Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Satellite Symposium Series in Conjunction with the AUA 2022 Annual Meeting

Friday, May 13, 2022 6:00 PM – 8:00 PM CT (7:00 PM – 9:00 PM ET)

Faculty Matthew D Galsky, MD Ashish M Kamat, MD, MBBS Stephen B Williams, MD, MS

Moderator Sumanta Kumar Pal, MD

Faculty

Matthew D Galsky, MD

Professor of Medicine Icahn School of Medicine at Mount Sinai Co-Leader, Bladder Cancer Center of Excellence Associate Director, Translational Research The Tisch Cancer Institute New York, New York

Stephen B Williams, MD, MS Medical Director, High Value Care UTMB Health System Chief, Division of Urology Professor (Tenured), Urology and Radiology Robert Earl Cone Professorship Director of Urologic Oncology Director of Urologic Research Co-Director of the Surgical Outcomes Research Division The University of Texas Medical Branch Galveston, Texas

Ashish M Kamat, MD, MBBS Professor of Urologic Oncology (Surgery) Wayne B Duddlesten Professor of Cancer Research Department of Urology Division of Surgery The University of Texas MD Anderson Cancer Center Houston, Texas

Moderator

Sumanta Kumar Pal, MD Professor, Department of Medical Oncology and Therapeutics Research City of Hope Duarte, California

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey before the meeting. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

|--|

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the premeeting survey before the meeting. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Cases from the Community: Urologic Oncology Investigators Provide Perspectives on the Optimal Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Satellite Symposium Series in Conjunction with the AUA 2022 Annual Meeting

Friday, May 13, 2022 6:00 PM – 8:00 PM CT (7:00 PM – 9:00 PM ET)

Faculty Matthew D Galsky, MD Ashish M Kamat, MD, MBBS Stephen B Williams, MD, MS

Moderator Sumanta Kumar Pal, MD

Commercial Support

This activity is supported by educational grants from Astellas and Seagen Inc, AstraZeneca Pharmaceuticals LP, Gilead Sciences Inc, and Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Galsky — Disclosures

Advisory Committee	Aileron Therapeutics Inc, Alligator Bioscience, Astellas, AstraZeneca Pharmaceuticals LP, Basilea Pharmaceutica Ltd, BioMotiv, Bristol-Myers Squibb Company, Dendreon Pharmaceuticals Inc, Dracen Pharmaceuticals, Dragonfly Therapeutics, EMD Serono Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, GlaxoSmithKline, Incyte Corporation, Infinity Pharmaceuticals Inc, Inovio Pharmaceuticals Inc, Janssen Biotech Inc, Lilly, Merck, Novartis, Numab, Pfizer Inc, Seagen Inc, UroGen Pharma
Contracted Research	AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, Merck

Dr Kamat — Disclosures

No relevant conflicts of interest to disclose

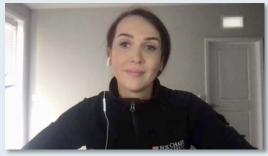
Dr Pal — Disclosures

No relevant conflicts of interest to disclose

Dr Williams — Disclosures

No relevant conflicts of interest to disclose

Agenda


MODULE 1: Available Data with and Ongoing Investigation of Novel Agents and Strategies for Non-Muscle-Invasive Bladder Cancer (NMIBC) — Dr Kamat

MODULE 2: Novel Therapeutic Approaches for Muscle-Invasive Bladder Cancer (MIBC) — Dr Williams

MODULE 3: Current and Future Front-Line Management of Metastatic Urothelial Bladder Carcinoma (mUBC) — Dr Galsky

MODULE 4: Selection and Sequencing of Therapy for Relapsed/Refractory mUBC — Dr Pal

Laura Bukavina, MD, MPH Fox Chase Cancer Center Philadelphia, Pennsylvania

Sulfi Ibrahim, MD Reid Health Richmond, Indiana

Ranju Gupta, MD LVPG Hematology Oncology Associates Lehigh Valley Health Network Bethlehem, Pennsylvania

Zanetta S Lamar, MD Florida Cancer Specialists Naples, Florida

Jason Hafron, MD Oakland University William Beaumont School of Medicine West Bloomfield, Michigan

Henna Malik, MD Texas Oncology Houston, Texas

Paul Markowski, MD Atlantic Health System Summit, New Jersey

Chris Prakash, MD Texas Oncology Paris, Texas

David S Morris, MD Urology Associates Nashville, Tennessee

David A Taub, MD, MBA Lynn Cancer Institute Baptist Health South Florida Boca Raton, Florida

MODULE 1: Available Data with and Ongoing Investigation of Novel Agents and Strategies for Non-Muscle-Invasive Bladder Cancer

How many patients in your practice with non-muscleinvasive bladder cancer (NMIBC) have been treated with an anti-PD-1/PD-L1 antibody such as pembrolizumab?

- 1. 0
- 2. 1
- 3. 2-5
- 4. More than 5

A 72-year-old man with persistent NMIBC after multiple therapies

Dr Laura Bukavina Philadelphia, Pennsylvania

An 82-year-old woman with high-grade NMIBC

Dr David Taub Boca Raton, Florida

Dr Paul Markowski Summit, New Jersey A 70-year-old woman with multiple recurrences of NMIBC involving the ureter – PD-L1: 5%

What is the age of the oldest patient in your practice who has undergone cystectomy?

- 1. Younger than 60
- 2. 60-70
- 3. 71-80
- 4. 81-85
- 5. 86-90
- 6. 91-95
- 7. 96-100
- 8. Older than 100

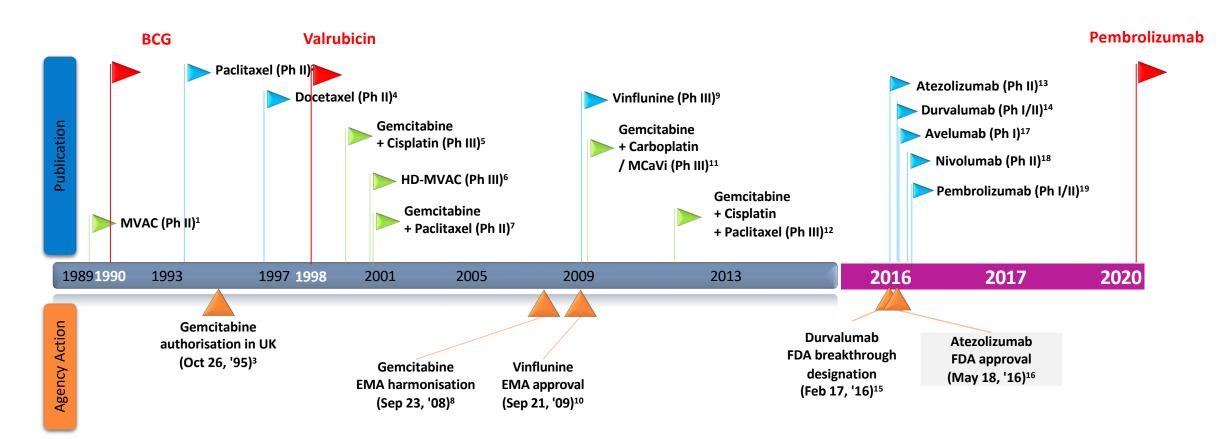
An 88-year-old man with multiple recurrences of FGFR3-positive NMIBC who receives erdafitinib on a clinical trial

