			Additional Evaluation ^{g,h}	Initial Therapy
Very low ^e	Has all of the following: • cT1c • Grade Group 1 • PSA <10 ng/mL • Fewer than 3 prostate biopsy fragments/cores positive, ≤50% cancer in each fragment/core • PSA density <0.15 ng/mL/g			Consider confirmatory prostate biopsy ± mpMRI if not performed prior to biopsy to establish candidacy for active surveillance	See PROS-3
Low ^e	Has all of the following but does not qualify for very low risk: • cT1-cT2a • Grade Group 1 • PSA <10 ng/mL			Consider confirmatory prostate biopsy ± mpMRI if not performed prior to biopsy to establish candidacy for active surveillance	See PROS-4
	Has all of the following: No high-risk group features No very-high-risk group features To very high-risk group features To very-high-risk group features To very-high-risk group features To very-high-risk group features		Grade Group 1 or 2 <50% biopsy cores positive (eg, <6 of 12	Consider confirmatory prostate biopsy ± mpMRI if not performed prior to biopsy for those considering active surveillance	See PROS-5
Has one or more intermediate risk factors (IRFs): ACTOB-CTOS		Unfavorable intermediate	Has one or more of the following: • 2 or 3 IRFs • Grade Group 3 • ≥ 50% biopsy cores positive (eg, ≥ 6 of 12 cores)	Bone and soft tissue imaging ^{i,j} • If regional or distant metastases are found, see PROS-8 or <u>PROS-12</u>	See PROS-6
High	Has no very-high-risk features and has exactly one high-risk feature: • cT3a OR • Grade Group 4 or Grade Group 5 OR • PSA >20 ng/mL		exactly one high-risk feature:	Bone and soft tissue imaging i,j I regional or distant metastases are found, see PROS-8 or PROS-12	See PROS-7
Very high	Has at least one of the following: • cT3b-cT4 • Primary Gleason pattern 5 • 2 or 3 high-risk features • >4 cores with Grade Group 4 or 5			Bone and soft tissue imaging ^{i,j} • If regional or distant metastases are found, see PROS-8 or PROS-12	See PROS-7

Cancer Prostate Cancer

NCCN Guidelines Index
Table of Contents
Discussion

HIGH- OR VERY-HIGH-RISK GROUP

See Footnotes for Risk Groups (PROS-7A).

EBRT^{o,dd}

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

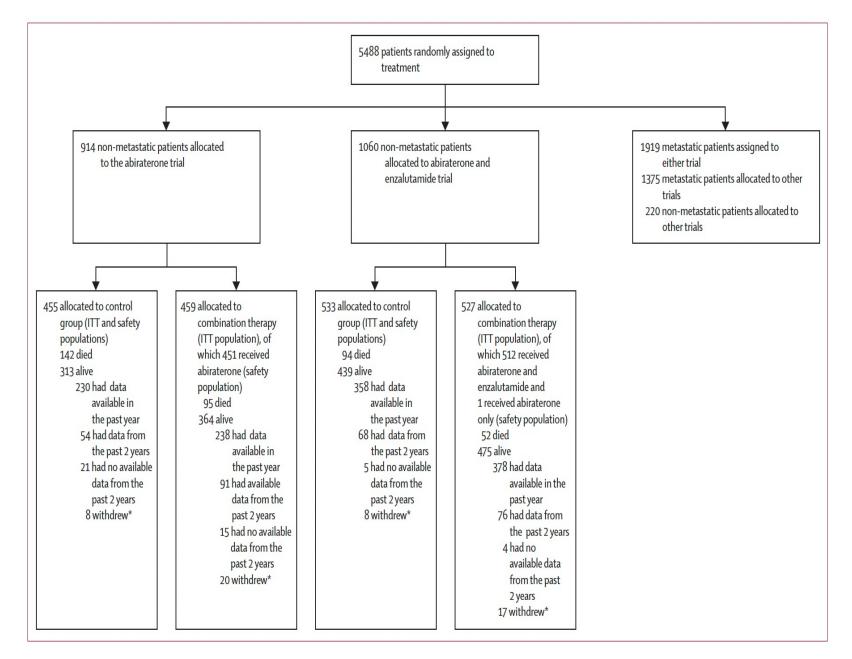
Version 2.2021, 02/17/21 © 2021 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN.

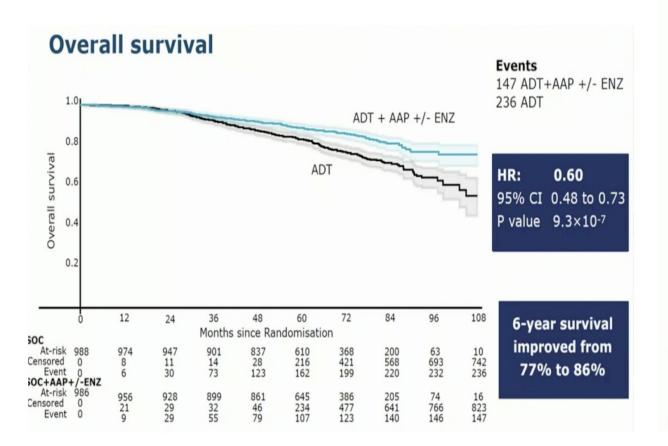
Ongoing Phase II & III Trials in High-Risk Prostate Cancer

Clinical trial ID	Description	Intervention	Size	Status	Primary outcome
		SECOND GENERATION ADT			
ARNEO trial	Interventional, single center, phase II,	degarelix + apalutamide vs degarelix	84	Recruiting	Minimal residual disease after 12
(NCT03080116)	randomized, double-blind, placebo controlled	+ placebo	(estimated)		weeks of neoadjuvant therapy
ATLAS trial	Interventional, multicenter, phase III,	Apalutamide + placebo + RT vs	1,503	Not	Metastasis-free survival
(NCT02531516)	randomized, double-blind, placebo-controlled	placebo + ADT + RT	(actual)	recruiting	
ENZARAD trial	Interventional, phase III, randomized, open label	Enzalutamide + LHRHa + RT vs	802	Not	Metastasis-free survival
(NCT02446444)		conventional NSAA + LHRHa + RT	(actual)	recruiting	
PROTEUS trial	Interventional, phase III, randomized, double-	Apalutamide + ADT + RP + pLND	1,500	Recruiting	Pathologic complete response
(NCT03767244)	blind, placebo controlled	vs placebo + ADT + RP + pLND	(estimated)		(pCR) and metastasis-free survival
iPARP					
NADIR trial	Interventional, phase II, randomized, open label	ADT + IMRT vs niraparib + ADT +	180	Not	Maintenance of disease-free state
(NCT04037254)		IMRT	(estimated)	recruiting	
PARTICLE THERA	APY				
NCT02672449	Prospective, multicenter, phase II, open label	Carbon ion boost followed by photon RT	65 (estimated)	Recruiting	G3 or G4 adverse events according to the RTOG / EORTC scale

ADT, androgen deprivation therapy; G, grade; IMRT, intensity-modulated RT; LHRHa, luteinizing hormone-releasing hormone analog; NSAA, non-steroidal anti-androgen; pCR, pathologic complete response; pLND, pelvic lymph node dissection; RP, radical prostatectomy; RT, radiotherapy.

BMJ Open A phase 3 randomised study of enzalutamide plus leuprolide and enzalutamide monotherapy in high-risk non-metastatic hormone-sensitive prostate cancer with rising PSA after local therapy: EMBARK study design


> Stephen J Freedland , 1,2 Ugo De Giorgi, Martin Gleave, Brad Rosbrook, 5 Qi Shen,⁶ Jennifer Sugg,⁷ Gabriel P Haas,⁸ Neal D Shore⁹


Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol

Gerhardt Attard, Laura Murphy, Noel W Clarke, William Cross, Robert J Jones, Christopher C Parker, Silke Gillessen, Adrian Cook, Chris Brawley, Claire L Amos, Nafisah Atako, Cheryl Pugh, Michelle Buckner, Simon Chowdhury, Zafar Malik, J Martin Russell, Clare Gilson, Hannah Rush, Jo Bowen, Anna Lydon, Ian Pedley, Joe M O'Sullivan, Alison Birtle, Joanna Gale, Narayanan Srihari, Carys Thomas, Jacob Tanguay, John Wagstaff, Prantik Das, Emma Gray, Mymoona Alzoueb, Omi Parikh, Angus Robinson, Isabel Syndikus, James Wylie, Anjali Zarkar, George Thalmann, Johann S de Bono, David P Dearnaley*, Malcolm D Mason*, Duncan Gilbert, Ruth E Langley, Robin Millman, David Matheson, Matthew R Sydes†, Louise C Brown†, Mahesh K B Parmar†, Nicholas D James†, on behalf of the Systemic Therapy in Advancing or Metastatic Prostate cancer: Evaluation of Drug Efficacy (STAMPEDE) investigators‡

Adverse events

Worst toxicity grade in	(A	only AP arison)	ADT only (AAP + ENZ comparison)		AAP		AAP + ENZ	
1st 2 years	N (454)	%	N (530)	%	N (456)	%	N (522)	%
3	118	26	160	30	151	33	277	53
4	12	3	12	2	17	4	231	4
5	0	0	0	0	3*	1	4^	1

Toxicities with the largest difference between AAP vs AAP+ENZ = (Gr 3) erectile dysfunction, hypertension, fatigue, (Gr 3/4) transaminitis

^{*1} event each of rectal adenocarcinoma, pulmonary haemorrhage and a respiratory disorder

^{^2} events each of septic shock and sudden death

Printed by raoul concepcion on 8/14/2021 11:09:30 AM. For personal use only. Not approved for distribution. Copyright © 2021 National Comprehensive Cancer Network, Inc., All Rights Reserved.

Comprehensive Cancer Cancer Prostate Cancer

NCCN Guidelines Index
Table of Contents
Discussion

HIGH- OR VERY-HIGH-RISK GROUP **EXPECTED INITIAL THERAPY ADJUVANT THERAPY** PATIENT SURVIVALK EBRT^o + ADT^t (1.5-3 y; category 1) See Monitoring Undetectable ± docetaxel (for very high risk only) for Initial PSA after RP Definitive or PSA nadir^W Therapy after RT (PROS-10) EBRT^o + brachytherapy^o + ADT^t (1-3 y; category 1 for ADT) >5 y or See Radical symptomaticbl Adverse feature(s) and no lymph node metastases: r,s Prostatectomy EBRTO ± ADT Persistence Observationq Recurrence (PROS-11) RPP + PLNDCC PSA persistence/ → No adverse features or lymph node metastasesrecurrence^{x,y} Lymph node metastasis: ADT^{t,z} (category 1) ± EBRT⁰ (category 2B) See Radiation Therapy Observation q,aa Recurrence (PROS-13) See Monitoring (PROS-10) Observation⁰ ≤5 y and ADTt,dd → Best supportive care asymptomatic EBRT^{o,dd}

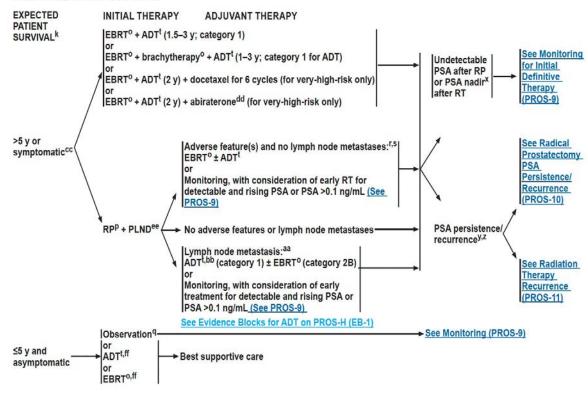
See Footnotes for Risk Groups (PROS-7A).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 2 2021, 02/17/21 © 2021 National Comprehensive Cancier Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN.

PROS-7


NCCN Guidelines Version 1.2022

Prostate Cancer

NCCN Evidence Blocks™

NCCN Guidelines Index
Table of Contents
Discussion

HIGH- OR VERY-HIGH-RISK GROUP

See Footnotes for Risk Groups (PROS-8A)

Note: For more information regarding the categories and definitions used for the NCCN Evidence Blocks^{1M}, see page <u>EB-1</u>.

All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 1.2022, 09/23/21 © 2021 National Comprehensive Cancer Network® (NCCN®). All rights reserved. NCCN Evidence Blocks™, NCCN Guidelines®, and this illustration may not be reproduced in any form without the express written permission of NCCN.

PROS-7

Cardiovascular Morbidity in a Randomized Trial Comparing GnRH Agonist and GnRH Antagonist among Patients with Advanced Prostate Cancer and Preexisting Cardiovascular Disease

David Margel,*,† Avivit Peer, Yaara Ber, Liat Shavit-Grievink, Tzlil Tabachnik, Sivan Sela, Guy Witberg, Jack Baniel, Daniel Kedar, Wilhelmina C. M. Duivenvoorden, Eli Rosenbaum‡ and Jehonathan H. Pinthus,†,‡

From the Division of Urology (DM, YB, LS-G, TT, SS, JB, DK), Rabin Medical Center and Davidoff Cancer Centre (LS-G, ER) and Department of Cardiology (GW), Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University (DM, JB, DK), Tel Aviv and Department of Oncology, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa (AP), Israel, and Division of Urology, Department of Surgery, McMaster University (WCMD, JHP), Hamilton, Ontario, Canada

Table 3. CVEs and MACCEs by study arm

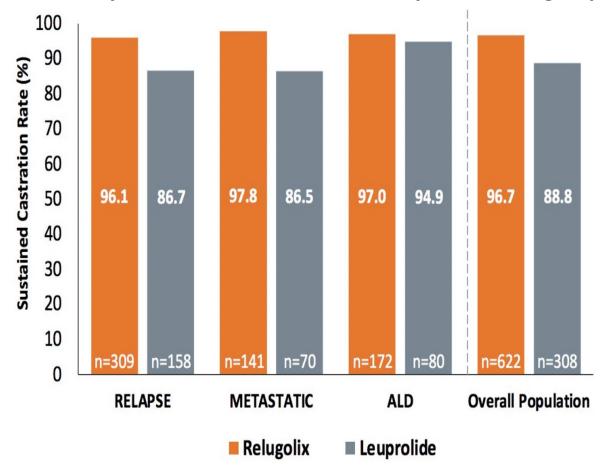
	GnRH Agonist	GnRH Antagonist	p Value (log-rank test)
No. CVEs and MACCEs:*	200	100.00	_
Pts	39	41	
Death	2	_	
Myocardial infarction	1	_	
Cerebrovascular accident	2	_	
Heart catheterization with stent	3	1	
Cardiac related emergency room	5	1	
visits			
Total No. (%):			
CVEs	13 (33.3)	2 (4.8)	0.001
MACCEs	8 (20.5)	1 (2.4)	0.013

^{*} Cardiovascular related events included death, myocardial infarction, cerebrovascular accident, transient ischemic attack, heart catheterization with or without intervention and cardiac related hospitalization, and MACCEs included death, myocardial infarction, cerebrovascular accident and heart catheterization with stent.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 4, 2020


VOL. 382 NO. 23

Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer

Neal D. Shore, M.D., Fred Saad, M.D., Michael S. Cookson, M.D., M.M.H.C., Daniel J. George, M.D., Daniel R. Saltzstein, M.D., Ronald Tutrone, M.D., Hideyuki Akaza, M.D., Alberto Bossi, M.D., David F. van Veenhuyzen, M.B., Ch.B., M.Pharm.Med., Bryan Selby, M.S., Xiaolin Fan, Ph.D., Vicky Kang, M.D., Jackie Walling, M.B., Ch.B., Ph.D., and Bertrand Tombal, M.D., Ph.D., for the HERO Study Investigators*

HERO Study: Sustained Castration Rates by Clinical Subgroups

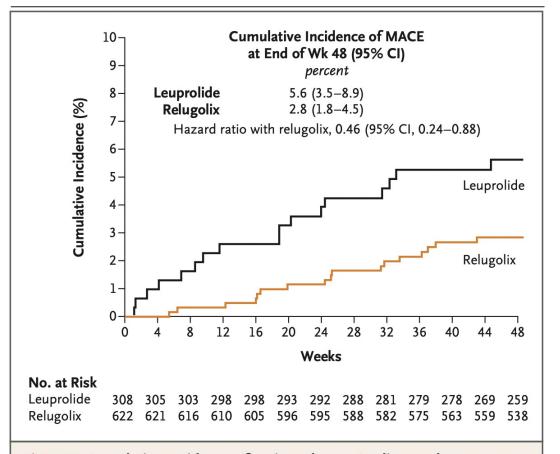


Figure 2. Cumulative Incidence of Major Adverse Cardiovascular Events (MACE).

Kaplan-Meier curves show the cumulative incidence of MACE in the relugolix group and the leuprolide group through 48 weeks of treatment. The hazard ratio was based on a Cox regression model.

Efficacy Outcomes with Darolutamide, Apalutamide, Enzalutamide for nmCRPC

	ARAMIS (N=1509) ¹		SPARTAN	(N=1207) ^{2,3}	PROSPER (N=1401) ^{4,5}		
	Daro + ADT (N=955)	PBO + ADT (N=554)	APA + ADT (N=806)	PBO + ADT (N=401)	ENZA + ADT (N=933)	PBO + ADT (N=468)	
Primary endpoint							
MFS.							
Median, months	40.4 (34.33, NR)	18.7 (15.51, 22.34)	40.51 (NE, NE)	16.20 (14.59, 18.40)	36.6 (33.1, NR)	14.7 (14.2, 15.0)	
HR (95% CI), <i>P</i>	0.41 (0.34, 0.	50), <i>P</i> <0.001	0.28 (0.23, 0.35), <i>P</i> <0.0001		0.29 (0.24, 0.35), <i>P</i> <0.0001		
Secondary Endpoint							
os							
Median, months	83%	77%	73.9	59.9	67	56.3	
HR (95% CI), <i>P</i>	0.69 (0.53, 0.	88), <i>P</i> =0.003	0.78 (0.64, 096), P < 0.0001		3 (0.64, 096), P < 0.0001 0.73 (0.61, 0.89), P=0.00		

Follow up						
Median, months	29.0	52.0	48.0	48.0		

Safety — Overview of TEAEsa

	ARAMIS (Daro vs PBO) ¹ All (%)		SPARTAN (A	PA vs PBO) ^{2,3}	PROSPER (ENZA vs PBO) ^{4,5}		
			All	(%)	All (%)		
	Daro	РВО	APA	РВО	ENZA	РВО	
Any AE	83.2	76.9	96.5	93.2	87	77	
SAE	24.8	20.0	24.8	23.1	24	40	
SAE	24.0	20.0	25	23	24	18	
AE leading to discontinuation	8.9	8.7	11	Not reported	9.4	6.0	
AE leading to discontinuation			10.6	7.0	9.4	0.0	
Death	3.9	3.2	1.2	0.3	3.4	0.6	
Death	3.9	3.2	1	0.3	3.4	0.6	
AEs leading to dose modification	14.2	9.4	Not Reported	Not Reported	Not Reported	Not Reported	
AEs leading to dose interruption or reduction	Not Reported	Not Reported	33%	Not Reported	Not Reported	Not Reported	

Safety — TEAEs of Interest (General)^a

	ARAMIS (Daro vs PBO) ¹		SPARTAN (A	PA vs PBO) ²	PROSPER (ENZA vs PBO) ^{3,4}		
	All Gra	des (%)	All Gra	des (%)	All Grades ^b (%)		
	Daro	РВО	APA	PBO	ENZA	РВО	
Hypertension	7.3	6.0	25	20	12	5.2	
Rash	2.5	0.7	24	6	Not Reported	Not Reported	
Pruritus	Not reported	Not Reported	6.2	2	Not Reported	Not Reported	
Weight decreased	3.6	2.2	16	6	5.9	1.5	
Diarrhea	6.9	5.6	20	15	10	10	
Nausea	5.0	5.8	18	16	11	8.6	
Decreased appetite	2.9	2.9	12	9	9.6	3.9	
Hot flush	5.2	4.6	14	9	13.0	7.7	
Arthralgia	8.1	9.2	16	8	8	7	
Hypothyroidism	0.2	0	8.1	2	Not Reported	Not Reported	
	Acute myocardial infarction		Ischemic heart disease		Major adverse cardiovascular		
Cardiavasavlar avasts	0.5	0.2	3.7	2	eve	ent [©]	
Cardiovascular events	Cardiad	failure	Heart failure		5	2	
	1.9	0.9	2.2	1	5	3	

Safety — TEAEs of Interest (CNS)^a

	ARAMIS (Da	ro vs PBO)1	SPARTAN (A	PA vs PBO) ^{2,3}	PROSPER (EN	IZA vs PBO)4,5
	All Grades (%)		All Gra	des (%)	All Gradesb (%)	
	Daro	РВО	APA	PBO	ENZA	РВО
Fatigue including Asthenia	15.8	11.4	39	28	40	20
Fatigue (alone)	12.1	8.7	30.4	21.1	33	14
Asthenia (alone)	Not Reported	Not Reported	Not Reported	Not Reported	9	6
Headache	3.9	2.5	Not Reported	Not Reported	9.1	4.5
Fracture	4.2	3.8	12	7	9.8	4.9
Fall	4.2	4.7	16	9	11	4.1
Seizure	0.2	0.2	0.2	0	0.3	0
Dizzinessd	3.7	2.5	9.3	6.3	12	5.2
Mental and cognitive changes						
Cognitive disorder	0.4	0.2	Not Reported	Not Reported	Not Reported	Not Reported
Memory impairment	0.5	1.3	Not Reported	Not Reported	Not Reported	Not Reported
Mental impairment disordere	Not Reported	Not Reported	5.1	3.0	Not Reported	Not Reported
Cognitive and attention disordersf	Not Reported	Not Reported	Not Reported	Not Reported	4.6	1.5

MODULE 2: Role of Treatment Intensification in Metastatic Hormone-Sensitive Prostate Cancer

Regulatory and reimbursement issues aside, what systemic therapy would you typically employ for a 59-year-old man presenting with bulky, high-volume metastatic hormonesensitive prostate cancer (mHSPC)?