Dr David Morris Nashville, Tennessee

TAR-200: Gemcitabine-releasing intravesicle system

Dr David Morris Nashville, Tennessee

Making Cancer History®



NOVEL AGENTS AND STRATEGIES FOR NON-MUSCLE-INVASIVE BLADDER CANCER (NMIBC)

ASHISH M. KAMAT, MD, MBBS

PROFESSOR OF UROLOGIC ONCOLOGY WAYNE B. DUDDLESTEN PROFESSOR OF CANCER RESEARCH PRESIDENT, INTERNATIONAL BLADDER CANCER GROUP (IBCG) CO-PRESIDENT, INTERNATIONAL BLADDER CANCER NETWORK (IBCN)

Evolution of Therapy for Urothelial Cancer

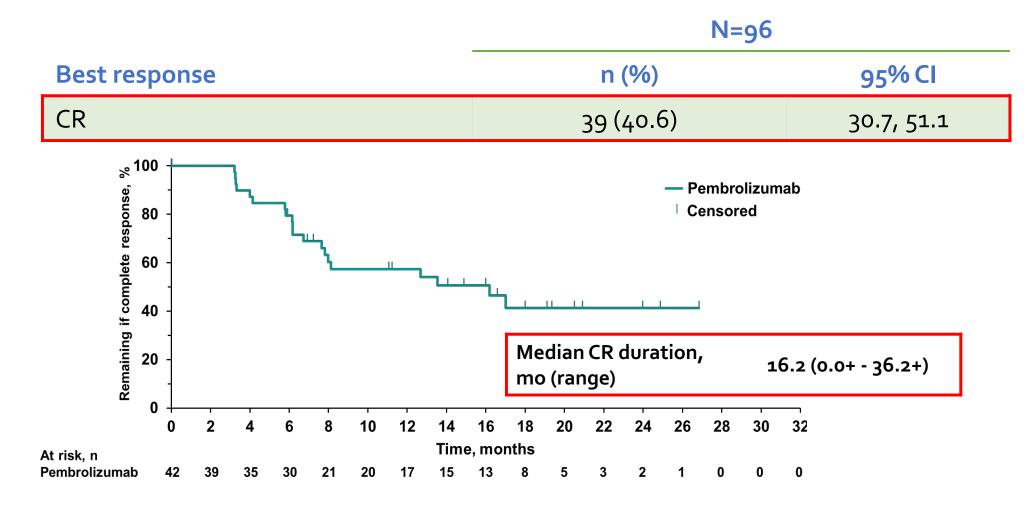
¹Sternberg CN, et al. *Cancer.* 1989; ²Roth BJ, et al. *J Clin Oncol.* 1994; ³Eli Lilly. SmPC Gemzar[®] 01-Jul-2014 (www.medicined.org.uk); ⁴McCaffrey JA, et al. *J Clin Oncol.* 1997; ⁵Von der Maase H, et al. *J Clin Oncol.* 2000; ⁶Sternberg CN, et al. *J Clin Oncol.* 2001; ⁷Meluch AA, et al. *J Clin Oncol.* 2001; ⁸EMA. EMEA/CHMP/512295/2008; 24.09.2018 (www.ema.europa.eu); ⁹Bellmunt J, et al. *J Clin Oncol.* 2009; ¹⁰EMA. EMEA/H/C/000983; 2012 (www.ema.europa.eu); ¹¹De Santis M, et al. *J Clin Oncol.* 2009; ¹²Bellmunt J, et al. *J Clin Oncol.* 2012; ¹³Rosenberg JE, et al. *Lancet.* 2016; ¹⁴Massard C et al. ASCO 2016: abstract #4502 and oral presentation; ¹⁵AstraZeneca. Press Release 17.02.2016 (access: www.astrazeneca.com); ¹⁶FDA. Press Release 18.05.2016 (access: www.fda.gov); ¹⁷Apolo AB, et al. *J Clin Oncol.* 2016; ¹⁸Galsky MD, et al. ESMO 2016: abstract #LBA31_PR; ¹⁹Balar A, et al. *Ann Oncol.* 2016.

Valrubicin

- FDA approved in 1998 for BCG-refractory CIS in those who are not candidates for cystectomy
- CR at 6 months in 18% of patients
- 2-year DFS only 4%

Steinberg et al, J Urol, 1998; Dinney et al, Urol Onc, 2013.

Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study


Arjun V Balar, Ashish M Kamat, Girish S Kulkarni, Edward M Uchio, Joost L Boormans, Mathieu Roumiguié, Laurence E M Krieger, Eric A Singer, Dean F Bajorin, Petros Grivas, Ho Kyung Seo, Hiroyuki Nishiyama, Badrinath R Konety, Haojie Li, Kijoeng Nam, Ekta Kapadia, Tara Frenkl, Ronald de Wit

January 8, 2020

Pembrolizumab is approved for the treatment of patients with BCG-unresponsive, highrisk, NMIBC with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for, or who have elected not to undergo, cystectomy

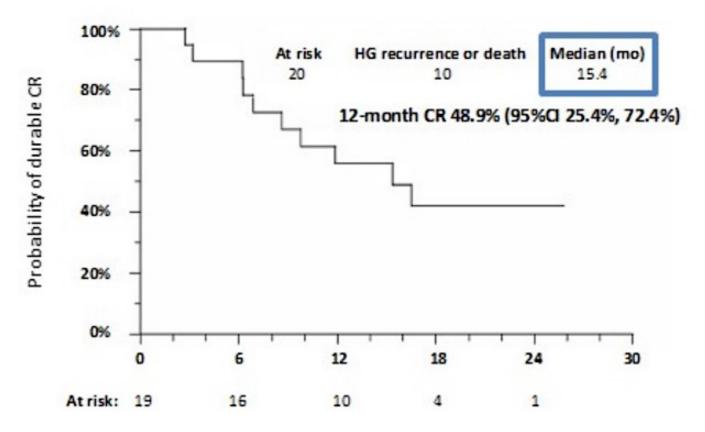
KEYNOTE-057: BCG Unresponsive CIS Patients Achieving CR with Pembrolizumab

CR, complete response. ^a1 month = 30.4367 days. ^bMonth o = time point when initial CR was achieved.

Updated 2021

Key Baseline Characteristics KNo57

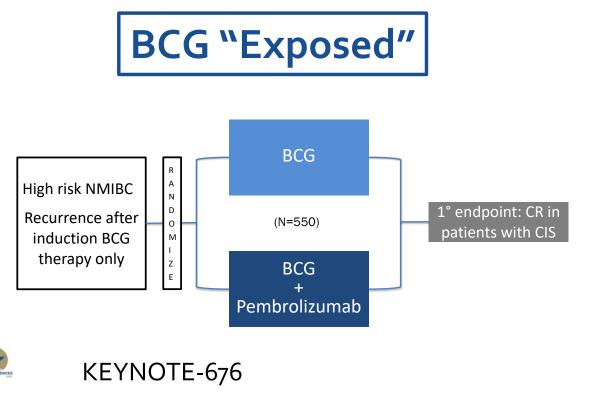
Characteristic	N=96
Median age, years (range)	73 (44-92)
<65	30 (31.3)
≥65 to <75	24 (25.0)
≥75 to <85	33 (34.4)
≥85	9 (9.3)
Male, n (%)	81 (84.4)
Female, n (%)	15 (15.6)
Race, n (%)	
White	64 (66.7)
Asian	26 (27.1)
Missing	6 (6.3)
ECOG PS, n (%)	
0	70 (72.9)
1	26 (27.1)


Characteristic	N=97
Median prior BCG instillations, n (range)	12.0 (7.0-45.0)
Tumor pattern at study entry, n (%)	
CIS with T1	12 (12.5)
CIS with high-grade Ta	24 (25.0)
CIS alone	60 (62.5)
PD-L1 status, n (%)	
CPS ≥10	35 (36.5)
CPS <10	56 (58.3)
Not evaluable	5 (5.2)
Reason prior cystectomy not performed, n (%)	
Declined	91 (94.8)
Ineligible	5 (5.2)

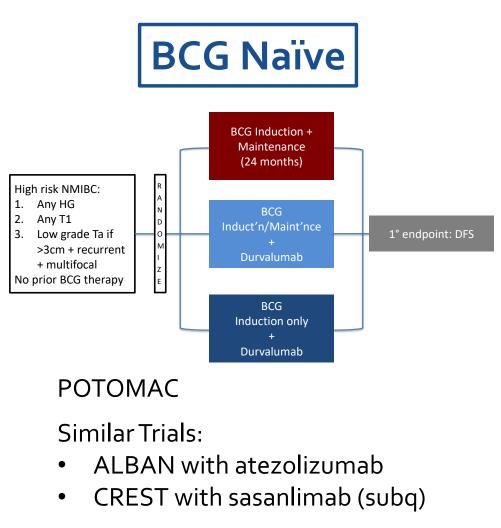
Immune-mediated AEs Any Grade and Corresponding Grade 3 or 4^a Events

Incidence of any-grade immune- mediated AEs, n (%)	N=102	Incidence of grades 3 or 4 immune- mediated AEs, n (%)	N=102
Any	21 (20.6)	Any	3 (2.9)
Hypothyroidism	8 (7.8)	Hypothyroidism	o (o.o)
Hyperthyroidism	5 (4.9)	Hyperthyroidism	0 (0.0)
Pneumonitis	3 (2.9)	Pneumonitis	0 (0.0)
Hypophysitis	1 (1.0)	Hypophysitis	0 (0.0)
Colitis	1 (1.0)	Colitis	0 (0.0)
Adrenal insufficiency	1 (1.0)	Adrenal insufficiency	1 (1.0)
Nephritis	1 (1.0)	Nephritis	0 (0.0)
Severe skin reaction	1 (1.0)	Severe skin reaction	1 (1.0)
Type 1 diabetes mellitus	1 (1.0)	Type 1 diabetes mellitus	1 (1.0)
Uveitis	1 (1.0)	Uveitis	0 (0.0)
Hepatitis	1 (1.0)	Hepatitis	0 (0.0)

From Balar et al, 2021


SWOG-S1605: Atezolizumab in BCG Unresponsive High Risk NMIBC

- CR rate at 6 mos: 27% (20/74 patients with CIS)
- KM estimate in patients with 6 month CR
 - 12 months = 48.9% (95% Cl 25.4%, 72.4%)
 - 18 months = 17% (90% Cl: 9%, 25%)
 - median duration of response was 15.4 months


Ashish M. Kamat, MD

What's next: Immune Checkpoint Inhibitors for Earlier NMIBC

Similar Trials:

- Checkmate 7G8 with nivolumab
- ADAPT-Bladder durvalumab + RT

SITC Webinar, 101, Aug 2021 (Slide P. Black)

CORE1: CG0070 + Pembrolizumab Study

Preliminary Results of Combination Therapy in BCG-Unresponsive

<u>Authors</u>: Roger Li, Gary D. Steinberg, Ed Uchio, Paras Shah, Donald Lamm, Trinity Bivalacqua, Vignesh T. Packiam, Ashish M. Kamat, Michael Chisamore, John McAdory, Paola Grandi, Jee-Hyun Kim, and James Burke.