- 1. ADT alone
- 2. ADT and abiraterone
- 3. ADT and apalutamide
- 4. ADT and enzalutamide
- 5. ADT and darolutamide
- 6. ADT and docetaxel
- 7. ADT with docetaxel and secondary hormonal therapy
- 8. Other

Dr Paul Markowski Summit, New Jersey

A 59-year-old man with metastatic HSPC

Dr David Morris Nashville, Tennessee

A 57-year-old man with metastatic HSPC – germline BRCA2 mutation

Regulatory and reimbursement issues aside, what systemic therapy would you typically employ for a 49-year-old man presenting with low-volume mHSPC?

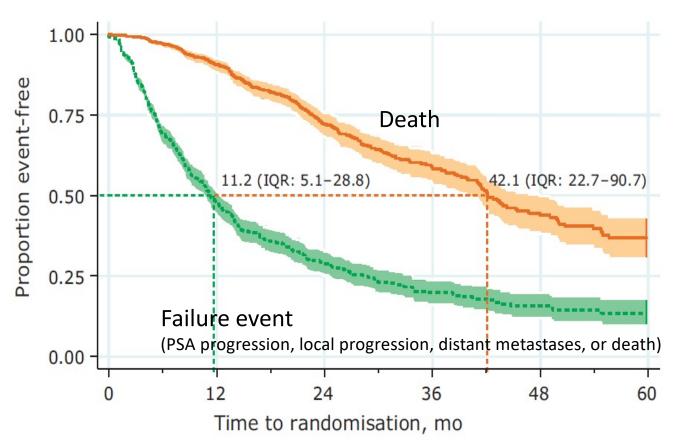
- 1. ADT alone
- 2. ADT and abiraterone
- 3. ADT and apalutamide
- 4. ADT and enzalutamide
- 5. ADT and darolutamide
- 6. ADT and docetaxel
- 7. ADT with docetaxel and secondary hormonal therapy
- 8. Other

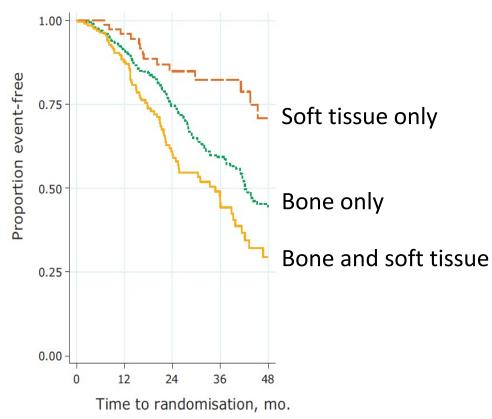
Case Presentation: A 49-year-old man with regionally advanced HSPC

Dr David Taub (Boca Raton, Florida)

Role of Treatment Intensification for Patients with Metastatic Hormone-Sensitive Prostate Cancer (mHSPC)

Matthew R. Smith, M.D., Ph.D.
Professor of Medicine, Harvard Medical School
Director, MGH Genitourinary Malignancies Program




Context

- Men receiving androgen deprivation therapy (ADT) alone for metastatic prostate cancer have poor clinical outcomes
- Survival is related to location and extent of disease
- Treatment intensification by early addition of either docetaxel or an androgen receptor pathway inhibitor (ARPI) to ADT significantly improves overall survival
- The addition of darolutamide or abiraterone to ADT and docetaxel improves overall survival

Clinical Outcomes in Metastatic Prostate Cancer: STAMPEDE Experience with ADT

STAMPEDE Control Arm

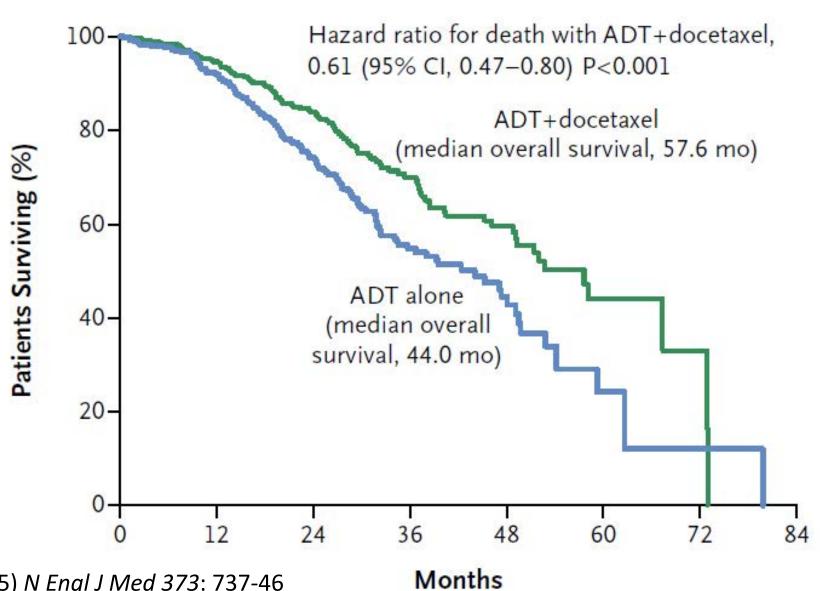
- metastatic disease
- accrued 10/2005-1/2014
- N=917

James ND et al (2015) Eur Urol 67: 1028-1038

Meta-Analysis of RCTs of Docetaxel in mHSPC

Overall Survival

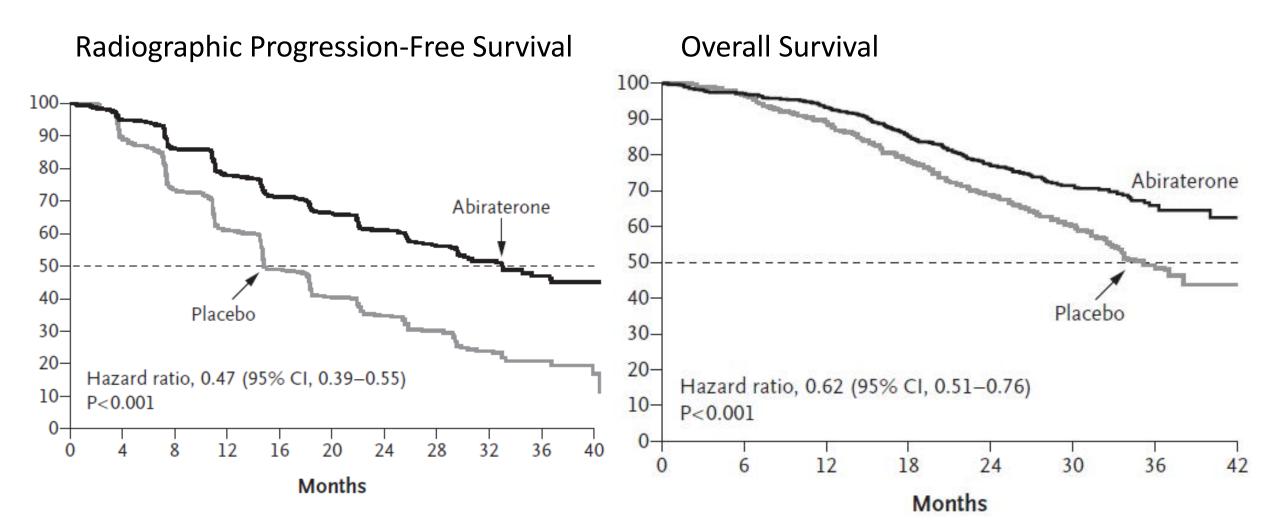
A


4,40**	Control	Treatment		Hazard ratio (95% CI)
CHAARTED ⁷	136/393	101/397		0.61 (0.47-0.80)
GETUG-15 ^{9,10}	NA/193	NA/192	_	0.90 (0.69-1.81)
STAMPEDE ⁸ (SOC+/-Doc)	350/724	144/362		0.76 (0.62-0.93)
STAMPEDE ⁸ (SOC+ZA+/-Doc)	170/366	158/365	_	0.85 (0.65-1.10)
Overall				0.77 (0.68-0.87)
Heterogeneity: $\chi^2 = 4.80$; df=3; p=	=0·187; I ² =37·	5% O·5	1	7
		←	→	
		Favours SOC + docetaxel	Favours SOC	

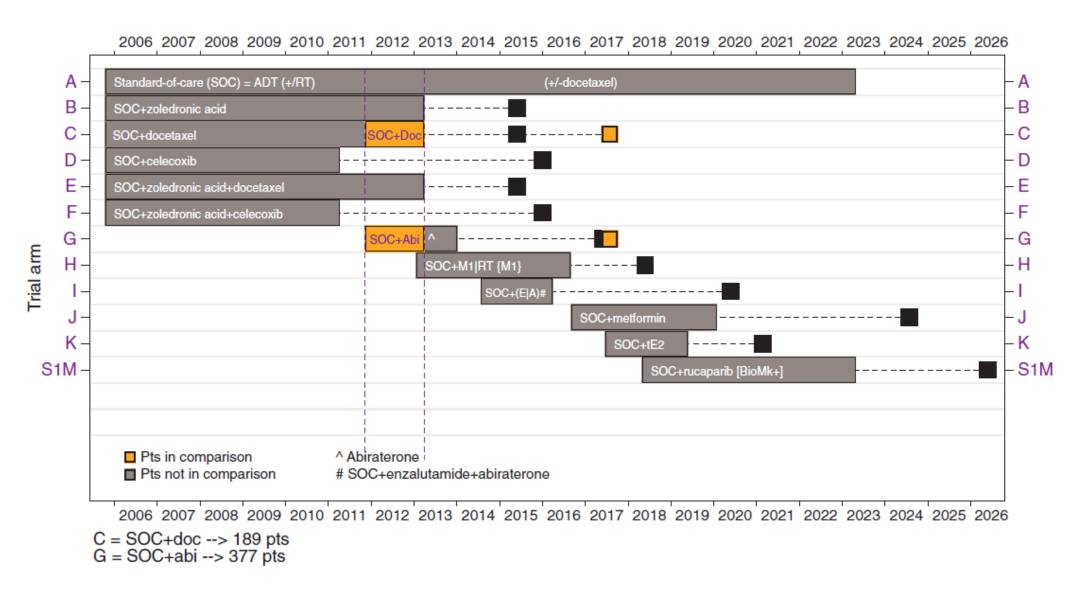
- Results based on 2992 men/2204 events
- 9% absolute improvement in survival at 4 years


CHAARTED: Docetaxel for mHSPC

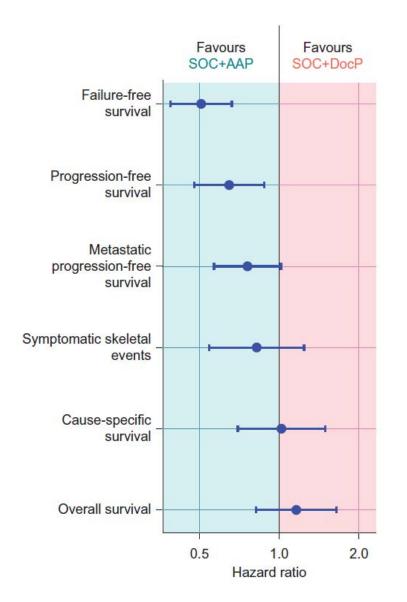
Sweeney et al (2015) *N Engl J Med 373*: 737-46

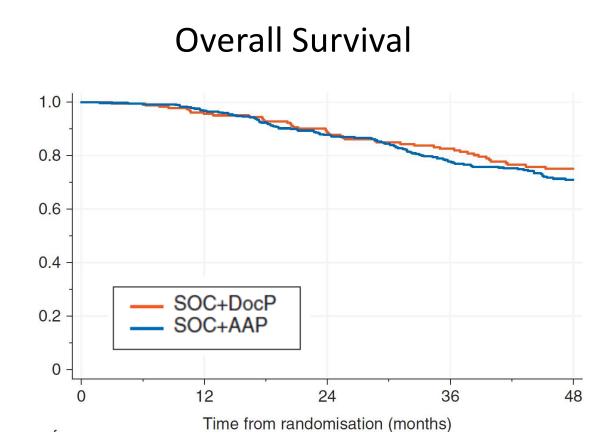

CHAARTED: OS for High vs Low Volume Disease

Kyriakopoulos et al (2018) *J Clin Oncol 36*: 1080-0187

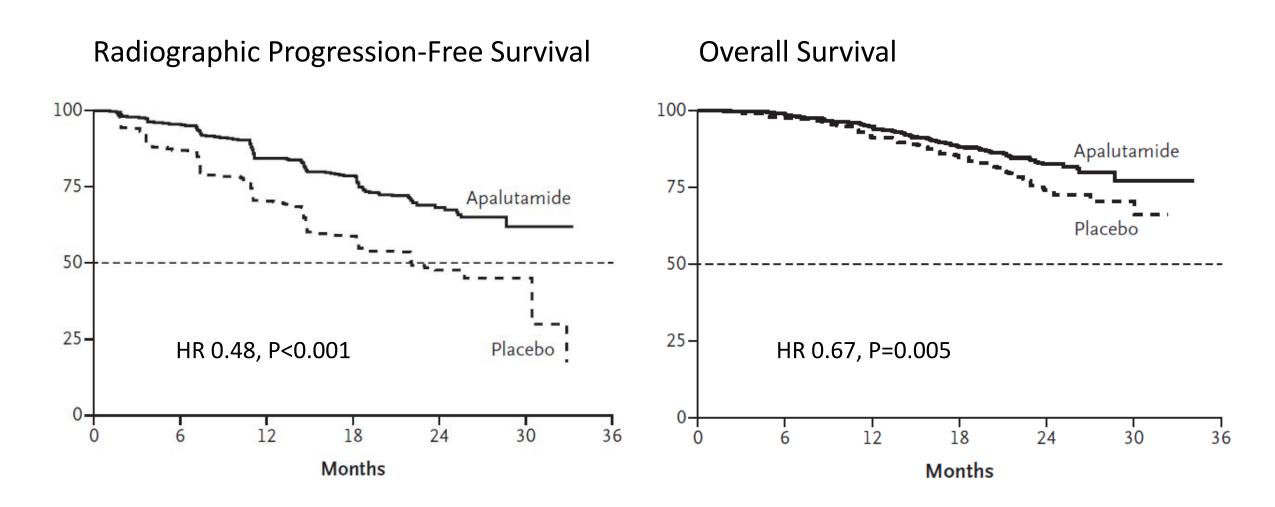

LATITUDE: Abiraterone Acetate for mHSPC

Fizazi et al (2017) N Engl J Med 377: 352-60

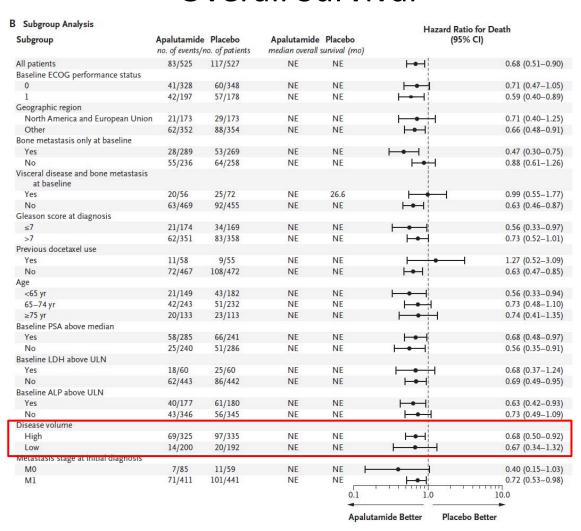

STAMPEDE: Docetaxel vs Abiraterone Comparison



Sydes et al (2018) *Annals of Oncology* 29:1235-1248

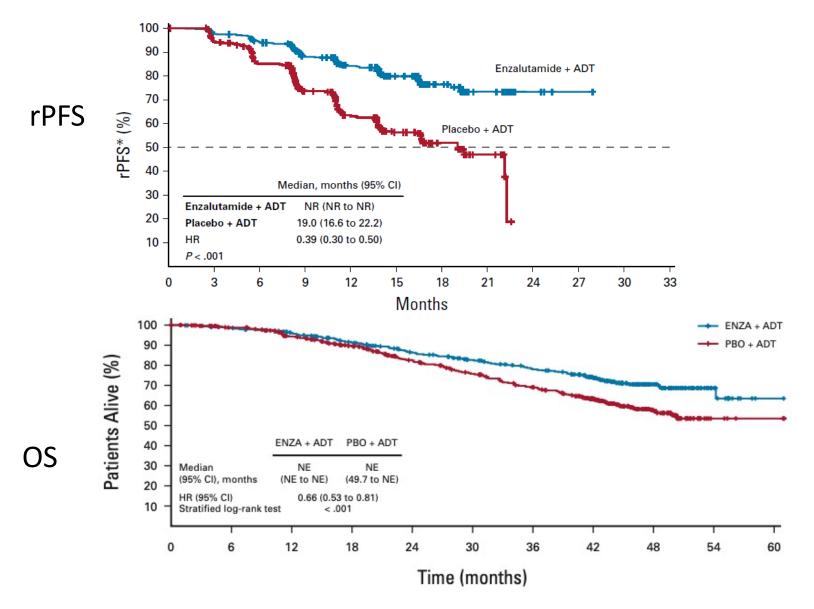

STAMPEDE: Docetaxel vs Abiraterone Comparison

TITAN: Apalutamide for mHSPC

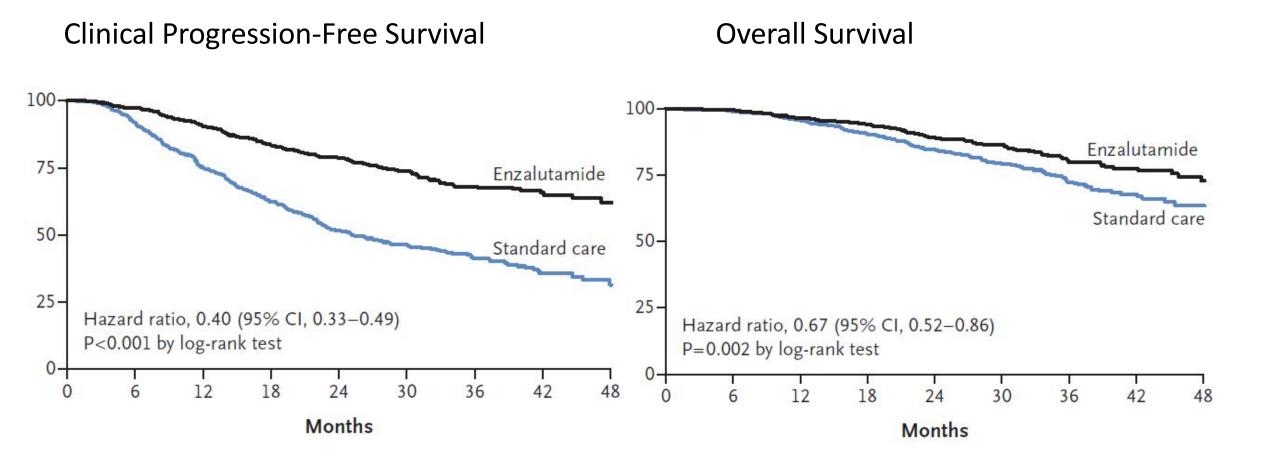


Chi et al (2019) *N Engl J Med 381*: 13-24

TITAN Subgroup Analyses


Overall Survival

Chi et al (2019) *N Engl J Med 381*: 13-24

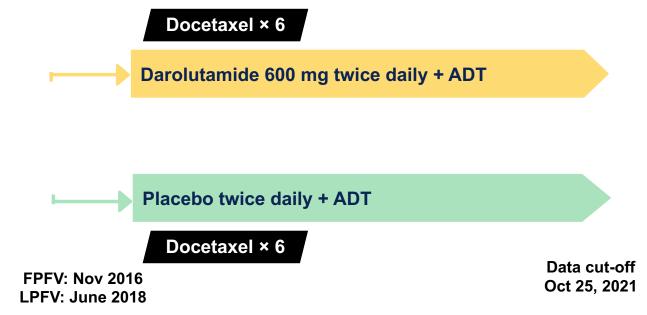

ARCHES: Enzalutamide for mHSPC

Armstrong et al (2019) J Clin Oncol 37: 2974-2986; Armstrong et al (2022) J Clin Oncol DOI: 10.1200/JCO.22.00193