Primary data readout: 3 mos data all 35 patients August 2022, 12 month May 2023

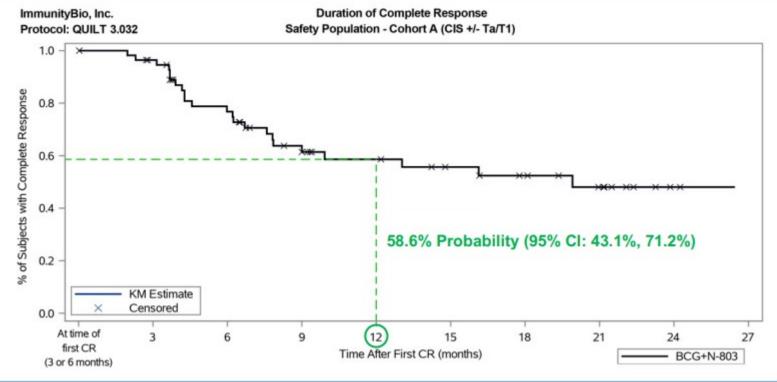
Nadofaragene Firadenovec: Phase 3, Multi-Center, Open-Label Study

	Carcinoma in situ cohort (n=103)	High-grade Ta or T1 cohort (n=48)	All patients (n=151)		
Patients with complete response at month 3*	55 (53·4%; 43·3–63·3)	35 (72.9%; 58.2-84.7)	90 (59.6%; 51.3–67.5)		
Duration of complete response [†] or high-grade recurrence-free survival [‡] , months	9·69 (9·17–NE)	12·35 (6·67–NE)	7.31 (5.68–11.93)		
Patients who were free from high-grade recurrence					
Month 6	42 (40.8%; 31.2-50.9)	30 (62.5%; 47.4–76.0)	72 (47.7%; 39.5–56.0)		
Month 9	36 (35.0%; 25.8–45.0)	28 (58·3%; 43·2–72·4)	64 (42.4%; 34.4-50.7)		
Month 12	25 (24.3%; 16.4-33.7)	21 (43.8%; 29.5–58.8)	46 (30.5%; 23.2–38.5)		

Median duration of HG-RFS was 12.35 months (95% CI: 6.67, NE) in patients with papillary disease Progression to \geq MIBC in 8 (5.3%) patients

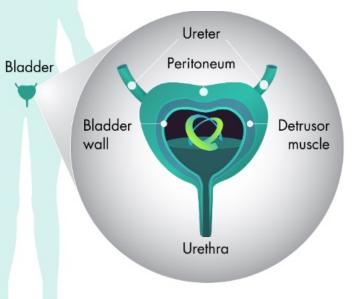
Nadofaragene Firadenovec

The most common TEAEs were

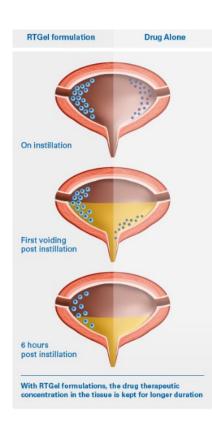

- instillation site discharge (33.1%),
- fatigue (23.6%),
- bladder spasm (19.7%),
- micturition urgency (17.8%), and
- hematuria (16.6%)

	Grade 1-2	Grade 3	Grade 4-5
Patients with study drug-related adverse events*	103 (66%)	6 (4%)	0
Types of events			
Discharge around the catheter during instillation	39 (25%)	0	0
Fatigue	31 (20%)	0	0
Bladder spasm	24 (15%)	1 (1%)	0
Micturition urgency	22 (14%)	2 (1%)	0
Chills	18 (12%)	0	0
Dysuria	17 (11%)	0	0
Pyrexia	16 (10%)	0	0
Syncope	0	1 (1%)	0
Hypertension	2 (1%)	1 (1%)	0
Urinary incontinence	4 (3%)	1 (1%)	0

QUILT 3.032: N-803 (IL-15 Superagonist Fusion Protein) + BCG N=81, 58 patients (72% o with biopsy confirmed CR at 3 or 6 mos

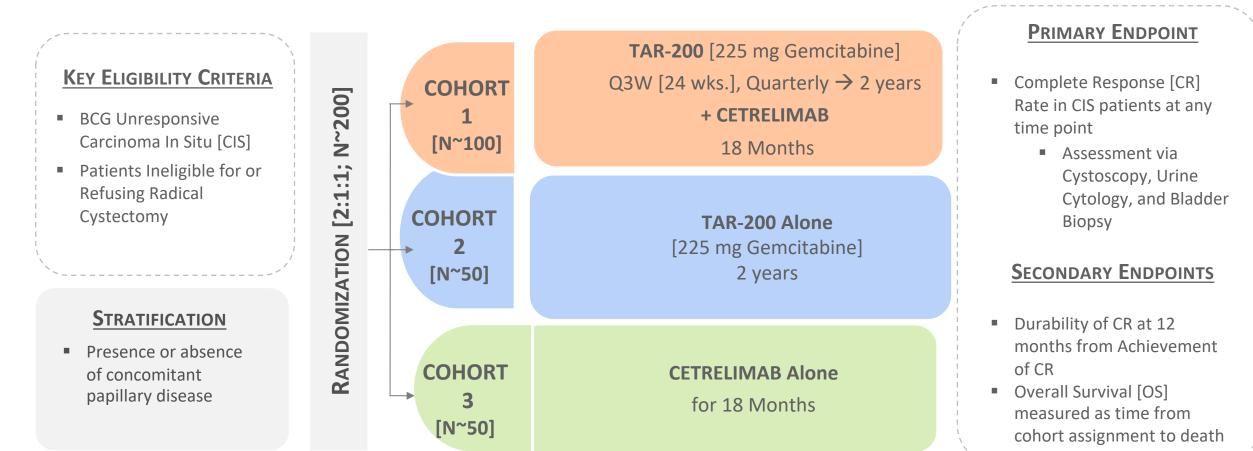


58.6% Probability (95% CI: 43.1%, 71.2%) of Duration of CR Greater than 12 Months

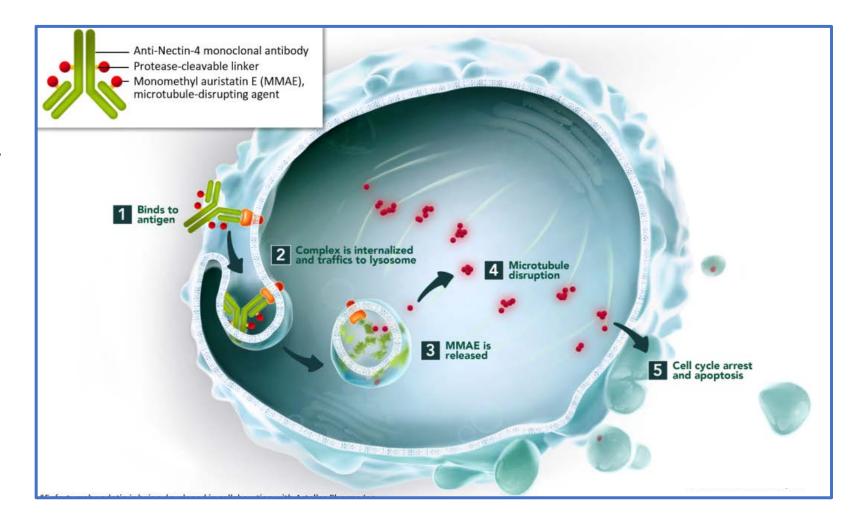


TAR-200

Prior to TAR-200, no solution existed Transformative new treatment algorithm based on continuous local delivery