ENZAMET: Enzalutamide for mHSPC

Davis et al (2019) N Engl J Med 381: 121-131

ARASENS Study Design


Global, randomized, double-blind, placebo-controlled phase III study (NCT02799602)

Patients (N=1306)

- mHSPC
- ECOG PS 0 or 1
- Candidates for ADT and docetaxel

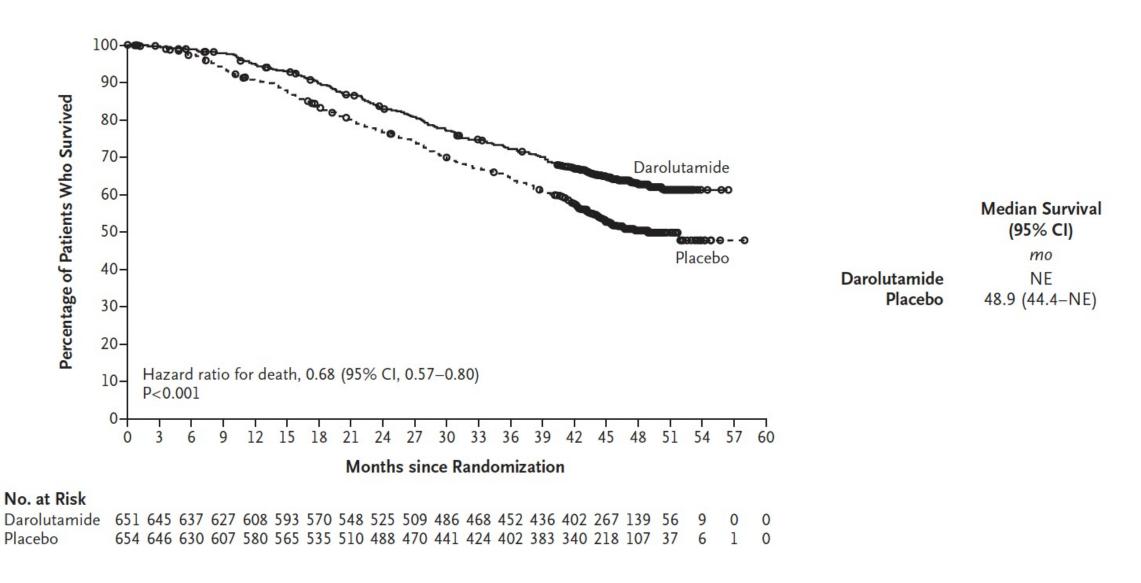
Stratification

- Extent of disease:
 M1a vs M1b vs M1c
- ALP < vs ≥ ULN

Endpoints

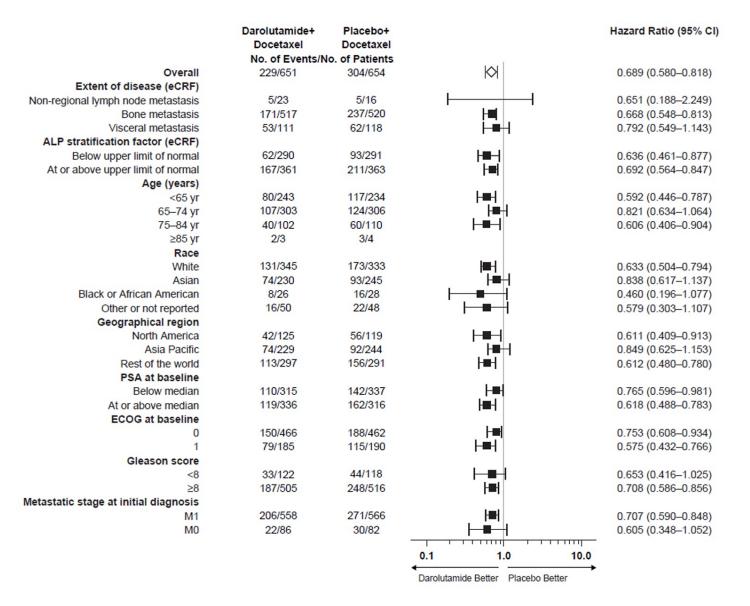
Primary: OS

Secondary


- Time to CRPC
- Time to pain progression
- SSE-free survival
- Time to first SSE
- Time to initiation of subsequent systemic antineoplastic therapy
- Time to worsening of diseaserelated physical symptoms
- Time to initiation of opioid use for ≥7 consecutive days
- Safety

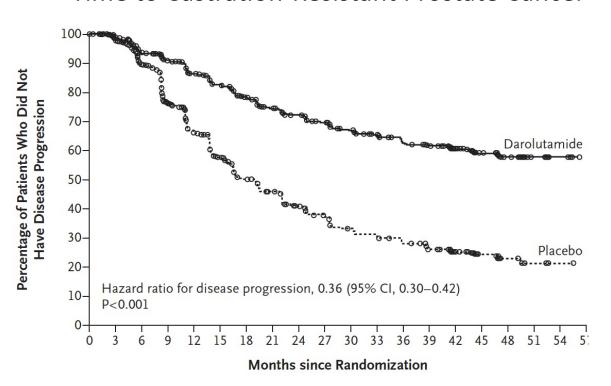
- The primary analysis was planned to occur after ~509 deaths
- Secondary efficacy endpoints were tested hierarchically

*One enrolled patient was excluded from all analysis sets because of Good Clinical Practice violations. ALP, alkaline phosphatase; CRPC, castration-resistant prostate cancer; ECOG PS, Eastern Cooperative Oncology Group performance status; FPFV, first patient first visit; LPFV, last patient first visit; M1a, nonregional lymph node metastases only; M1b, bone metastases ± lymph node metastases; M1c, visceral metastases ± lymph node or bone metastases; Q3W, every 3 weeks; SSE, symptomatic skeletal event; ULN, upper limit of normal.

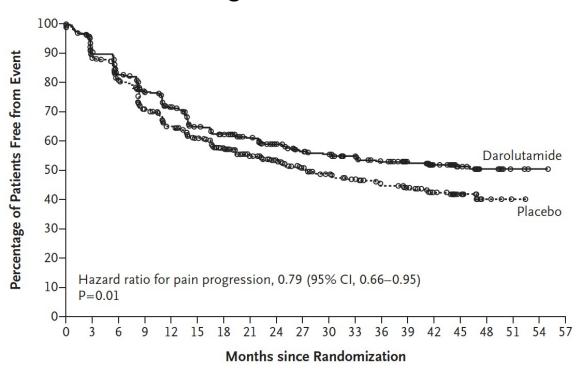

ARASENS Primary Endpoint: Overall Survival

Smith et al (2022) N Engl J Med DOI: 10.1056/NEJMoa2119115

ARASENS: Subgroup Analyses for Overall Survival



Smith et al (2022) N Engl J Med DOI: 10.1056/NEJMoa2119115



ARASENS: Key Secondary Endpoints

Time to Castration-Resistant Prostate Cancer

Time to Pain Progression

ARASENS: Safety

Event	Darolutamide–ADT–Docetaxel (N = 652)†	Placebo–ADT–Docetaxel (N = 650)†	
	number of patients (percent)		
Any adverse event	649 (99.5)	643 (98.9)	
Worst grade			
Grade 1	28 (4.3)	35 (5.4)	
Grade 2	162 (24.8)	169 (26.0)	
Grade 3	248 (38.0)	232 (35.7)	
Grade 4	183 (28.1)	181 (27.8)	
Grade 5	27 (4.1)	26 (4.0)	
Serious adverse event	292 (44.8)	275 (42.3)	
Adverse event leading to permanent discontinuation of trial agent			
Darolutamide or placebo	88 (13.5)	69 (10.6)	
Docetaxel	52 (8.0)	67 (10.3)	
Selected grade 3 or 4 adverse events‡			
Neutropenia§	220 (33.7)	222 (34.2)	
Febrile neutropenia	51 (7.8)	48 (7.4)	
Hypertension	42 (6.4)	21 (3.2)	
Anemia	31 (4.8)	33 (5.1)	
Pneumonia	21 (3.2)	20 (3.1)	
Hyperglycemia	18 (2.8)	24 (3.7)	
Increased ALT level	18 (2.8)	11 (1.7)	
Increased AST level	17 (2.6)	7 (1.1)	
Increased weight	14 (2.1)	8 (1.2)	
Urinary tract infection	13 (2.0)	12 (1.8)	

Smith et al (2022) N Engl J Med DOI: 10.1056/NEJMoa2119115

PEACE-1 Study Design

Key Eligibility Criteria

De novo mCSPC

Distant metastatic disease by ≥ 1 lesion on bone scan

and/or CT scan

ECOG PS 0-2

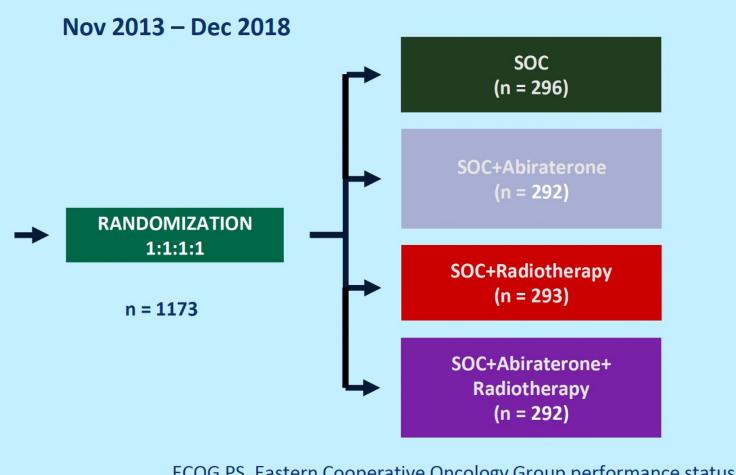
On-Study Requirement

Continuous ADT

Permitted

ADT ≤ 3 months

Stratification

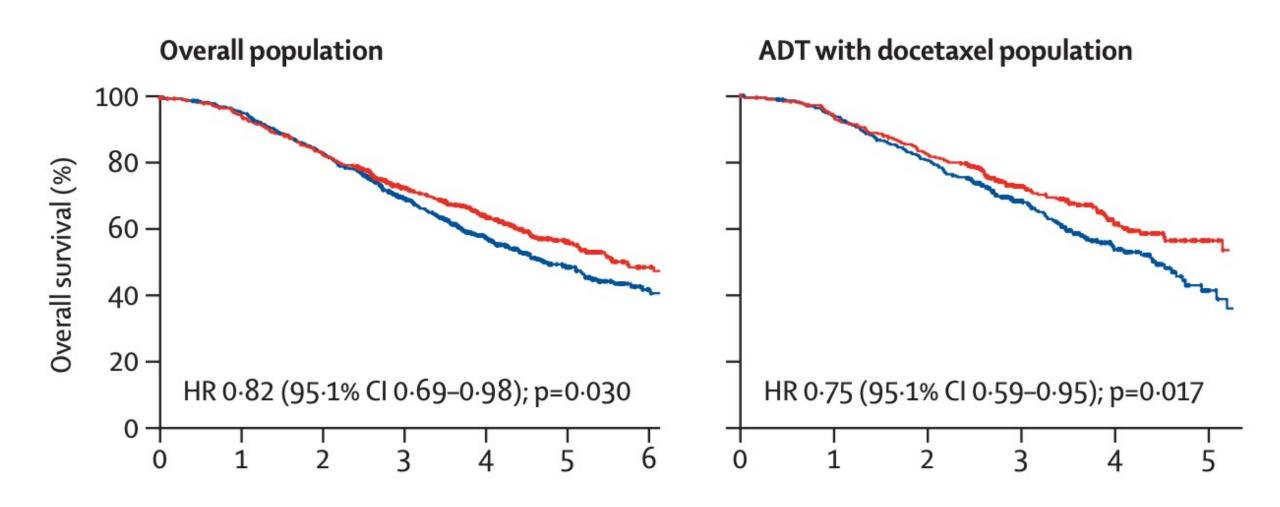

ECOG PS (0 vs 1-2)

Metastatic sites (LN vs bone vs visceral)

Type of castration (orchidectomy vs LHRH agonist vs

LHRH antagonist)

Docetaxel (yes vs no)



ECOG PS, Eastern Cooperative Oncology Group performance status

PEACE-1: Overall Survival

Fizazi et al (2022) *Lancet* https://doi.org/10.1016/S0140-6736(22)00367-1

PEACE-1: Safety in Docetaxel Subgroup

	SOC plus abiraterone groups (with or without radiotherapy; n=347)	SOC without abiraterone groups (with or without radiotherapy; n=350)				
Any adverse events	346 (100%)	349 (100%)				
Severe (grade ≥3) adverse events	217 (63%)	181 (52%)				
Fatal (grade 5) adverse events	7 (2%)	3 (1%)				
Frequent severe adverse events						
Hypertension	76 (22%)	45 (13%)				
Neutropenia	34 (10%)	32 (9%)				
Hepatotoxicity	20 (6%)	2 (1%)				
Febrile neutropenia	18 (5%)	19 (5%)				
Gamma-glutamyl transferase increase	17 (5%)	14 (4%)				
Erectile dysfunction	7 (2%)	5 (1%)				
Blood alkaline phosphatase increase	15 (4%)	12 (3%)				
Other severe adverse events						
Fatigue	10 (3%)	15 (4%)				
Peripheral neuropathy	4 (1%)	6 (2%)				

Fizazi et al (2022) *Lancet* https://doi.org/10.1016/ S0140-6736(22)00367-1

Conclusions

- ADT alone is no longer a standard of care for most patients with mHSPC
- Treatment intensification improves overall survival in mHSPC

ADT + docetaxel > ADT alone

ADT + ARPI >ADT alone

ADT + docetaxel + darolutamide > ADT + docetaxel

ADT + docetaxel + abiraterone > ADT + docetaxel

- Most/all patients with mHSPC should receive an ARPI:
 - ADT +ARPI
 - ADT + docetaxel + ARPI (darolutamide or abiraterone)

MODULE 3: Selection and Sequencing of Therapy for Metastatic CRPC

An 83-year-old man with metastatic castration-resistant prostate cancer (mCRPC) to the bone who previously received ADT + enzalutamide prefers not to receive chemotherapy at this time. Regulatory and reimbursements issues aside, what systemic treatment would you most likely recommend?

- 1. Abiraterone
- 2. Sipuleucel-T
- 3. Radium-223
- 4. ¹⁷⁷Lu-PSMA-617
- 5. Abiraterone + olaparib
- 6. Other

Dr Jason Hafron West Bloomfield, Michigan

An 83-year-old man with metastatic CRPC – CHEK2, AR and APC gene mutations

Dr Jason Hafron West Bloomfield, Michigan

A 67-year-old man with metastatic CRPC who received ¹⁷⁷Lu-PSMA-617

In general, do you offer sipuleucel-T to patients with asymptomatic mCRPC?

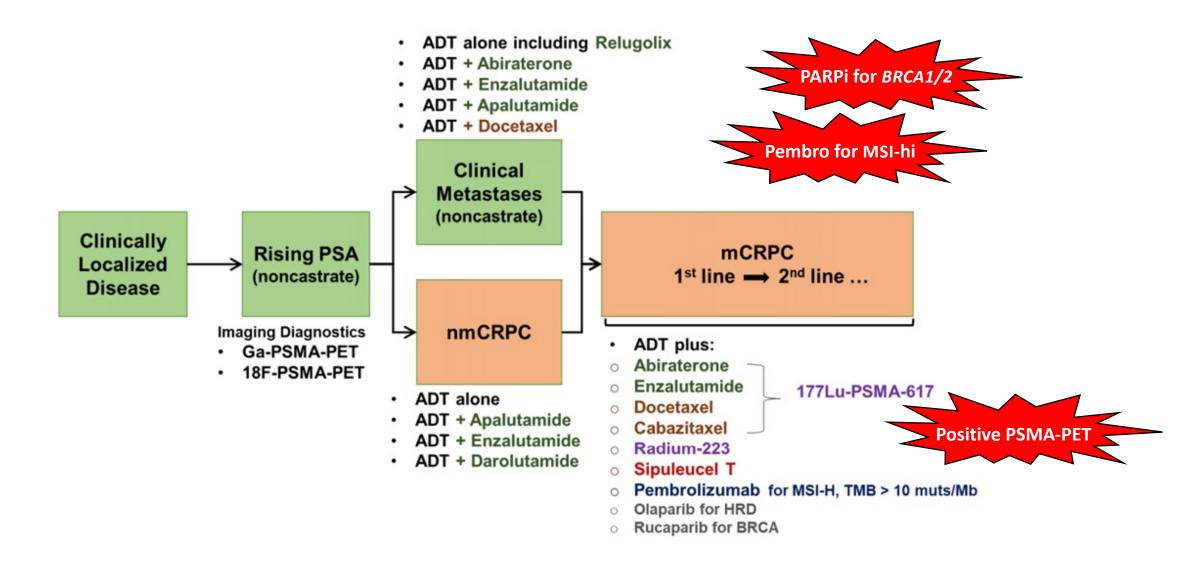
- 1. Yes
- 2. Yes, in select patients
- 3. No

Dr Paul Markowski Summit, New Jersey

An 81-year-old man with metastatic CRPC and disease progression on multiple therapies

Dr Paul Markowski Summit, New Jersey

A 62-year-old man with metastatic CRPC and asymptomatic bone metastases



Sequencing of Therapy for Metastatic CRPC (mCRPC)

Emmanuel S. Antonarakis, M.D.

Clark Endowed Professor of Medicine
Division of Hematology/Oncology and Transplantation
University of Minnesota, Masonic Cancer Center
Minneapolis, MN

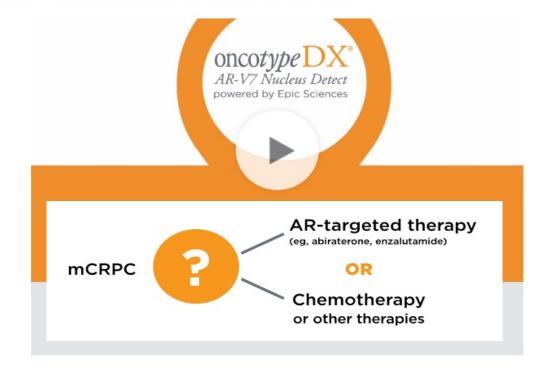
Treatment Landscape for mCRPC

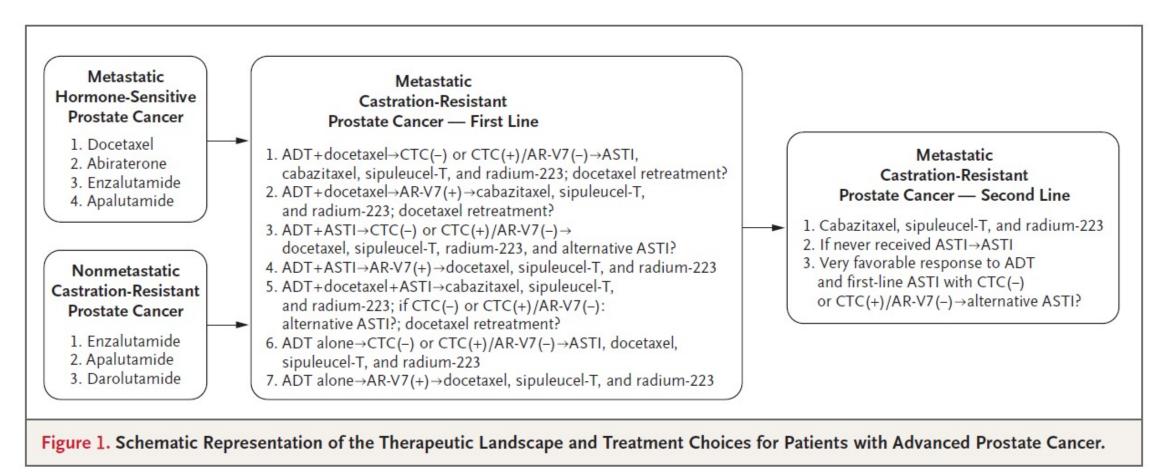
Selection and Sequencing of Therapy

ONCOTYPE DX AR-V7 NUCLEUS DETECT

About the Oncotype DX AR-V7 Nucleus Detect test

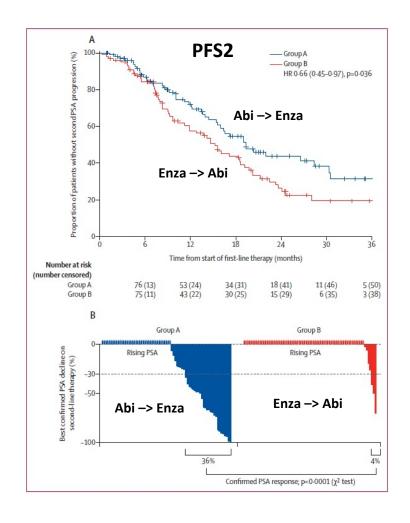
Share

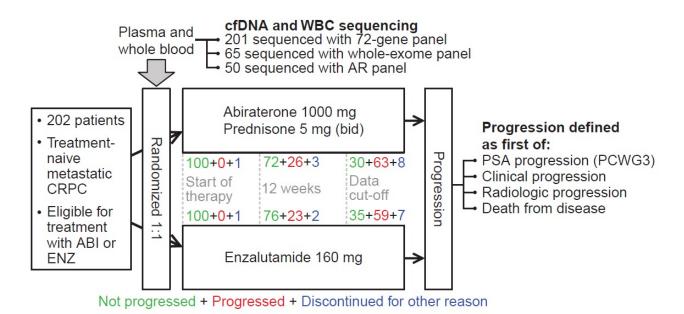


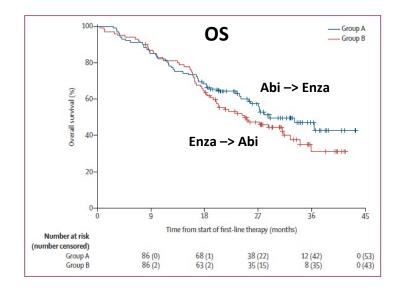


AR-V7

Why Order the Oncotype DX AR-V7 Nucleus Detect Test?

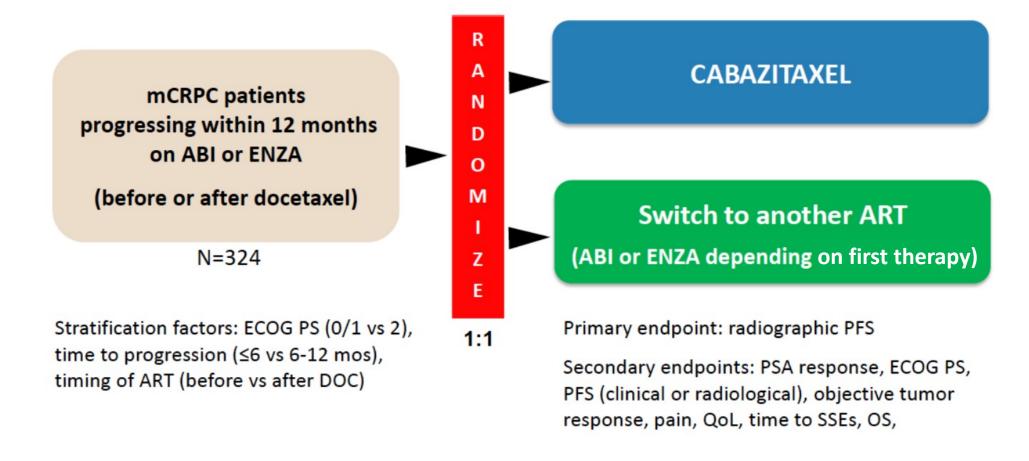



Therapy Sequencing in mCRPC Complicated!

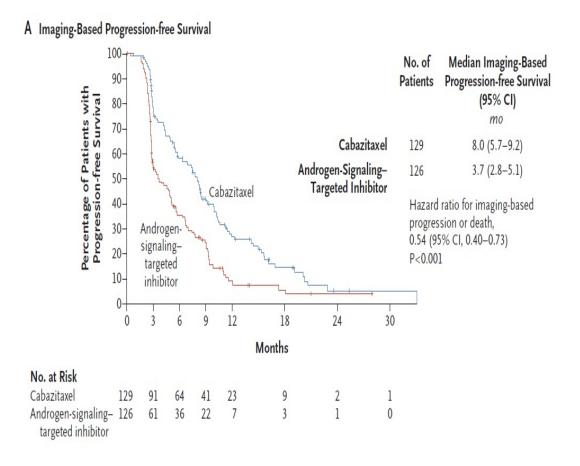


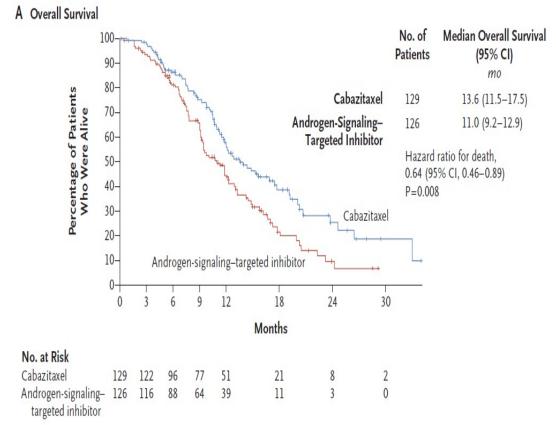
Abi → Enza vs Enza → Abi

GUTG-001 Study



The CARD trial

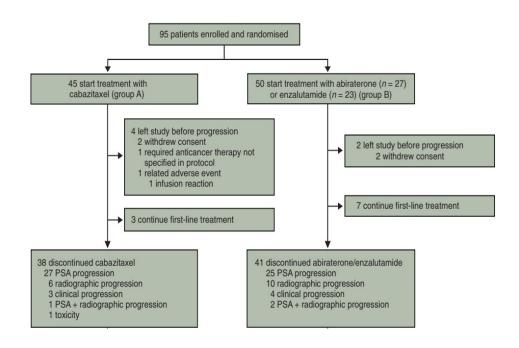

CARD Study

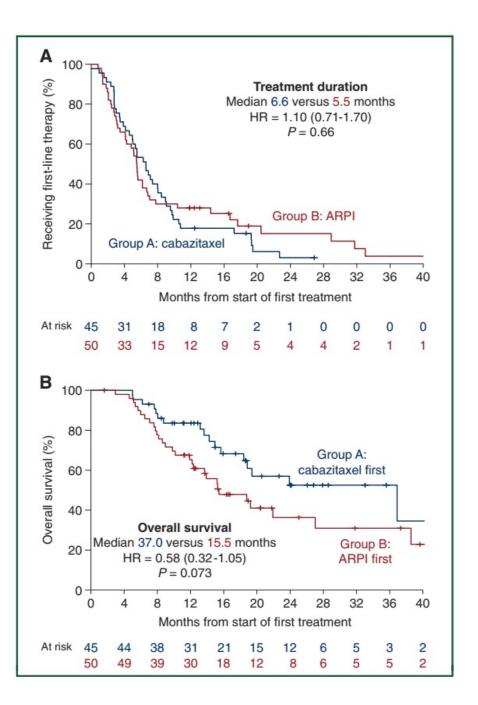


de Wit R, et al. *NEJM* 2019; 381: 2506-2518.

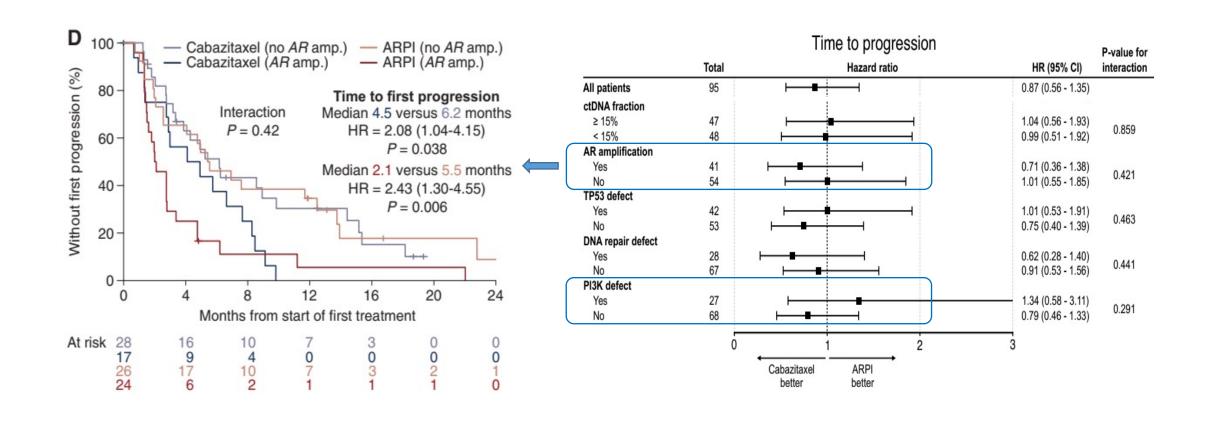
The CARD trial

Event		zitaxel 126)	Androgen-Signaling-Targeted Inhibitor (N = 124)		
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Any adverse event — no. (%)	124 (98.4)	(1 <u>27</u> 1)	117 (94.4)	_	
Any grade ≥3 adverse event — no. (%)		71 (56.3)	1 7 - 1	65 (52.4)	
Any serious adverse event — no. (%)	49 (38.9)	_	48 (38.7)	_	
Any adverse event leading to permanent discontinuation of treatment — no. (%)	25 (19.8)	_	11 (8.9)	_	
Any adverse event leading to death — no. (%)*	7 (5.6)	_	14 (11.3)	_	
Common adverse events — no. (%)†					
Asthenia or fatigue	67 (53.2)	5 (4.0)	45 (36.3)	3 (2.4)	
Diarrhea	50 (39.7)	4 (3.2)	8 (6.5)	0	
Infection	40 (31.7)	10 (7.9)	25 (20.2)	9 (7.3)	
Musculoskeletal pain or discomfort:	34 (27.0)	2 (1.6)	49 (39.5)	7 (5.6)	
Nausea or vomiting	33 (26.2)	0	29 (23.4)	2 (1.6)	
Peripheral neuropathy	25 (19.8)	4 (3.2)	4 (3.2)	0	
Constipation	19 (15.1)	0	13 (10.5)	0	
Hematuria	19 (15.1)	1 (0.8)	7 (5.6)	2 (1.6)	
Laboratory abnormalities — no./total no. (%)††					
Anemia	124/125 (99.2)	10/125 (8.0)	118/124 (95.2)	6/124 (4.8)	
Leukopenia	93/125 (74.4)	40/125 (32.0)	39/124 (31.5)	2/124 (1.6)	
Neutropenia	81/123 (65.9)	55/123 (44.7)	8/124 (6.5)	4/124 (3.2)	
Thrombocytopenia	51/125 (40.8)	4/125 (3.2)	20/124 (16.1)	2/124 (1.6)	
Aspartate aminotransferase increased	27/124 (21.8)	4/124 (3.2)	35/124 (28.2)	0/124	
Alanine aminotransferase increased	24/124 (19.4)	1/124 (0.8)	11/124 (8.9)	0/124	
Hypokalemia	15/125 (12.0)	1/125 (0.8)	19/124 (15.3)	1/124 (0.8)	

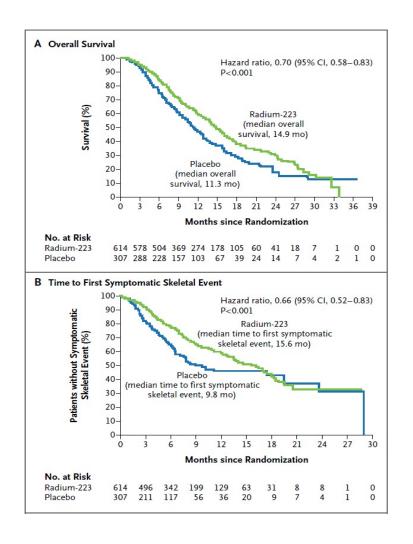

de Wit R, et al. *NEJM* 2019; 381: 2506-2518.


The Canadian (OZM-054) trial

The OZM-054 trial


Poor prognosis:

liver mets, CRPC <12 months, or >3 of 6 (LDH, ECOG, visceral, albumin, ALP, <36 mo from Dx)

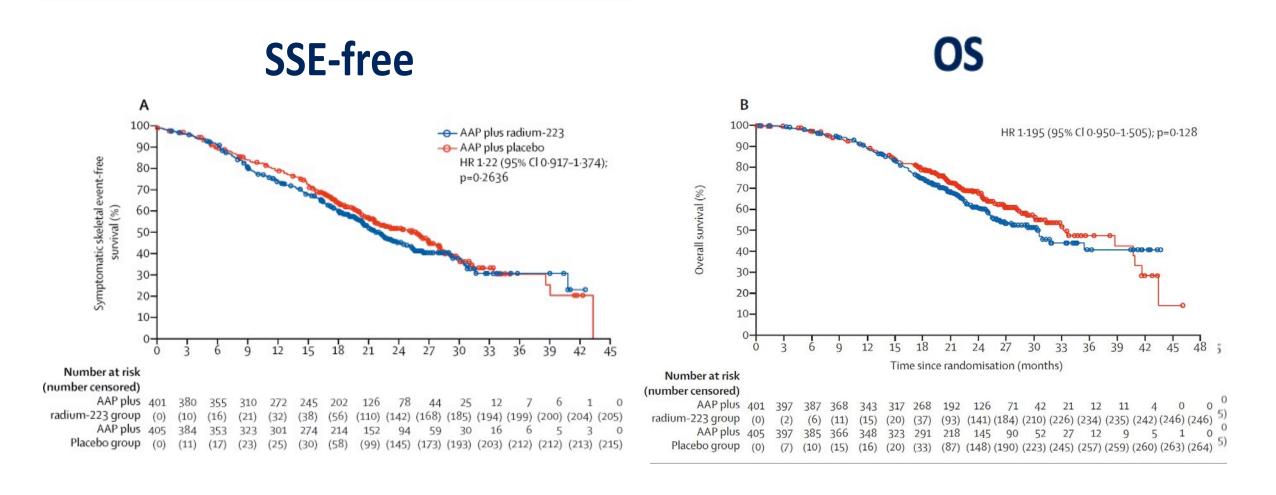


Biomarkers of differential response?

Optimal integration of radium-223

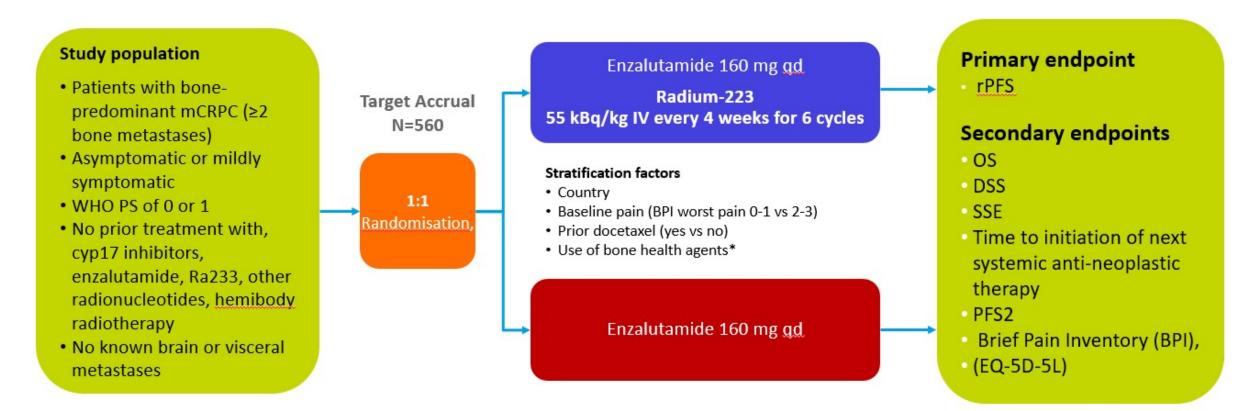
Radium-223: the ALSYMPCA trial

Subgroup	Radium-223	Placebo	Radium-223	Placebo	Hazard Ra	tio (95% CI)
11.22.22.2	no. of patients		median overall survival (mo)			
All patients	614	307	14.9	11.3	$\vdash \bigcirc \dashv$	0.70 (0.58-0.83)
Total ALP level at baseline					į	
<220 U/liter	348	169	17.0	15.8	\longrightarrow	0.82 (0.64-1.07)
≥220 U/liter	266	138	11.4	8.1	\longrightarrow	0.62 (0.49-0.79)
Current bisphosphonate use						
Yes	250	124	15.3	11.5	— —	0.70 (0.52-0.93)
No	364	183	14.5	11.0	\longrightarrow	0.74 (0.59-0.92)
Previous docetaxel use						
Yes	352	174	14.4	11.3	-	0.71 (0.56-0.89)
No	262	133	16.1	11.5		0.74 (0.56-0.99)
Baseline ECOG performance-state	us score					
0 or 1	536	265	15.4	11.9	⊢ ○ − 1	0.68 (0.56-0.82)
≥2	77	41	10.0	8.4	—	0.82 (0.50-1.35)
Extent of disease						
<6 metastases	100	38	27.0	NE	<u> </u>	0.95 (0.46-1.95)
6-20 metastases	262	147	13.7	11.6	— —	0.71 (0.54-0.92)
>20 metastases	195	91	12.5	9.1	\longrightarrow	0.64 (0.47-0.88)
Superscan	54	30	11.3	7.1		0.71 (0.40-1.27)
Opioid use						, i
Yes	345	168	13.9	10.4	⊢ ○ − 1	0.68 (0.54-0.86)
No	269	139	16.4	12.8	\longrightarrow	0.70 (0.52-0.93)
					0.5 1.0	2.0
					V.J 1.U	Z.0
					Radium-223 Pla	cebo
					Better Be	etter