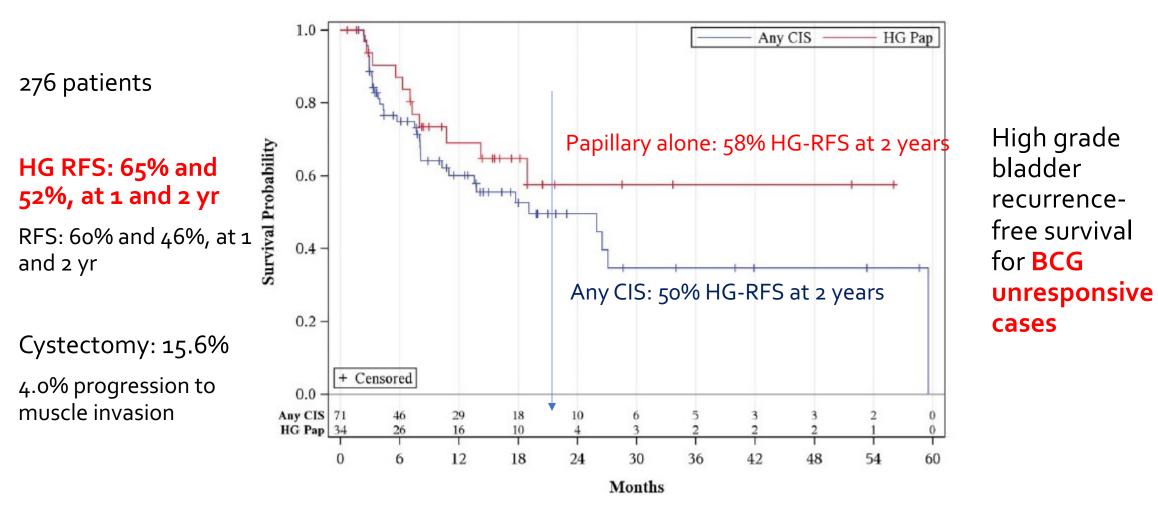
Phase 2b – TAR-200 + Cetrelimab NMIBC BCG Un-responsive [BLC2001]



Enfortumab Vedotin: Proposed MOA and Target

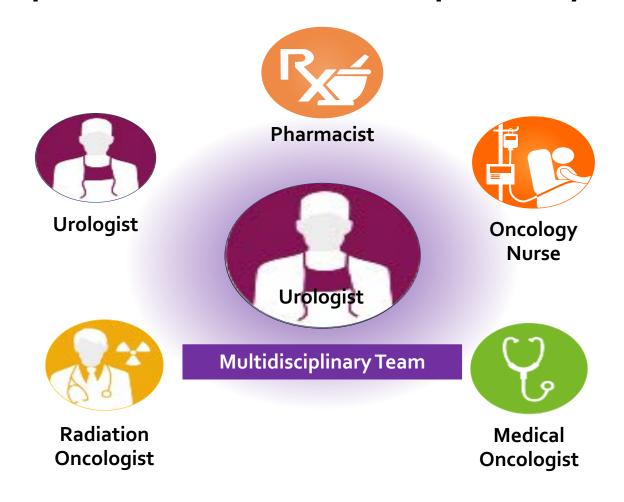
Nectin – 4

- Transmembrane adhesion molecule expressed on skin, urothelium, salivary gland ducts, breast, stomach, esophagus
- Expressed in 83% of UCTMA samples



Ashish M. Kamat, MD

٠


٠

Multi-Institution Evaluation of Sequential Gemcitabine and Docetaxel as Rescue Therapy for Nonmuscle Invasive Bladder Cancer

Ashish M. Kamat, MD

Optimal Management of Bladder Cancer Requires a Multidisciplinary Approach

"Providing the best management for patients with bladder neoplasia relies on close cooperation and teamwork among urologists, oncologists, radiologists, and pathologists"

> —2nd International Consultation on Bladder Cancer

"Multidisciplinary input via tumor board discussions and/or directed consultations is critical to the optimal management of patients with bladder cancer"

> —ASCO Clinical Practice Guideline Endorsement

MODULE 2: Novel Therapeutic Approaches for Muscle-Invasive Bladder Cancer

In the past month, approximately how many patients did you see whose primary diagnosis was NMIBC?

1. 0			
2. 1			
3. 2-5			

4. More than 5

Dr Jason Hafron West Bloomfield, Michigan

A 76-year-old man with T2 muscle-invasive bladder cancer (MIBC) who discontinues neoadjuvant gemcitabine/cisplatin after acute renal failure

Dr Jason Hafron West Bloomfield, Michigan

Regulatory and reimbursement issues aside, would you generally include a checkpoint inhibitor in the initial management of a 66-year-old man with muscle-invasive bladder cancer (MIBC) who is not a candidate for bladder resection due to cardiovascular issues?

- 1. Yes
- 2. No

A 66-year-old man with MIBC, PD-L1 >1% and an extensive history of cardiac disease