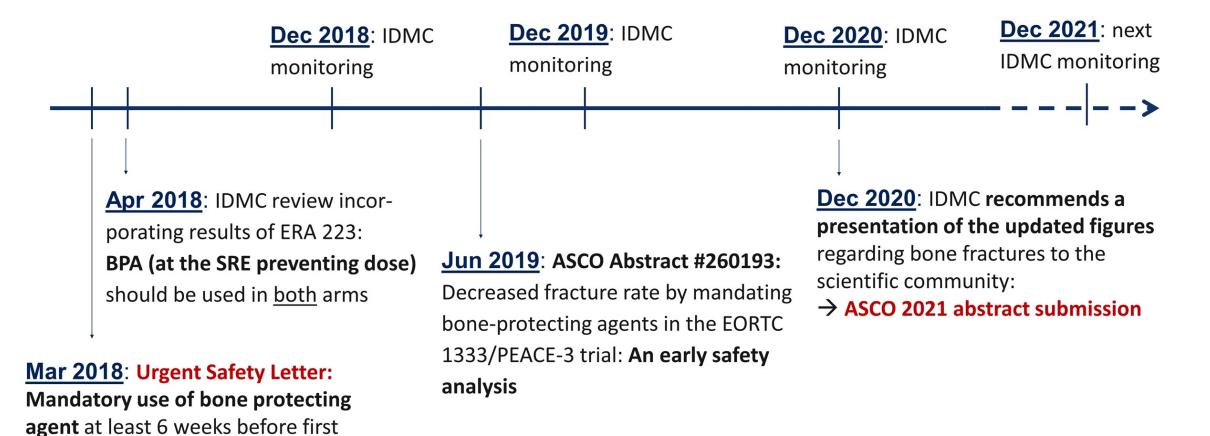

Ideal patient for Radium-223 treatment

- mCRPC with symptomatic bone metastases
- Mild bone pain (1-4/10), but not severe bone pain (≥5/10)
- Few bone metastases (5-10), but not too many (≥20)
- No impending pathologic fracture or cord compression
- Adequate bone marrow function (Hgb ≥9, ANC ≥1000, Plt ≥100K)
- No visceral mets (≥10 mm) or bulky nodal mets (≥30 mm)
- No concurrent Abi; use Denosumab with concurrent Enza
- ECOG 0-1; avoid if ECOG 2-4

The PEACE-3 (EORTC-1333) trial

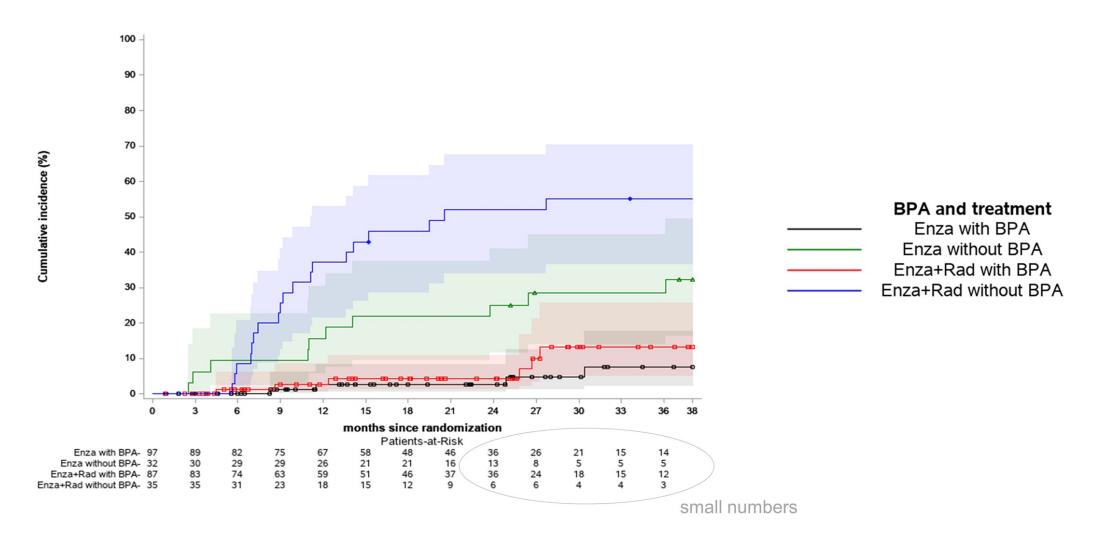

ERA-223 study: A cautionary note

60% of patients did <u>not</u> receive a boneprotecting agent


EORTC 1333 (PEACE III) original design

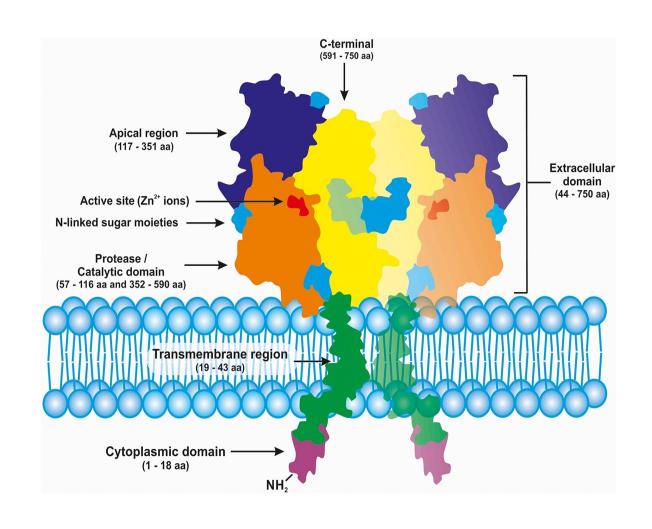
Bone health agents (denosumab or bisphosphonates) only permitted in patients receiving them at baseline; Initiation during study was prohibited to prevent confounding effects.

PEACE-3: Timelines, impact of ERA 223 and role of IDMC

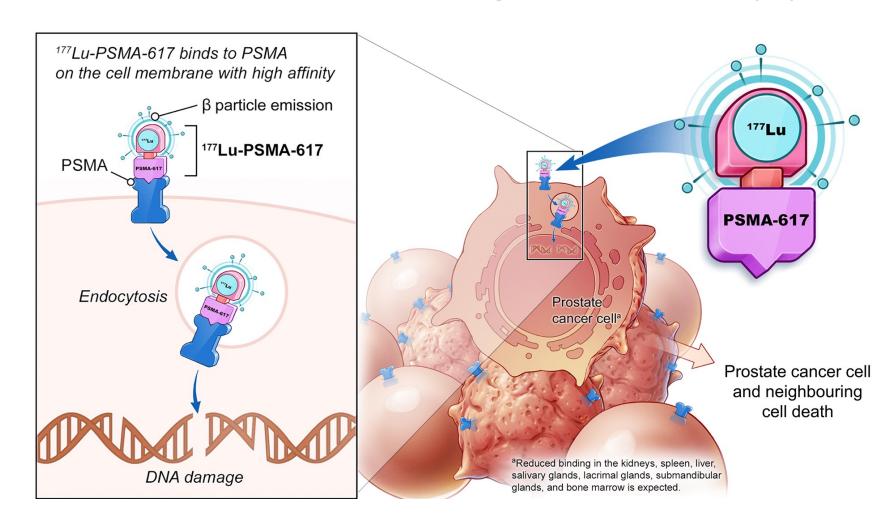


injection of Ra223

Cumulative incidence of fractures by treatment arm and use of bone protecting agents


Bone fractures and cumulative incidence - safety population

	Witho	out BPA	With BPA		
Time point	Enza+Rad (N=35)	Enza (N=32)	Enza+Rad (N=87)	Enza (N=97)	
	Cum Incidence (95% CI)	Cum Incidence (95% CI)	Cum Incidence (95% CI)	Cum Incidence (95% CI)	
9 months	25.7 (12.6-41.0)	9.4 (2.3-22.5)	2.7 (0.5-8.5)	1.3 (0.1-6.1)	
12 months	37.1 (21.3-53.0)	15.6 (5.6-30.3)	2.7 (0.5-8.5)	2.6 (0.5-8.3)	
15 months	42.9 (26.1-58.6)	21.9 (9.5-37.5)	4.3 (1.1-10.9)	2.6 (0.5-8.3)	
18 months	45.9 (28.6-61.6)	21.9 (9.5-37.5)	4.3 (1.1-10.9)	2.6 (0.5-8.3)	
21 months	52.0 (33.8-67.5)	21.9 (9.5-37.5)	4.3 (1.1-10.9)	2.6 (0.5-8.3)	


¹⁷⁷Lutetium-PSMA-617

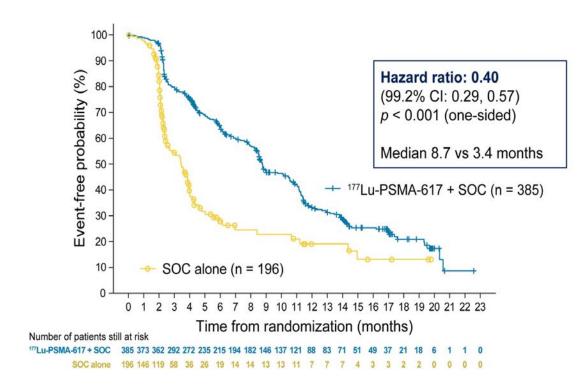
PSMA: Target for imaging and therapy

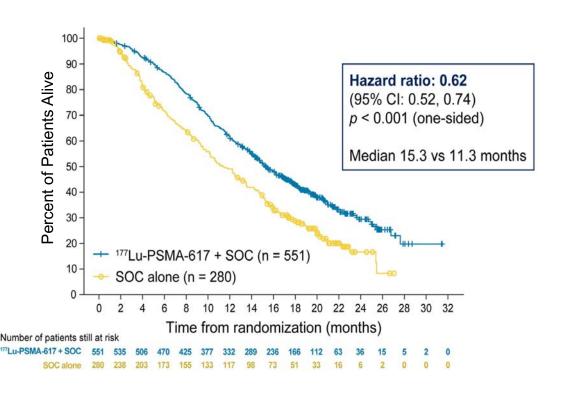
- Transmembrane carboxypeptidase
- Highly expressed in prostate cancer including metastatic lesions
- Relatively restricted normal expression
 - E.g. salivary and lacrimal glands
- Excellent target for PET imaging

¹⁷⁷Lu-PSMA-617 Radioligand therapy

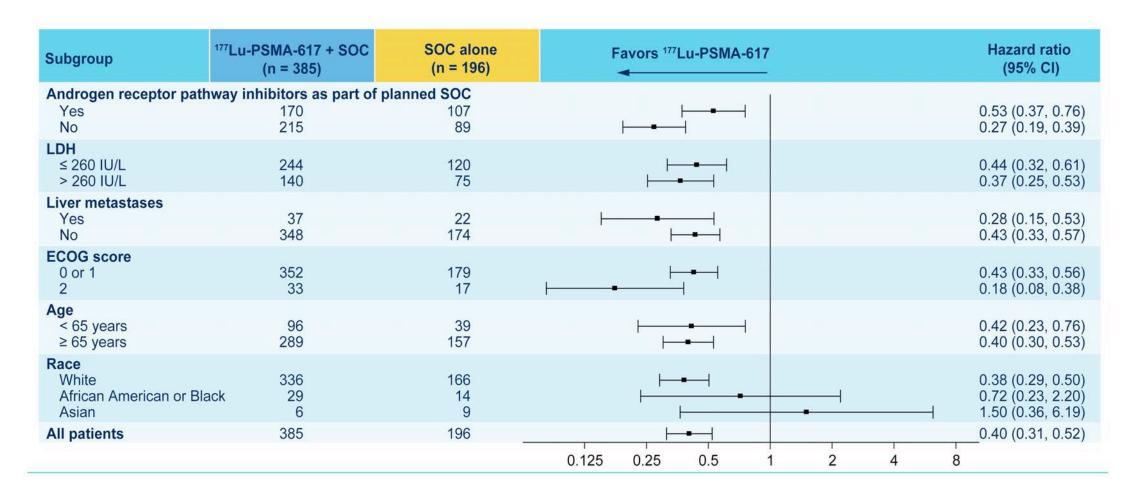
VISION trial for patients with PSMA+ mCRPC

Eligible patients


- Previous treatment with <u>both</u>
 - ≥ 1 androgen receptor pathway inhibitor
 - 1 or 2 taxane regimens
- Protocol-permitted standard of care (SOC) planned before randomization
 - Excluding chemotherapy immunotherapy, radium-223, investigational drugs
- ECOG performance status 0–2
- Life expectancy > 6 months
- PSMA-positive mCRPC on PET/CT with ⁶⁸Ga-PSMA-11



- Randomization stratified by
 - ECOG status (0–1 or 2)
 - LDH (high or low)
 - Liver metastases (yes or no)
 - Androgen receptor pathway inhibitors in SOC (yes or no)


- CT/MRI/bone scans
 - Every 8 weeks (treatment)
 - Every 12 weeks (follow-up)
 - Blinded independent central review

VISION trial: rPFS and OS

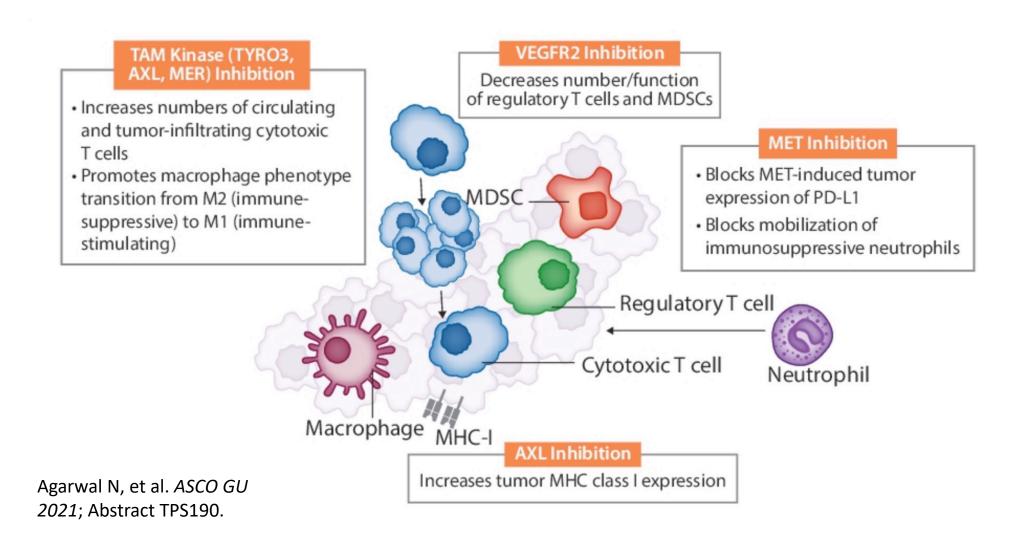
VISION trial: rPFS forest plot

VISION trial: Adverse Events

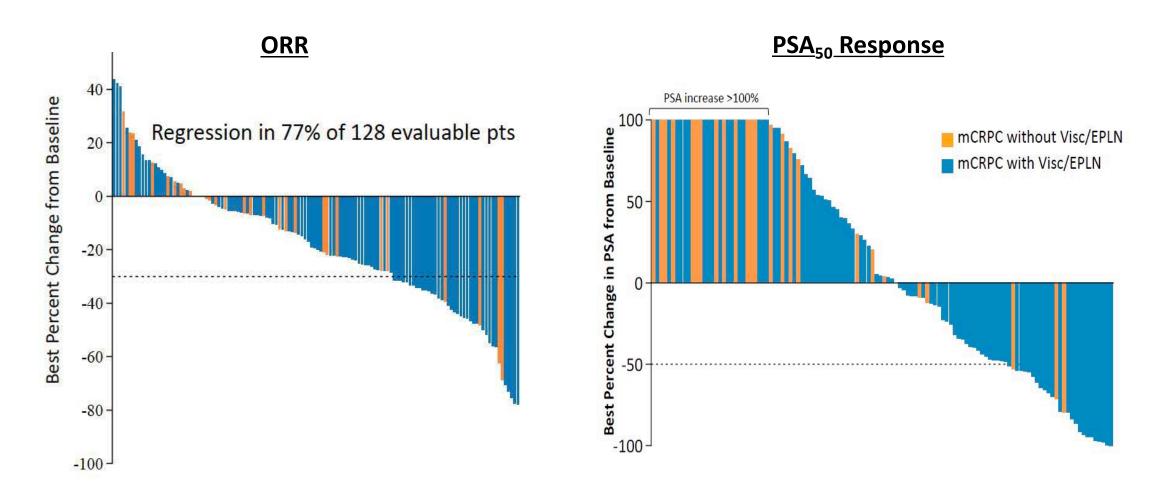
Event	¹⁷⁷ Lu-PSMA-617 pl (N = 5		Standard Care Alone (N = 205)			
	All Grades	Grade ≥3	All Grades	Grade ≥3		
	number of patients (percent)					
Any adverse event	519 (98.1)	279 (52.7)	170 (82.9)	78 (38.0)		
Adverse event that occurred in >12% of patients						
Fatigue	228 (43.1)	31 (5.9)	47 (22.9)	3 (1.5)		
Dry mouth	205 (38.8)	0	1 (0.5)	0		
Nausea	187 (35.3)	7 (1.3)	34 (16.6)	1 (0.5)		
Anemia	168 (31.8)	68 (12.9)	27 (13.2)	10 (4.9)		
Back pain	124 (23.4)	17 (3.2)	30 (14.6)	7 (3.4)		
Arthralgia	118 (22.3)	6 (1.1)	26 (12.7)	1 (0.5)		
Decreased appetite	112 (21.2)	10 (1.9)	30 (14.6)	1 (0.5)		
Constipation	107 (20.2)	6 (1.1)	23 (11.2)	1 (0.5)		
Diarrhea	100 (18.9)	4 (0.8)	6 (2.9)	1 (0.5)		
Vomiting	100 (18.9)	5 (0.9)	13 (6.3)	1 (0.5)		
Thrombocytopenia	91 (17.2)	42 (7.9)	9 (4.4)	2 (1.0)		
Lymphopenia	75 (14.2)	41 (7.8)	8 (3.9)	1 (0.5)		
Leukopenia	66 (12.5)	13 (2.5)	4 (2.0)	1 (0.5)		

¹⁷⁷Lutetium–PSMA–617: FDA Approval!

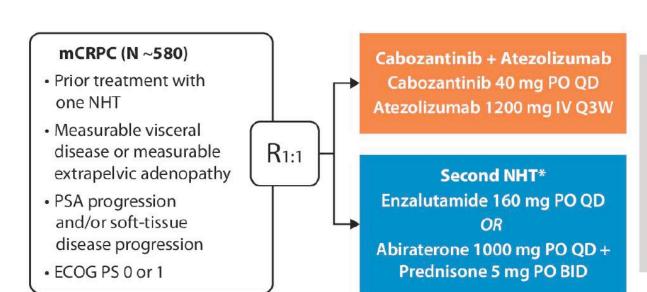
FDA Approves ¹⁷⁷Lu-PSMA-617 for the Treatment of mCRPC


Press Release — March 23, 2022

"On March 23, 2022, the Food and Drug Administration approved [the radio-ligand therapy, ¹⁷⁷Lu-PSMA-617] for the treatment of adult patients with prostate-specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor (AR) pathway inhibition and taxane-based chemotherapy.


On the same day, the FDA approved gallium Ga 68 gozetotide, a radioactive diagnostic agent for positron emission tomography (PET) of PSMA-positive lesions, including selection of patients with metastatic prostate cancer for whom lutetium Lu 177 vipivotide tetraxetan PSMA-directed therapy is indicated. Gallium Ga 68 gozetotide is the first radioactive diagnostic agent approved for patient selection in the use of a radioligand therapeutic agent."