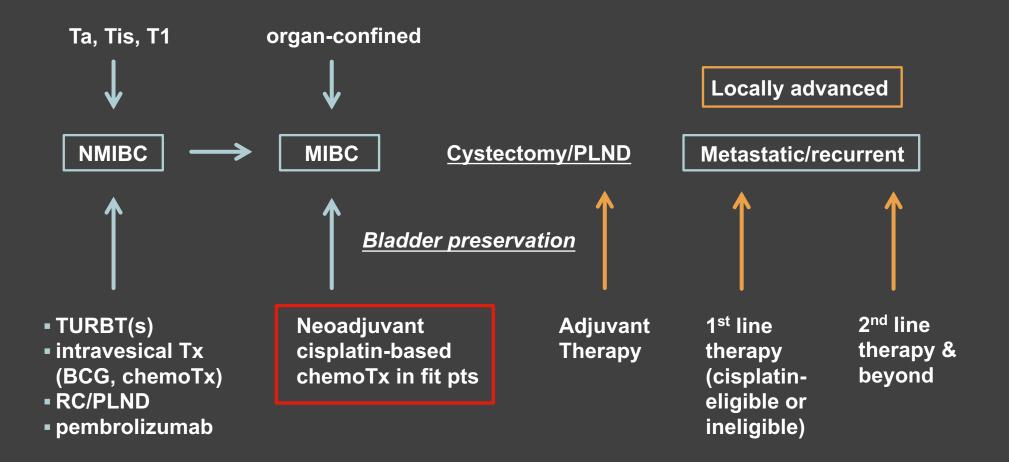
Dr Paul Markowski Summit, New Jersey

Dr David Morris Nashville, Tennessee

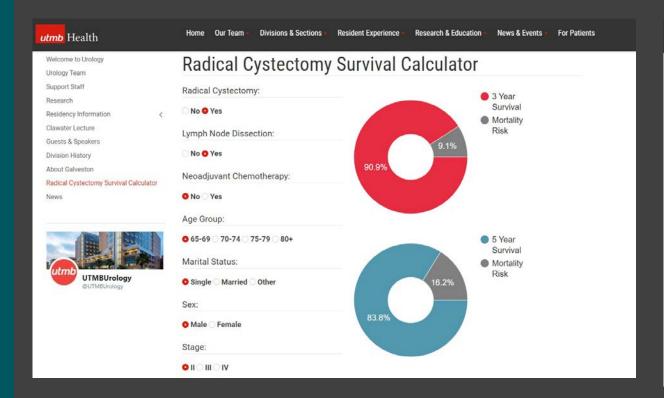
A 62-year-old man with high-grade, cT3 FGFR3positive MIBC

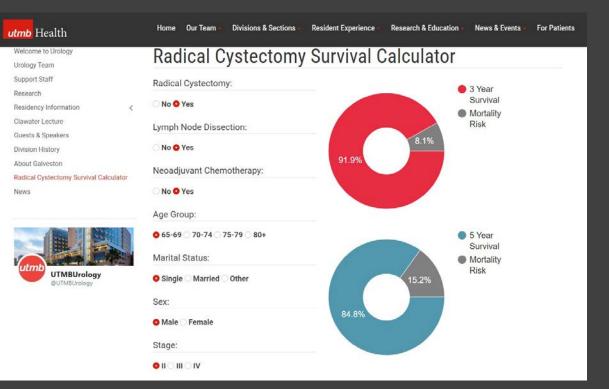
NOVEL THERAPEUTIC APPROACHES FOR MUSCLE-INVASIVE BLADDER CANCER (MIBC)

Stephen B. Williams, MD, MBA, MS, FACS


Medical Director for High Value Care, UTMB Health System

Professor (Tenured) Chief, Division of Urology The Robert Earl Cone Professorship in Urology Director of Urologic Oncology Director of Urologic Research Co-Director, Surgical Outcomes Research Program The University of Texas Medical Branch in Galveston, TX



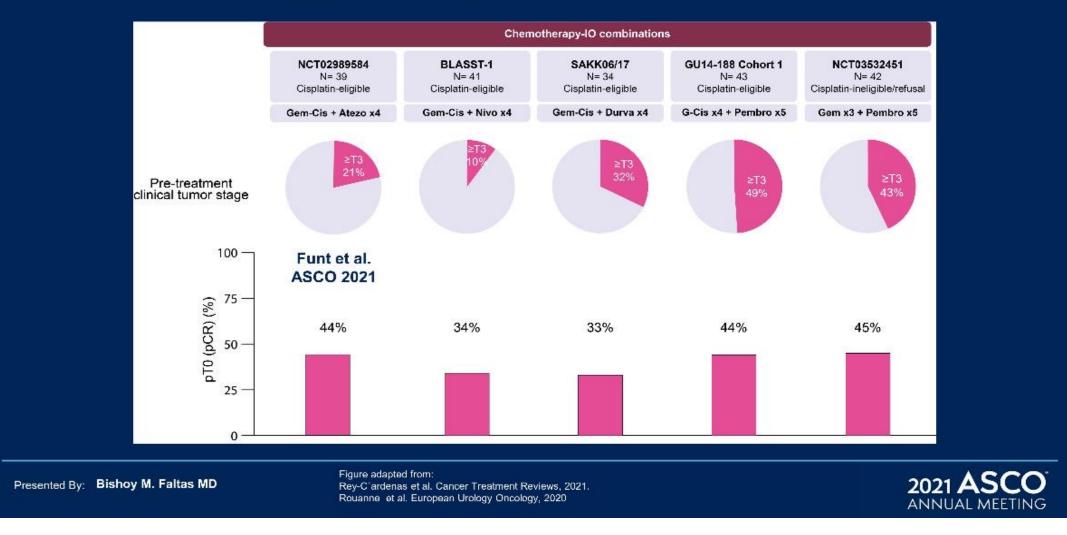

DISEASE / TREATMENT SETTINGS

NAC: NEED TO MOVE THE NEEDLE...

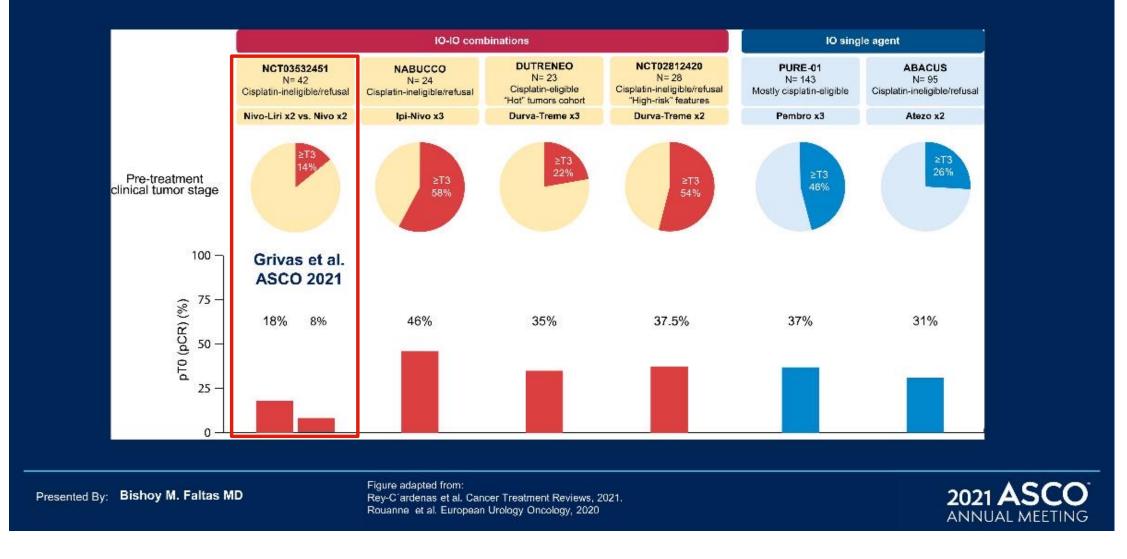
https://www.utmb.edu/surgery/divisions-andsections/urology/radical-cystectomy-survival-calculator