Novel strategies for mCRPC


Cabozantinib + Atezo: Rationale

COSMIC-021: ORR and PSA response

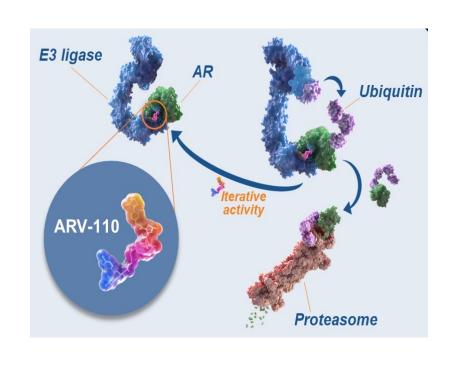
CONTACT-02: Phase III Trial Schema

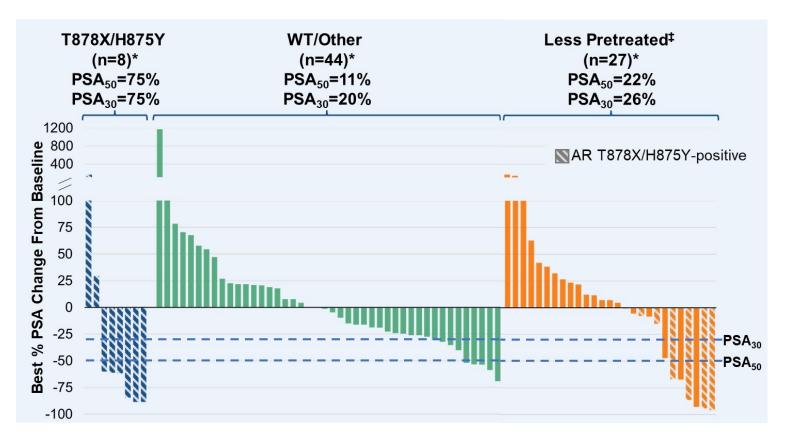
Tumor assessment every 9 weeks (RECIST v1.1)[†]

Treatment until loss of clinical benefit[‡] or intolerable toxicity

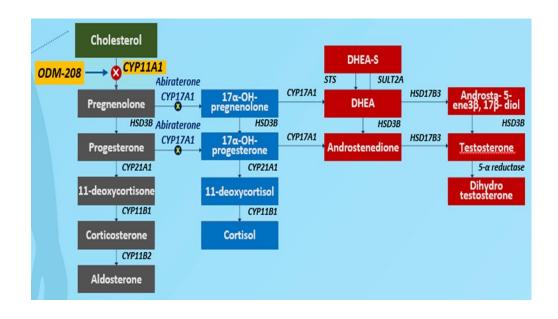
Primary Endpoints:

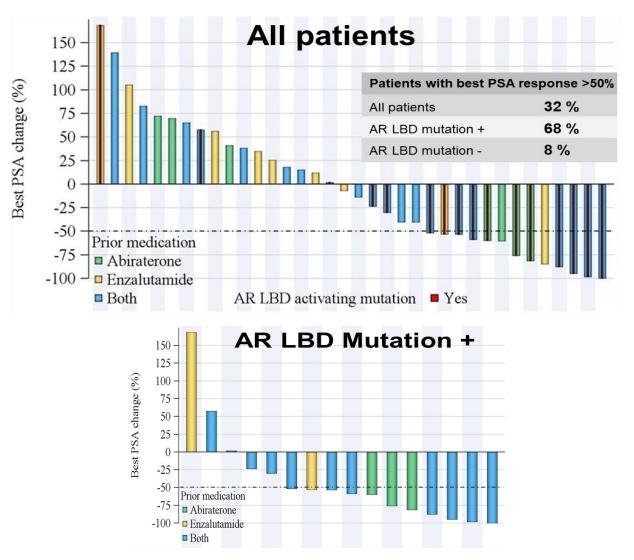
- PFS per RECIST v1.1 by BIRC
- OS


Secondary Endpoint:


• ORR per RECIST v1.1 by BIRC

Stratification


- Liver metastasis (yes, no)
- Prior docetaxel treatment for mCSPC (yes, no)
- Disease stage for which the first NHT was given (mCSPC, M0 CRPC, mCRPC)


ARV-110: AR-directed PROTAC

ODM-208: CYP11_{A1} inhibitor

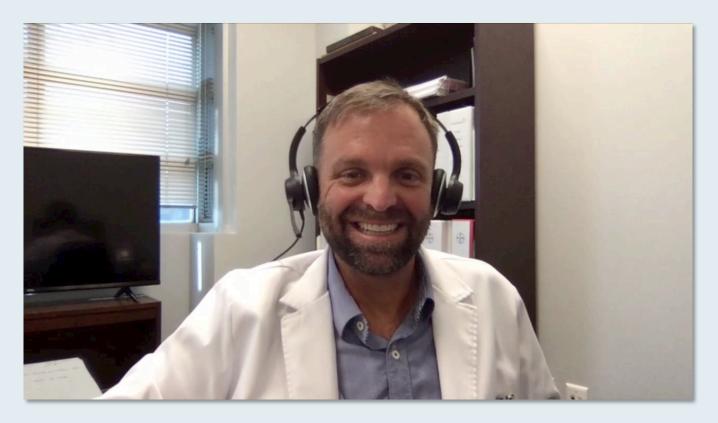
MODULE 4: Current and Future Integration of PARP Inhibitors in the Management of Prostate Cancer

Regulatory and reimbursement issues aside, which of the following patients with prostate cancer and no relevant family history should undergo germline genetic testing?

- 1. Patients with locally advanced disease who are going to receive radiation therapy and hormonal therapy
- 2. Patients with previously untreated metastatic disease
- 3. Patients with metastatic disease after progression on first-line therapy
- 4. All of the above
- 5. a and b only
- 6. a and c only
- 7. b and c only

Germline mutation testing; selection of PARP inhibitor therapy

Dr Jason Hafron (West Bloomfield, Michigan)



Regulatory and reimbursement issues aside, for which patients with mCRPC who are about to begin secondary hormonal therapy would you generally add a PARP inhibitor as well?

- 1. Patients with a germline BRCA mutation
- 2. Patients with a somatic BRCA mutation
- 3. Patient without HRR gene mutations
- 4. All of the above
- 5. a and b only
- 6. a and c only
- 7. b and c only

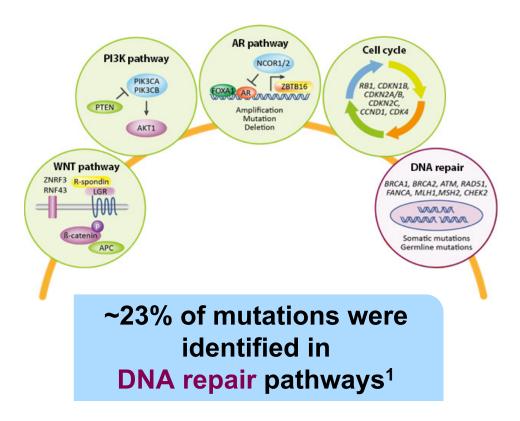
Case Presentation: A 73-year-old man with metastatic CRPC – germline BRCA2 mutation

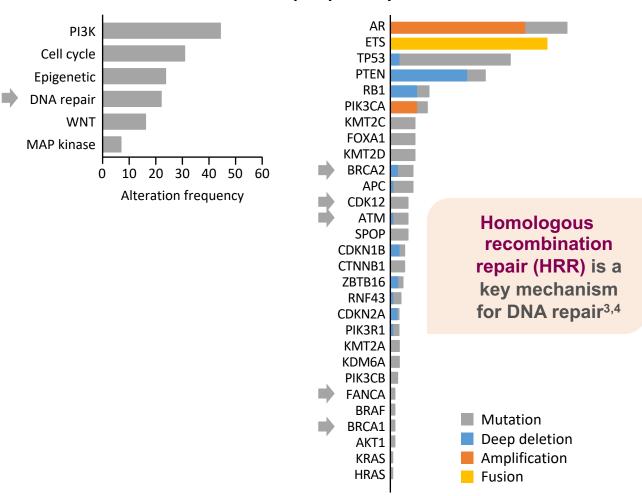
Dr David Morris (Nashville, Tennessee)

Current and Future Integration of PARP Inhibitors in the Management of Prostate Cancer

Fred Saad MD FRCS

Professor and Chairman of Urology
Director of GU Oncology
Raymond Garneau Chair in Prostate Cancer
University of Montreal Hospital Center
Montreal, QC, Canada

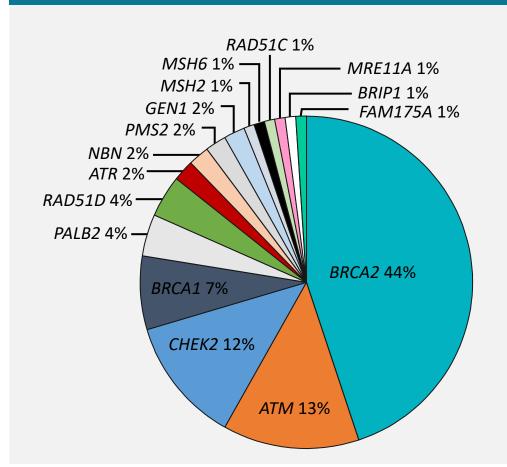




Metastatic prostate cancer is biologically heterogeneous

Multiple pathways have been identified with genomic alterations in association with advanced prostate cancer¹

Approximately 25% of patients with mCRPC have alterations associated with DNA repair pathways*2



ORIGINAL ARTICLE

Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer

C.C. Pritchard, J. Mateo, M.F. Walsh, N. De Saríax, W. Abida, H. Beltran, A. Garofala, R. Gulati, S. Carriera, R. Eeles, O. Elemento, M. A. Rubin, D. Robinson, R. Lonigro, M. Hussain, A. Chinnaiyan, J. Vinson, J. Filipenko, L. Garaway, M.-E. Taplin, S. Al'Dubayan, G.C. Han, M. Beightol, C. Morrisse, B. Nghiem, H.H. Cheng, B. Mongomey, Y. Walshi, S. Casadei, M. Berner, L. Zhang, A. Zehir, J. Vija, H.J. Scher, C. Sawyers, N. Schultz, P.W. Kantoff, C. Schi, M. Pobron, E. M. You, Blan, V. O'ffi, L. de Room, and D. S. Maleon.

Distribution of presumed pathogenic germline mutations

Inherited germline DDR mutations

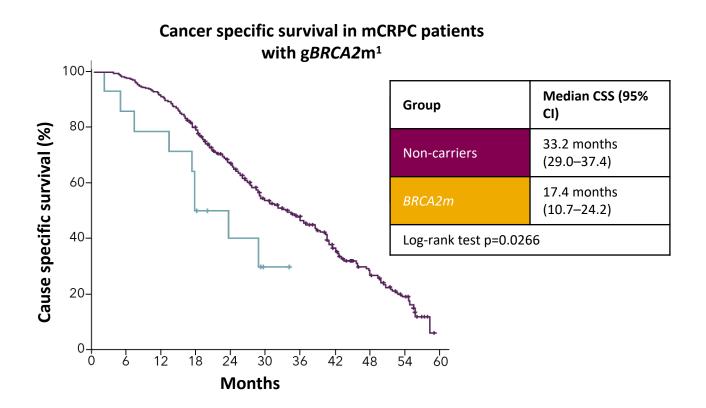
• mCRPC: 11.8% (82/692)

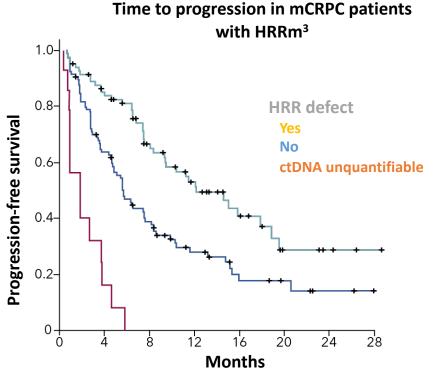
Localized disease: 4.6% (23/499)

Presumed pathogenic germline mutations in metastatic cases (N = 692)

Gene	No. of Mutations	% of Men
BRCA2	37	5.35
ATM	11	1.59
CHEK2*	10	1.87
BRCA1	6	0.87

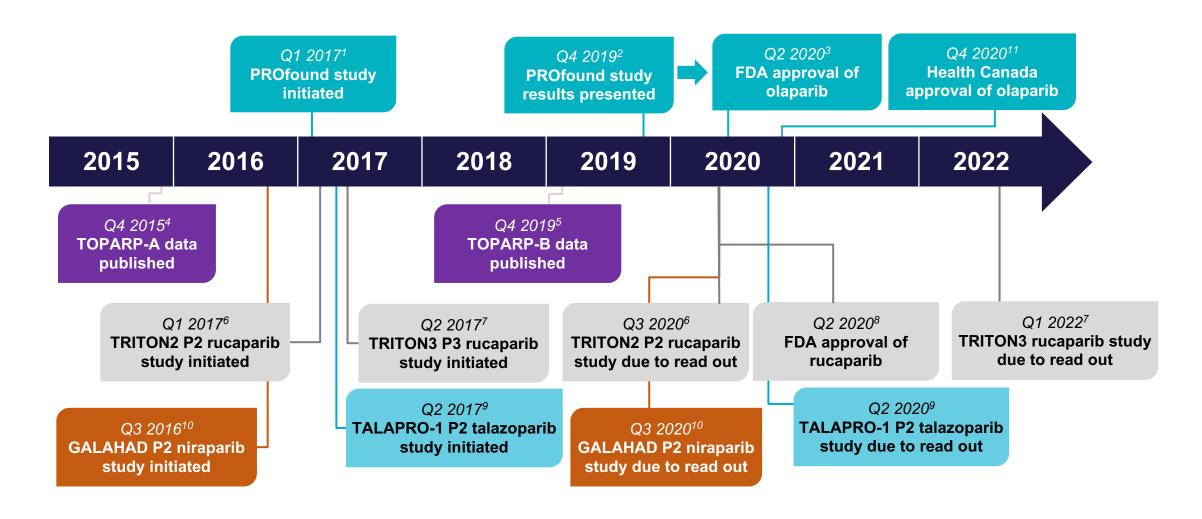
*n = 534; data censored for metastatic cases with inadequate sequencing


Using germline testing alone ~50% of patients with a BRCA1/2, or ATM mutation will be missed

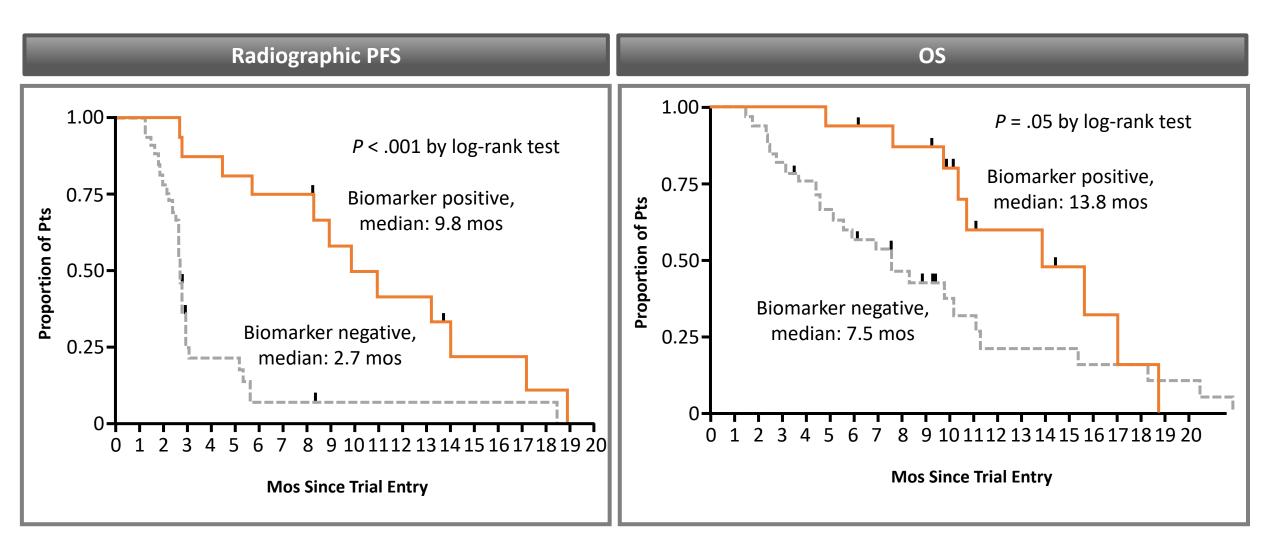


Patients with HRRm including *BRCA2*m are more likely to have poor outcomes on standard of care therapies¹⁻³

Patients with **germline HRRm** including *BRCA2*m are more likely to have **poor outcomes** on standard of care therapies^{1,2}


Poor responses to standard therapy also seen for tumour HRRm³

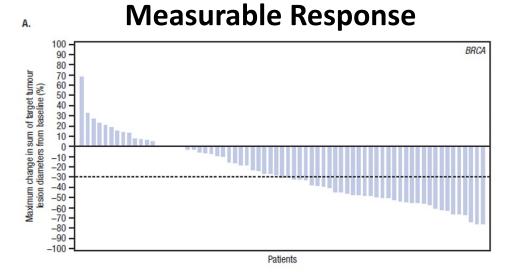
PARP Inhibitor Trials and approvals in mCRPC

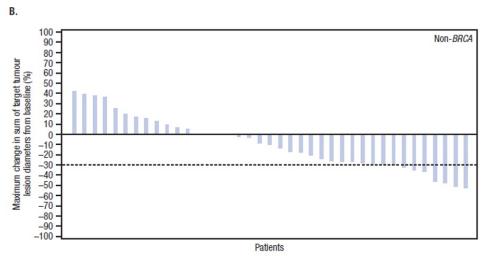

HLR, high level results; HRRm, homologous recombination repair; mCRPC, metastatic castration-resistant prostate cancer; PARP, poly(ADP-ribose) polymerase; P, phase

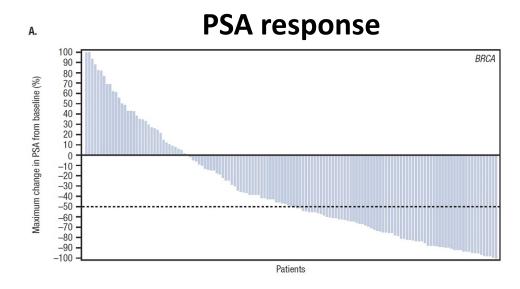
^{1.} de Bono J et al. NEJM 2020;382:2091-102; 2. AstraZeneca press release, 7 August 2019; 3. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostate-cancer; 4. Mateo J et al. NEJM 2015; 373:1697-708; 5. Mateo J et al. J Clin Oncol 2019;37:Abstr 5005; 6. https://clinicaltrials.gov/ct2/show/NCT02952534;

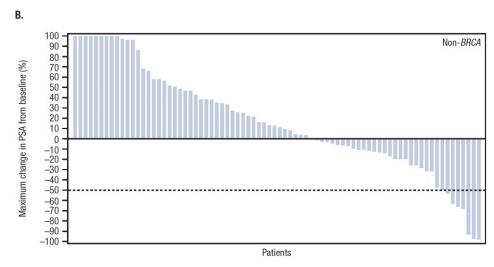
 $^{7.\ \}underline{https://clinicaltrials.gov/ct2/show/NCT02975934}; 8.\ \underline{https://clinicaltrials.gov/ct2/show/NCT02975934}; 8.\ \underline{https://clinicaltrials$

^{9.} https://clinicaltrials.gov/ct2/show/NCT03148795; 10. https://clinicaltrials.gov/ct2/show/NCT02854436; 11. Lynparza (olaparib) Canadian Product Monograph.

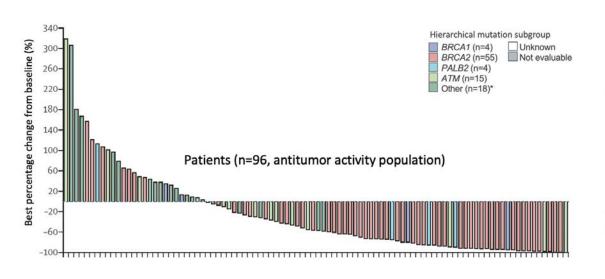

TOPARP-A: PFS and OS by Presence of DDR Defects

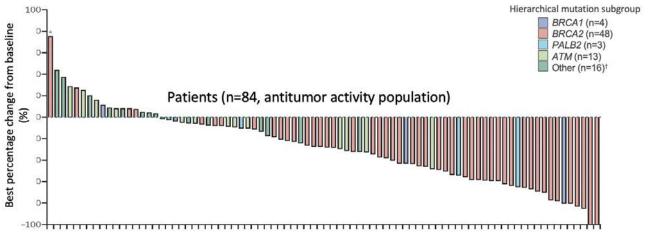


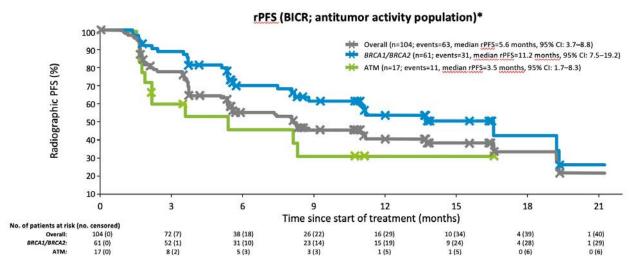



GALAHAD: Niraparib Monotherapy

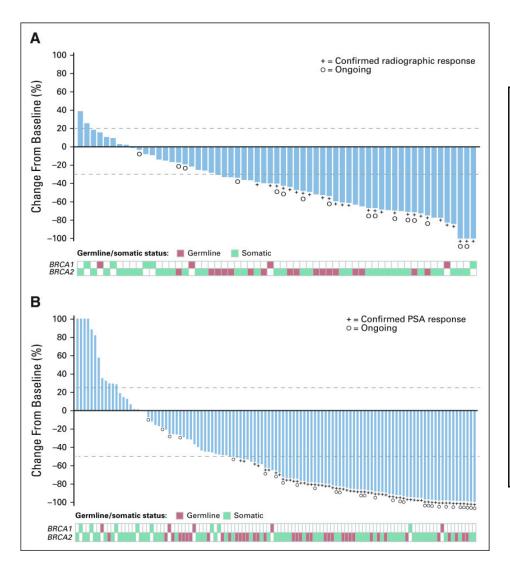
Results for BRCA vs Non-BRCA

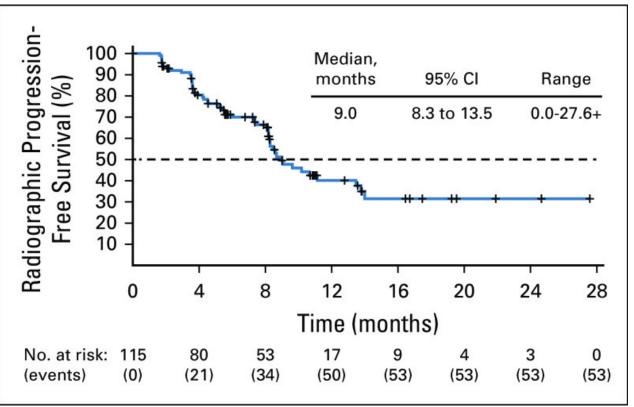




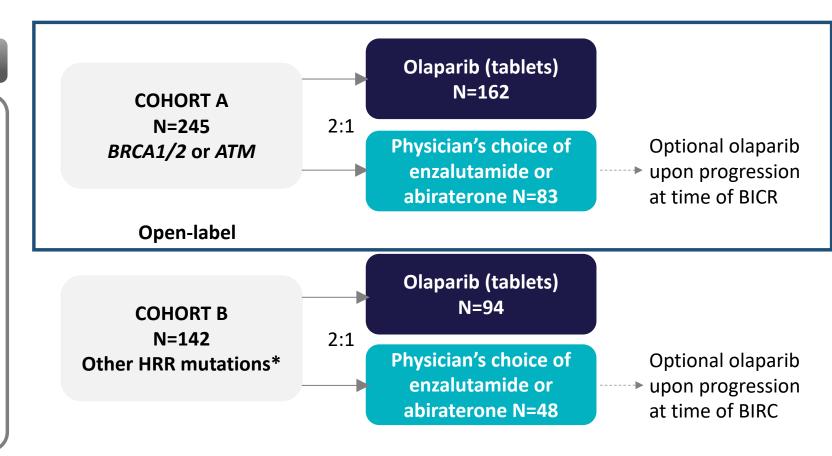


TALAPRO-1: Efficacy of Talazoparib Monotherapy





TRITON 2: Efficacy of Rucaparib Monotherapy in mCRPC with *BRCA1* or *BRCA2*



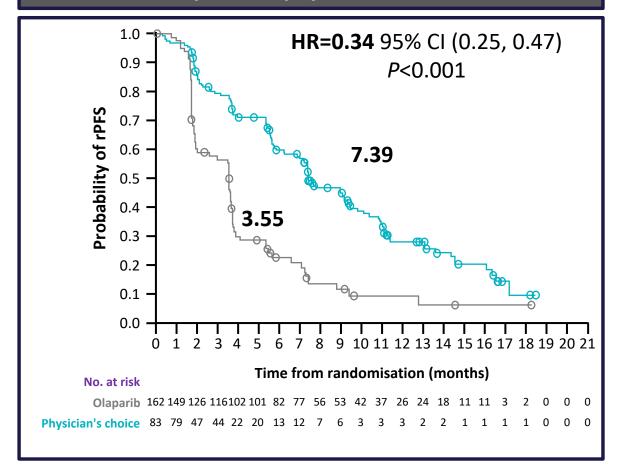
PROfound: First Phase 3 RCT of a PARP Inhibitor in mCRPC (Olaparib vs Enzalutamide or Abiraterone)

Randomised, open-label phase 3 study

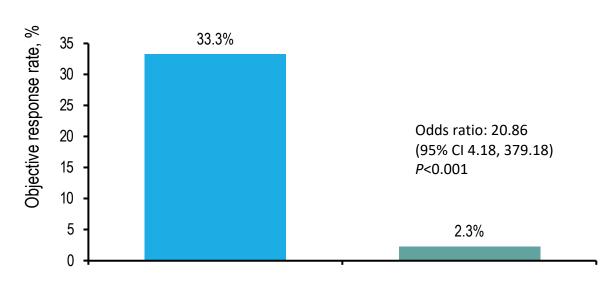
Key eligibility criteria
 mCRPC with disease progression on prior NHA eg abiraterone or enzalutamide

 Alterations in ≥1 of any qualifying gene with a direct or indirect role in HRR

Primary endpoint: Radiographic PFS by BICR using RECIST 1.1 (soft tissue) and PCWG3 (bone) criteria (cohort A)

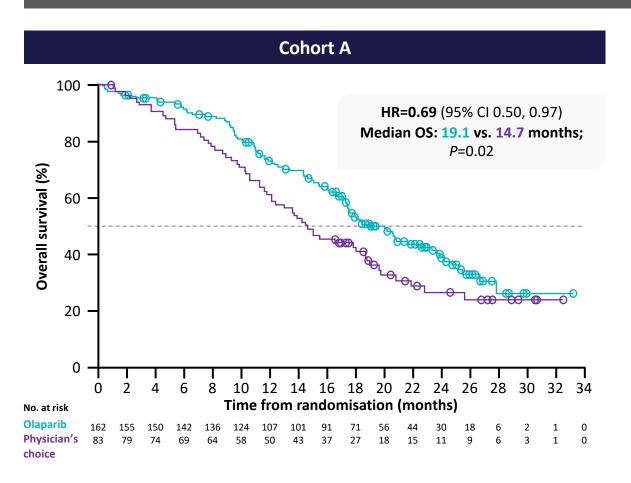

Key secondary endpoints: > Cohort A: Confirmed ORR, time to pain progression, overall survival

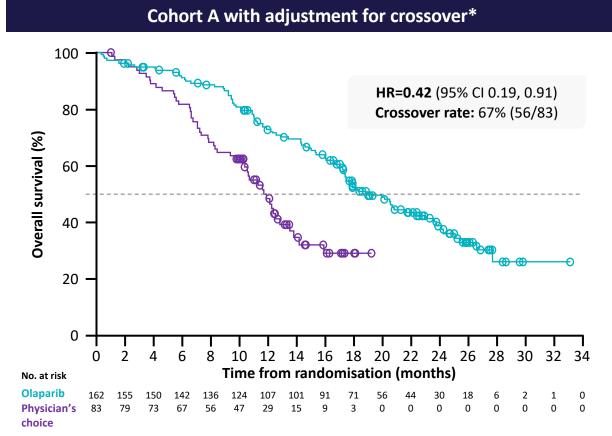
Cohort A + B: radiographic PFS


^{*}Cohort B included patients with BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, or RAD54L mutations. ARAT, ARAT, androgen receptor-axis-targeted therapies; BICR, blinded independent central review; EGOC, Eastern Cooperative Oncology Group; HRR, homologous recombination repair; mCRPC, metastatic castrate resistant prostate cancer; mPC, metastatic prostate cancer; ORR, objective response rate; PARP, poly(ADP-ribo polymerase; PFS, progression-free survival. de Bono JS et al. NEJM 2020;382:2091-102.

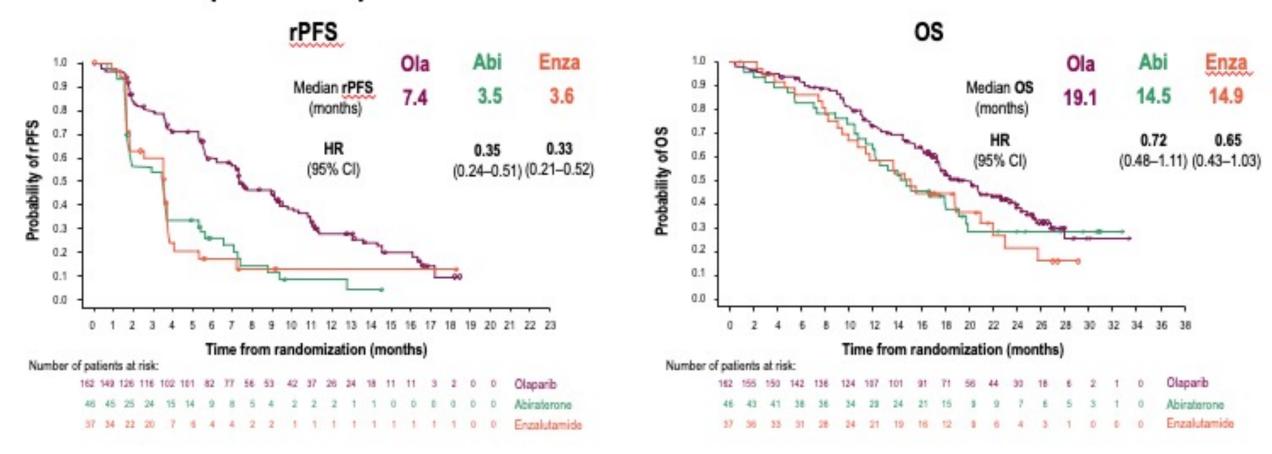
PROfound Primary Endpoint: Significant Improvement in rPFS in mCRPC with *BRCA1/2* or *ATM* Mutations (Cohort A)

66% reduction in risk of progression or death with olaparib vs. physician's choice


Confirmed ORR in Cohort A



PROfound Secondary Endpoint: Significant Improvement in OS in mCRPC with BRCA1/2 or ATM Mutations (Cohort A)


31% Reduction in Risk Of Death with Olaparib vs. Physician's Choice

rPFS and OS benefit for olaparib was shown against both enzalutamide and abiraterone (Cohort A)

Findings suggest that sequential use of an NHA may be of limited benefit

Tolerability profile Grade Αll Severe Olaparib 50 50 43 42 Control 40 33 Patients (%) 31 21 21 20 19 20 18 15 15 13 10

median duration of treatment was 7.6 mo. in the olaparib arm and 3.9 mo. in the control arm

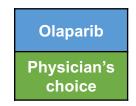
Fatigue or Asthenia Decreased appetite

Anaemia*

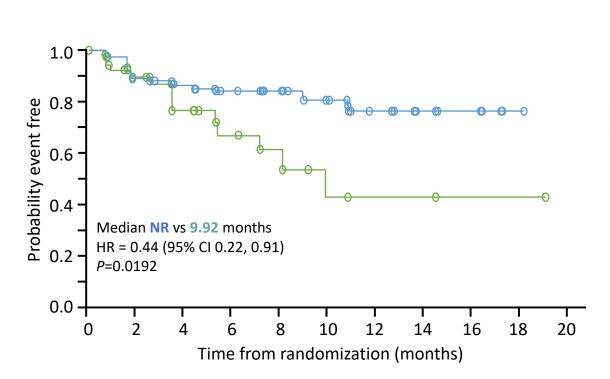
Nausea

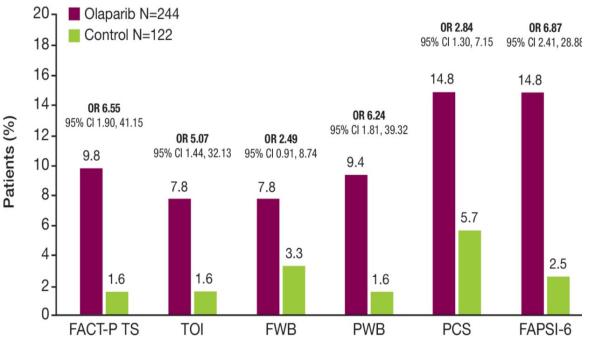
0

Constipation


1

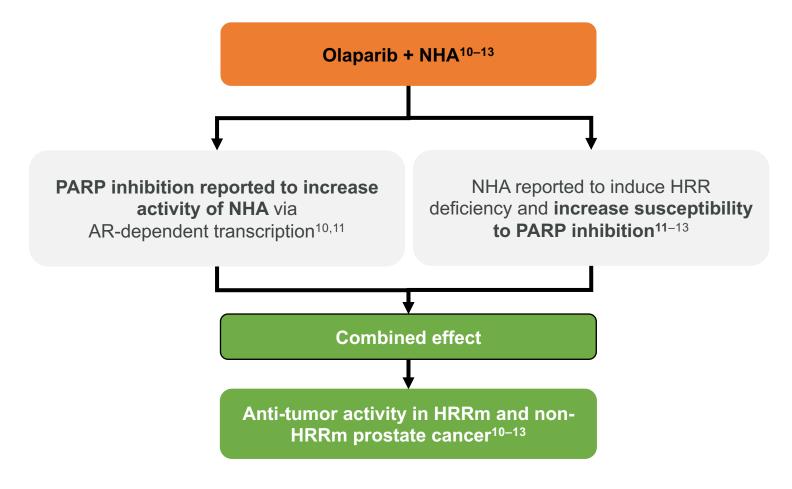
Vomiting


Diarrhoea


PROfound Secondary Endpoints: Improvements in Multiple Clinical and Patient-reported Endpoints in mCRPC With BRCA1/2 or ATM Mutations (Cohort A)

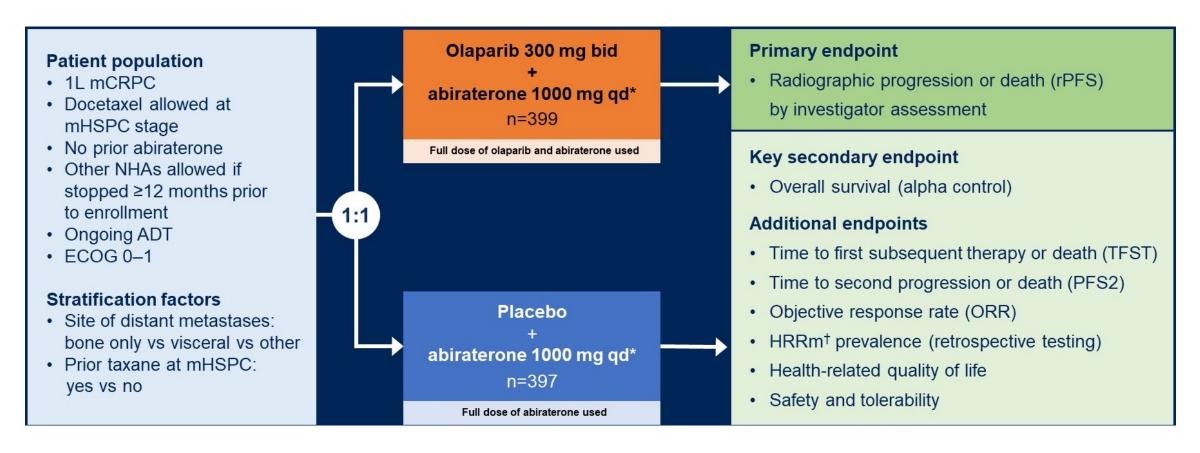
Improvement in patient reported HR-QoL

Time to pain progression in Cohort A



The Future

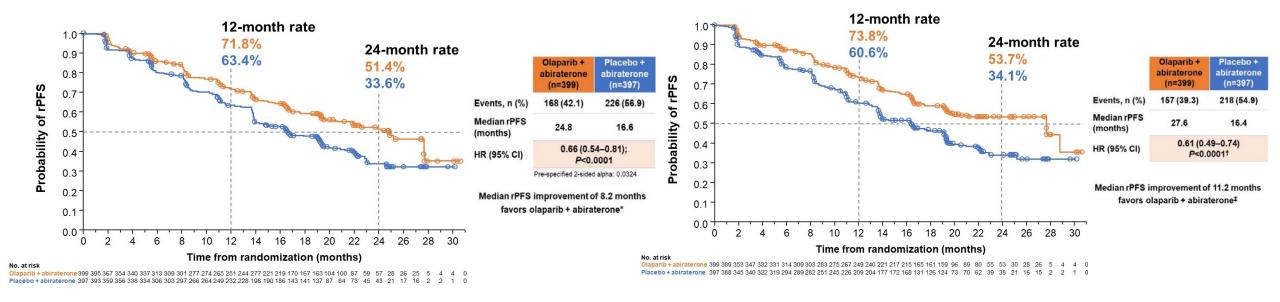
Earlier introduction? Combination trials? In all-comers?


Rationale for combining PARP inhibitors and NHAs

phase 2 olaparib + NHA combination study showed benefit in all patients

Randomized, double-blind, placebo-controlled Phase III trial

Baseline demographics: HRRm status

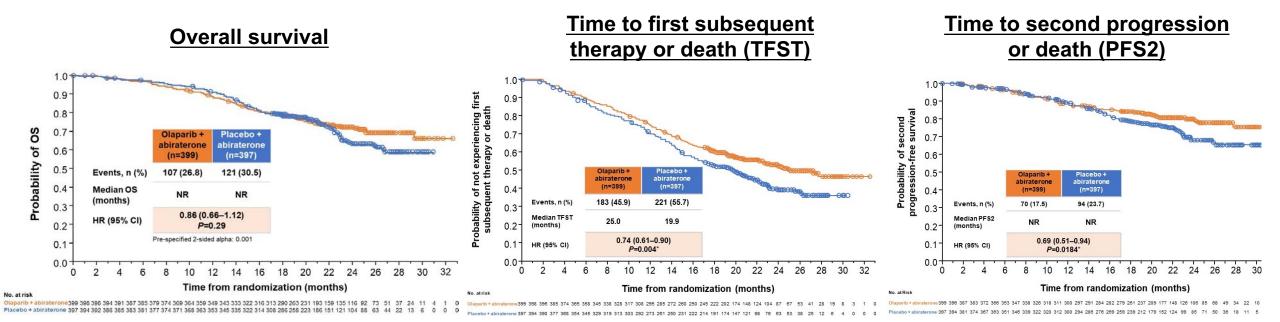

HRRm status†		
HRRm	111 (27.8)	115 (29.0)
Non-HRRm	279 (69.9)	273 (68.8)
HRRm unknown	9 (2.3)	9 (2.3)