Advantages of neoadjuvant systemic therapy

- Neoadjuvant cisplatin-based chemotherapy improves OS.
- Often better tolerated.
- Potential for maximizing impact on patient outcomes by administering drug at the earliest point in the natural history of the disease.
- Tissue availability from TURBT and RC offers opportunities to study biomarkers of response in clinical trials.
- Surrogate endpoints of responsiveness to therapy (pCR) enable early risk-stratification to select patients who could benefit from additional therapy.

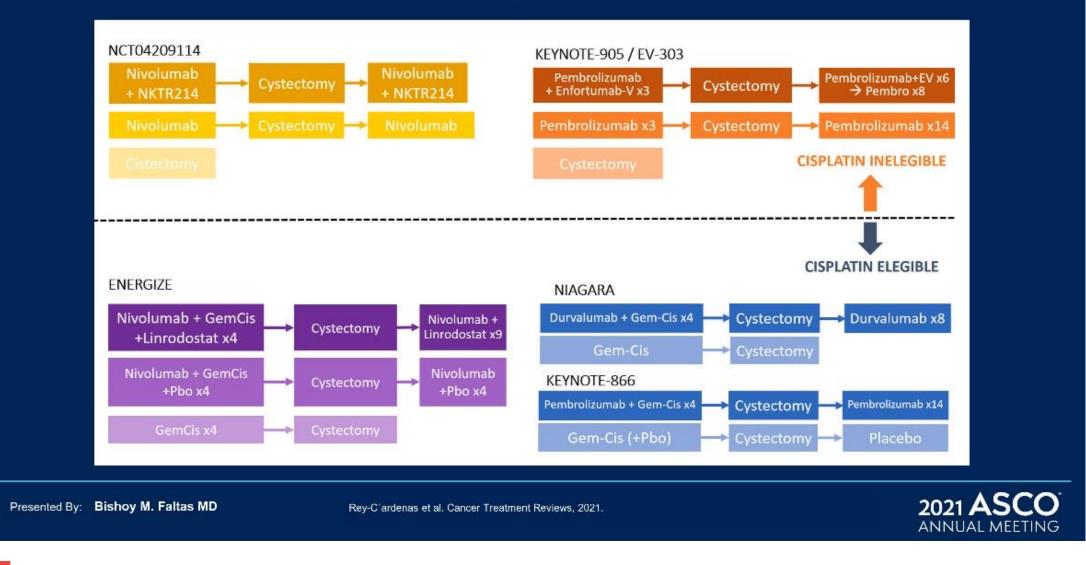

Presented By: Bishoy M. Faltas MD

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO Permission required for reuse.


IO-chemotherapy neoadjuvant combinations for MIBC

Slide use permission: Petros Grivas

Neoadjuvant IO single agent and combinations for MIBC


Phase 2 studies exploring neoadjuvant IO

	PURE- 01	ABACUS	NABUCCO		DUTRE NEO	MDACC	PrE0807	MSKCC		
	Pembro	Atezo	lpi > lpi/Nivo > Nivo	lpi3- Nivo1	lpi1- Nivo3	Durva + Treme	Durva + Treme	Nivo+ Liri	Nivo3	lpi3- Nivo1
Ν	143	88	24	15	15	23	28	30	15	15
cT2	49%	73%	0	0	0	78%	43%	87%	54%	46%
cN1-3	0	0	42%	47%	53%	9%	0	3%	0	0
pT0N0	39%	31%	46%	43%	7%	35%	38%	18%	13%	7%
p≤T1	56%		58%	57%	29%	57%	58%	29%	26%	20%
1-yr RFS	87%	79%	92%	NA	NA	NA	83%	NA	77%	68%

Bandini et al, Ann Oncol, 2020; Powles, Nat Med, 2019; van Dijk, Nat Med, 2019; Van Dorp, Ann Oncol, 2021; Grande, ASCO, 2020; Gao, Nat Med, 2020; Grivas, ASCO, 2021; Guercio, ASCO GU 2022 (Slide use permission: Matt Galsky)

Phase III neoadjuvant IO trials

3 trials integrating IO into neoadjuvant regimens

Cisplatin Ineligible

 Pembrolizumab → Cyst* Pembro + Enfortumab vedotin → Cyst* 	Cyst	T2-4aN0M0	KEYNOTE-905/EV- 303 NCT03924895
 Nivolumab → Cyst* Nivolumab + NKTR-214 → Cyst* 	Cyst	T2-4aN0M0	NCT04209114
Cisplatin Eligible			
 Gem/Cis + pembrolizumab → Cyst* 	Gem/Cis → Cyst	T2-4aN0M0	KEYNOTE-866 NCT03924856
 Gem/Cis + durvalumab → Cyst* 	Gem/Cis → Cyst	T2-4aN0M0	NIAGARA NCT03732677
 Gem/Cis + nivolumab → Cyst* Gem/Cis + nivolumab ± BMS-986205 → Cyst* 	Gem/Cis → Cyst	T2-4aN0M0	ENERGIZE NCT03661320
 Pembro + Enfortumab vedotin → Cyst* 	Gem/Cis → Cyst	T2-4aN0M0	KEYNOTE-B15 NCT03661320

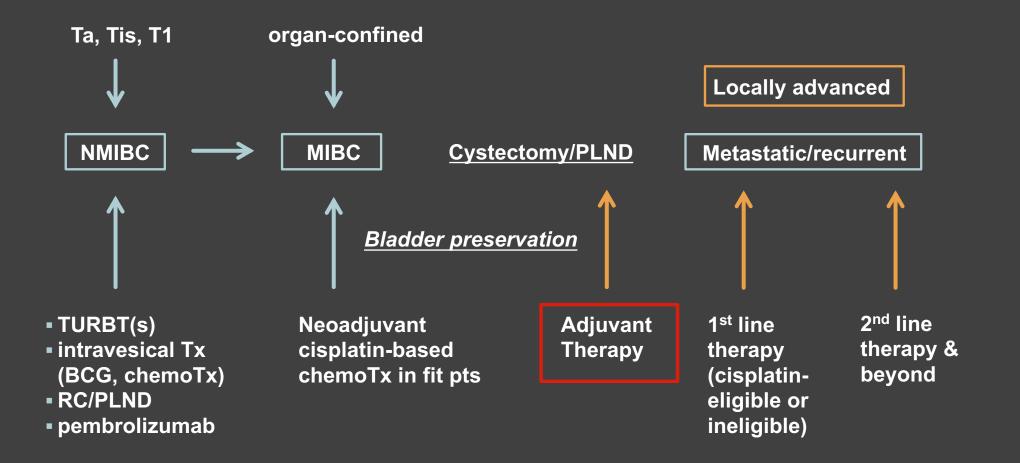
*regimen continued in the adjuvant setting

Slide use permission: Matt Galsky

Key unanswered questions for perioperative immunotherapy

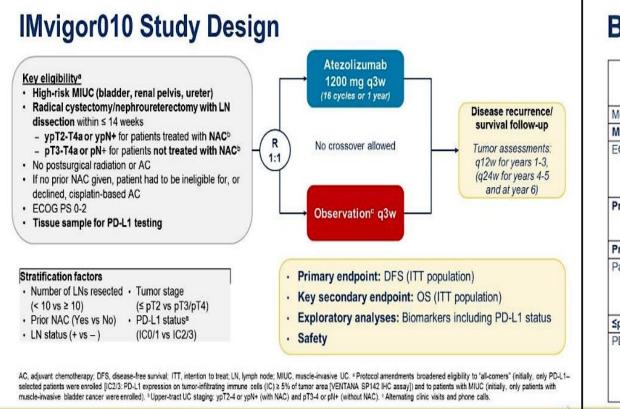
- What is optimal schedule, duration and time to cystectomy with these regimens?
- What are the most accurate surrogate clinical endpoints to predict OS?
- Are IO + chemo, IO + IO, IO + ADCs more effective than single agents in RCTs?
- Can we select patients who will likely benefit from neoadjuvant IO based on a biomarker?
- What is the best sequence of neoadjuvant, adjuvant and maintenance lines of therapy?

Presented By: Bishoy M. Faltas MD


#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

12

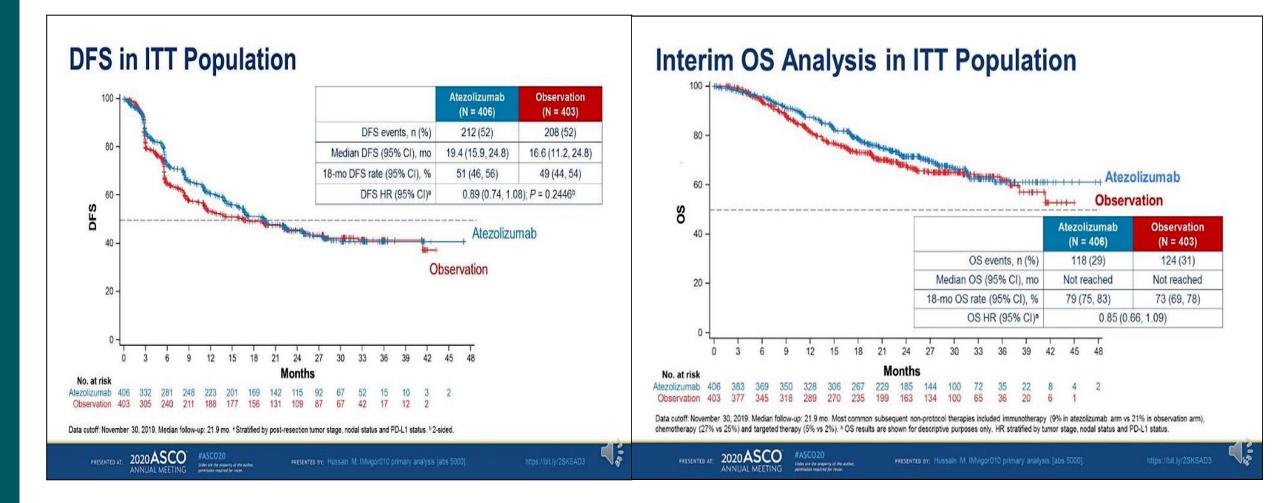
DISEASE / TREATMENT SETTINGS


VOLUME 34 · NUMBER 8 · MARCH 10, 2016

JOURNAL OF CLINICAL ONCOLOGY

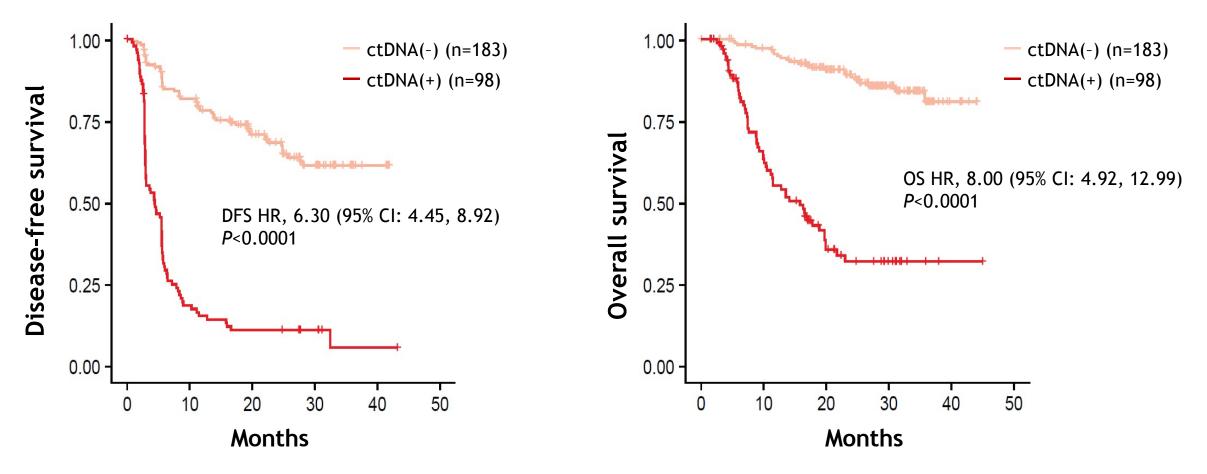
Adjuvant Chemotherapy for