Primary endpoint

rPFS by investigator assessment

rPFS by blinded independent central review

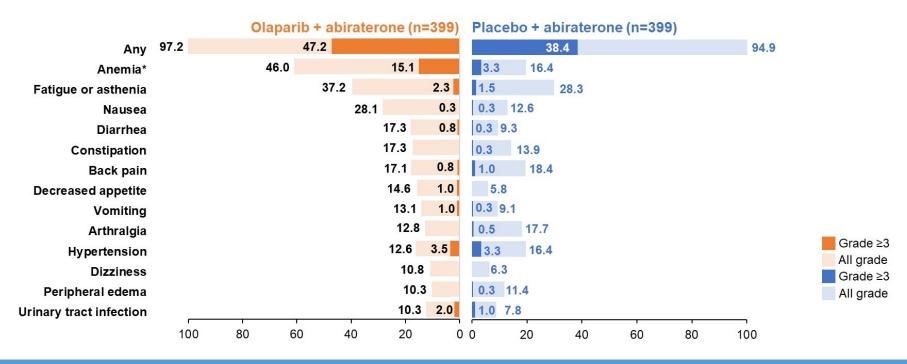
■ 34% risk reduction for progression or death with olaparib + abiraterone (HR 0.66; 95% CI 0.54–0.81; P<0.0001)


rPFS subgroup analysis

	Number of patients, n	Mediar mor			HR (95% CI)
All patients	796	24.8	16.6	⊢●	0.66 (0.54-0.81)
Age at randomization					
<65	227	NR	16.4	F	0.51 (0.35-0.75)
≥65	569	22.0	16.7	⊢	0.78 (0.62-0.98)
ECOG performance status at baseline					
0	558	24.9	16.8	⊢	0.67 (0.52-0.85)
1	236	17.5	14.6	1	0.75 (0.53-1.06)
Site of distant metastases					
Bone only	434	27.6	22.2	1	0.73 (0.54-0.98)
Visceral	105	13.7	10.9	├	0.62 (0.39-0.99)
Other	257	20.5	13.7	⊢	0.62 (0.44-0.85)
Docetaxel treatment at mHSPC stage					
Yes	189	27.6	13.8	<u> </u>	0.61 (0.40-0.92)
No	607	24.8	16.8	⊢	0.71 (0.56–0.89)
Baseline PSA					
Below median baseline PSA	396	25.2	22.0	⊢	0.75 (0.55-1.02)
Above or equal to median baseline PSA	397	18.5	13.8	——	0.63 (0.48-0.82)
HRRm status*					
HRRm	226	NR	13.9	⊢	0.50 (0.34-0.73)
Non-HRRm	552	24.1	19.0	⊢	0.76 (0.60-0.97)
			0.1 OI	aparib + abiraterone better	Placebo + abiraterone better

rPFS benefit observed across all pre-specified subgroups

Key secondary endpoints

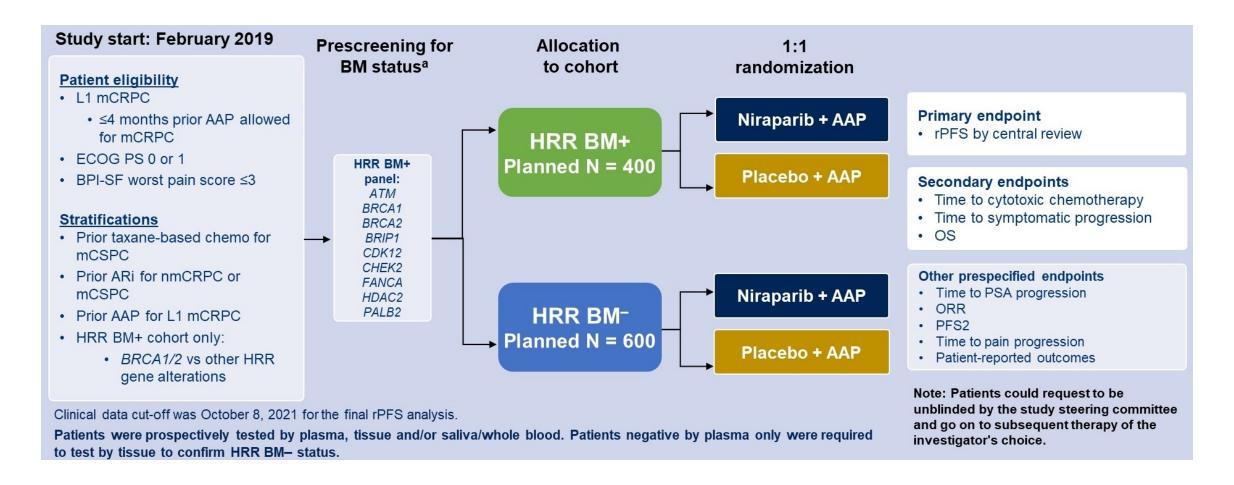


- OS data immature, but trend towards improved OS with olaparib + abiraterone
- TFST (HR 0.74; 95% CI 0.61–0.90) and PFS2 (HR 0.69; 95% CI 0.51–0.94) supportive of long-term benefits

PROpel Safety data

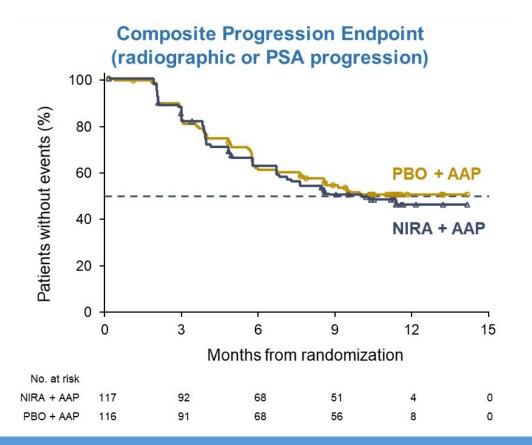
n (%)	Olaparib + abiraterone (n=399)	Placebo + abiraterone (n=397)
Any AE	387 (97.2)	376 (94.9)
Any AE CTCAE Grade ≥3	188 (47.2)	152 (38.4)
Death due to an AE	16 (4.0)	17 (4.3)
Any AE leading to:		
Dose interruption of olaparib/placebo	178 (44.7)	100 (25.3)
Dose reduction of olaparib/placebo	80 (20.1)	22 (5.6)
Discontinuation of olaparib/placebo	55 (13.8)	31 (7.8)
Discontinuation of abiraterone	34 (8.5)	35 (8.8)

Safety and tolerability profile consistent with the known safety profiles of individual drugs
 The most common grade ≥3 AE was anemia (15.1% vs 3.3%)



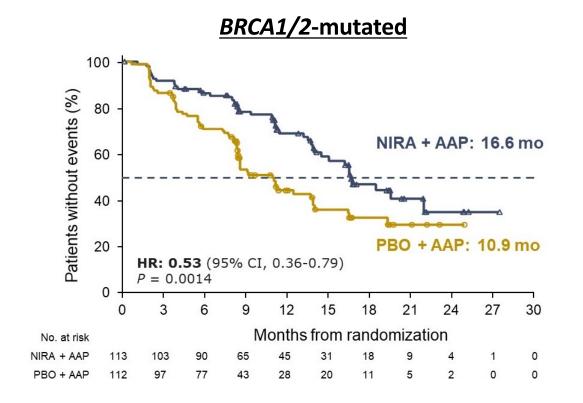
^{*}Anemia category includes anemia, decreased hemoglobin level, decreased red-cell count, decreased hematocrit level, erythropenia, macrocytic anemia, normochromic anemia, normochromic normocytic anemia, and normocytic anemia.

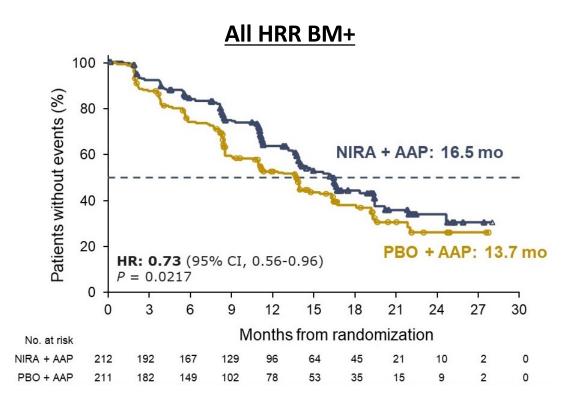
AE, adverse event; CTCAE, Common Terminology Criteria for Adverse Events v4.03.


Saad F, et al. Oral presentation at the 2022 ASCO GU Symposium; Feb 17, 2022; Abstract #11

Randomized, double-blind, placebo-controlled Phase III trial

Pre-specified futility analysis: HRR BM-


- Composite endpoint^a (N = 233)
 HR = 1.09 (95% CI 0.75-1.59)
 [futility was defined as ≥1]
- Additional grade 3/4 toxicity was observed using NIRA + AAP vs PBO + AAP
- With added toxicity and no added efficacy in patients with HRR BM⁻ mCRPC, the IDMC recommend stopping enrollment in this cohort


Breakdown of composite endpoint events 83 PSA events (HR = 1.03, 95% CI 0.67-1.59) 65 rPFS events (HR = 1.03, 95% CI 0.63-1.67)

■ No benefit of adding NIRA to AAP in the pre-specified composite endpoint (HR, 1.09; 95% CI 0.75–1.59)

Primary endpoint: rPFS by central review

- 47% improvement in rPFS in patients with BRCA1/2 alterations (HR 0.53; 95% CI 0.36–0.79; P=0.0014)
 - 27% improvement in rPFS across all HRR BM+ patients (HR 0.73; 95% CI 0.56-0.96; P=0.0217)

rPFS subgroup analysis: All HRR BM+

		Median	(months)			Events/N
Variable	Subgroup	niraparib	control		HR (95% CI)	niraparib control
All HRR+ patients	All	16.5	13.7	H -	0.74 (0.57-0.97)	100/212 117/211
Age group	<65	13.9	13.9	⊢	1.01 (0.61–1.66)	32/61 30/62
	≥65-74	19.4	13.6	⊢•	0.58 (0.38-0.89)	34/88 57/100
	≥75	16.4	10.9	 	0.76 (0.46-1.24)	34/63 30/49
Race group	Asian	22.0	10.9	 i	0.48 (0.22-1.05)	9/29 22/41
	White	14.4	13.8	⊢ • ┧	0.83 (0.61–1.13)	82/160 83/153
	Other	18.4	9.0	!	0.47 (0.20-1.14)	9/23 12/17
Baseline ECOG performance	. 0	19.5	13.9	 • 	0.65 (0.46-0.92)	53/130 76/146
status	1	13.1	10.5	⊢- †-1	0.84 (0.55-1.28)	47/82 41/65
Baseline BPI-SF#3 Score	0	16.7	16.8	 • i	0.75 (0.51–1.12)	47/108 53/103
	1 to 3	13.9	10.5	 • 	0.78 (0.52-1.17)	46/88 50/86
	>3	13.7	13.7	! -	0.68 (0.26-1.79)	6/14 14/22
Region	Asia Pacific	19.5	13.8	<u> </u>	0.64 (0.35-1.17)	17/43 27/52
	Europe	14.4	13.7	 -	0.82 (0.58-1.14)	68/128 71/120
North a	nd South Amer	rica 16.6	16.4	<u> </u>	0.60 (0.30-1.18)	15/41 19/39
			_	<u>i</u>		
				0.1 1		
			Fav	oring Niraparib Favor	ina Control	

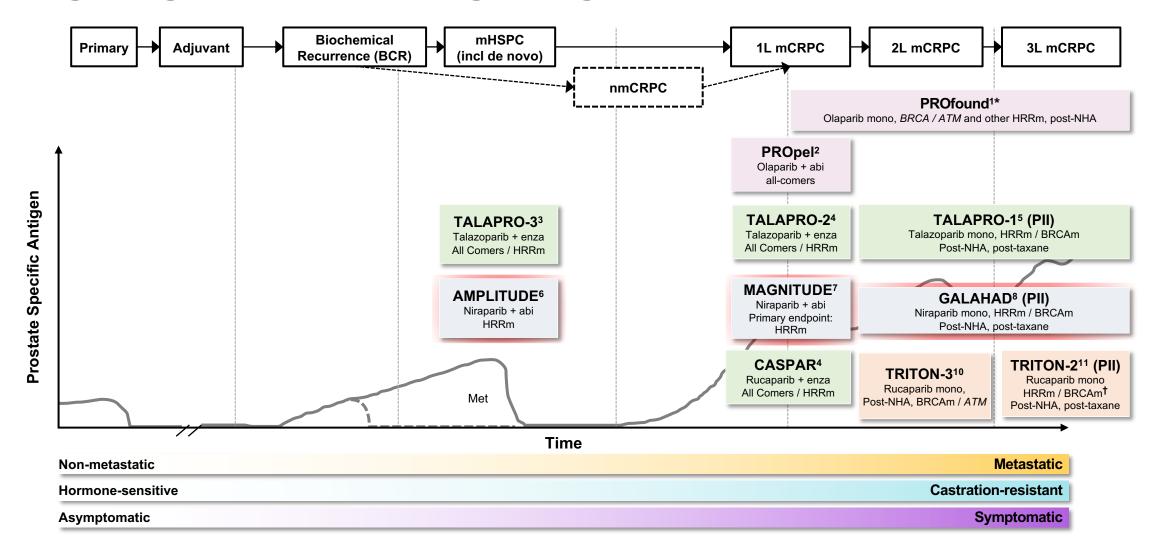
	Median	months	,			LVCIII3/IV
Subgroup	niraparib	control			HR (95% CI)	niraparib control
y Yes	13.4	10.9		—	0.89 (0.48-1.66)	20/40 21/41
No	16.6	13.8		1	0.71 (0.53-0.96)	80/172 96/170
Yes	NE	4.3	-		0.19 (0.03-1.23)	2/8 3/4
No	16.5	13.8			0.76 (0.58-1.00)	98/204 114/207
Yes	13.9	14.6		—	0.95 (0.54-1.67)	23/47 26/45
No	16.7	12.7		H=-{	0.71 (0.52-0.96)	77/165 91/166
Yes	11.0	8.1		⊢i ⊣	1.03 (0.60-1.77)	34/51 22/39
No	19.4	13.8		⊢• +¦	0.64 (0.47-0.87)	66/161 95/172
Yes	19.4	15.4		 ‡	0.72 (0.45-1.14)	32/78 41/85
No	14.8	10.9		₩į	0.73 (0.53-1.02)	68/134 76/126
ne ≤10	19.4	15.4		 • ¦	0.76 (0.53-1.10)	54/127 65/128
>10	13.8	8.4		⊢ ••••	0.69 (0.47-1.04)	46/85 52/83
Yes	15.7	8.3		⊷i	0.58 (0.40-0.82)	56/110 66/101
No	16.7	18.2		H	0.93 (0.62-1.40)	44/102 51/110
BRCA	16.6	10.9		H	0.55 (0.38-0.81)	45/113 64/112
Other HRR	14.8	16.4		H-	0.99 (0.68-1.45)	55/99 53/99
			0.1	11		
		Fa	voring Nira	parib Favo	ring Control	
	Yes No No Ses N	Subgroup niraparib y Yes 13.4 No 16.6 Yes NE No 16.5 Yes 13.9 No 16.7 Yes 11.0 No 19.4 Yes 19.4 >10 13.8 Yes 15.7 No 16.7 BRCA 16.6	Subgroup niraparib control y Yes 13.4 10.9 No 16.6 13.8 Yes NE 4.3 No 16.5 13.8 Yes 13.9 14.6 No 16.7 12.7 Yes 11.0 8.1 No 19.4 13.8 Yes 19.4 15.4 No 14.8 10.9 ne ≤10 19.4 15.4 Yes 15.7 8.3 No 16.7 18.2 BRCA 16.6 10.9 Other HRR 14.8 16.4	Y Yes 13.4 10.9 No 16.6 13.8 Yes NE 4.3 No 16.5 13.8 Yes 13.9 14.6 No 16.7 12.7 Yes 11.0 8.1 No 19.4 13.8 Yes 19.4 15.4 No 14.8 10.9 ne ≤10 19.4 15.4 >10 13.8 8.4 Yes 15.7 8.3 No 16.7 18.2 BRCA 16.6 10.9 Other HRR 14.8 16.4	Subgroup niraparib control y Yes 13.4 10.9 No 16.6 13.8 Yes NE 4.3 No 16.5 13.8 Yes 13.9 14.6 No 16.7 12.7 Yes 11.0 8.1 No 19.4 13.8 Yes 19.4 15.4 No 14.8 10.9 ne ≤10 19.4 15.4 Yes 15.7 8.3 No 16.7 18.2 BRCA 16.6 10.9 Other HRR 14.8 16.4	Subgroup niraparib control HR (95% CI) Y Yes 13.4 10.9 0.89 (0.48–1.66) No 16.6 13.8 0.71 (0.53–0.96) Yes NE 4.3 0.19 (0.03–1.23) No 16.5 13.8 0.76 (0.58-1.00) Yes 13.9 14.6 0.95 (0.54–1.67) No 16.7 12.7 0.71 (0.52–0.96) Yes 11.0 8.1 1.03 (0.60–1.77) No 19.4 13.8 0.64 (0.47–0.87) Yes 19.4 15.4 0.72 (0.45–1.14) No 14.8 10.9 0.73 (0.53–1.02) ne ≤10 19.4 15.4 0.76 (0.53–1.10) >10 13.8 8.4 0.69 (0.47–1.04) Yes 15.7 8.3 0.58 (0.40–0.82) No 16.7 18.2 0.93 (0.62–1.40) BRCA 16.6 10.9 0.55 (0.38–0.81) Other HRR 14.8 16.4 0.99 (0.68–1.45)

Median (months)

Events/N

MAGNITUDESafety data: HRR BM+

Overall summary, n (%)	NIRA + AAP n = 212	PBO + AAP n = 211
All TEAEs	210 (99.1)	199 (94.3)
Drug related	162 (76.4)	116 (55.0)
Grade 3/4 TEAEs	142 (67.0)	98 (46.4)
SAEs	76 (35.8)	52 (24.6)
Drug related ^a	24 (11.3)	6 (2.8)
Dose reduction due to an AE	42 (19.8)	7 (3.3)
Discontinuation of niraparib or placebo due to AE	23 (10.8)	10 (4.7)
All deaths within 30 days of last dose	19 (9.0)	19 (9.0)
Death due to prostate cancer	8 (3.8)	12 (5.7)
AE	11 (5.2)	7 (3.3)


Treatment-emergent adverse events occurring at >20% in the NIRA arm or otherwise of clinical interest, n (%)		NIRA + AAI	P, n = 212	PBO + AAP, n = 211	
		All grades	Grade ≥3	All grades	Grade ≥3
Hematologic	Anemia	98 (46.2)	63 (29.7)	43 (20.4)	16 (7.6)
	Thrombocytopenia	45 (21.2)	14 (6.6)	18 (8.5)	5 (2.4)
	Neutropenia	29 (13.7)	14 (6.6)	12 (5.7)	3 (1.4)
	Acute myeloid leukemia/ Myelodysplastic syndrome	0	0	1 (0.5)	1 (0.5)
Cardiovascular	Hypertension	67 (31.6)	33 (15.6)	47 (22.3)	30 (14.2)
	Arrhythmia	27 (12.7)	6 (2.8) ^a	12 (5.7)	3 (1.4)
	Cardiac failure	4 (1.9)	3 (1.4) ^a	4 (1.9)	1 (0.5)
	Ischemic heart disease	4 (1.9)	4 (1.9)	8 (3.8)	6 (2.8) ^b
General disorders	Fatigue	56 (26.4)	7 (3.3)	35 (16.6)	9 (4.3)
Gastrointestinal	Constipation	65 (30.7)	-	29 (13.7)	-
	Nausea	50 (23.6)	1 (0.5)	29 (13.7)	0
Hepatotoxicity		25 (11.8)	4 (1.9)	26 (12.3)	10 (4.7)
Cerebrovascular disorders		6 (2.8)	2 (0.9)	2 (0.9)	1 (0.5) ^a

- Most common AEs leading to dose reduction with NIRA + AAP: anemia (13.2%), thrombocytopenia (2.8%)
- Median relative dose intensity in the NIRA + AAP group: 99%

■ TEAEs consistent with known safety profile for each individual therapy

Ongoing trials investigating PARPi in advanced PC

Please see slide notes for references

^{*}As a result of the data from PROfound, olaparib monotherapy was approved for treatment of mCRPC in patients with HRRm (FDA approval) or for patients with mutations in only *BRCA1/2* (EMA approval) after progression on a NHA^{12,13}

†As a result of the data from TRITON2, rucaparib monotherapy was approved by the FDA only for the treatment of mCRPC in patients with a *BRCA1/2*m who have disease progression after treatment with prior AR-directed therapy and prior taxane¹⁴

Abi=abiraterone; BCR=biochemical recurrence; enza=enzalutamide; FDA=US Food and Drug Administration; HRRm=homologous recombination repair mutation; mCRPC=metastatic castration-resistant prostate cancer; met=metastasis; mono=monotherapy; mHSPC=metastatic hormone-sensitive prostate cancer; NHA=new hormonal agent; nmCRPC=non-metastatic castration-resistant prostate cancer; P2=Phase II; P3=Phase III.

Conclusion

- Patients in the mCRPC state live less than 3 years even with the best available treatments
- A significant proportion of men destined to die of prostate cancer harbor HRR mutations
 - Treatment improves progression free survival and overall survival
 - Strategies to identify patients are challenging but critically important
- Future will likely include earlier introduction of PARPi and possibly treatment beyond patients with HRR/DDR mutations

Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Satellite Symposium Series in Conjunction with the AUA 2022 Annual Meeting

Friday, May 13, 2022 6:00 PM - 8:00 PM CT (7:00 PM - 9:00 PM ET)

Faculty

Matthew D Galsky, MD Ashish M Kamat, MD, MBBS Stephen B Williams, MD, MS

Moderator Sumanta Kumar Pal, MD

Thank you for attending!

CME Credit Information

For those participating in person today, please remit your CME credit form as you exit the meeting room.

For all others, a CME credit link will be provided in the chat room at the conclusion of the program.

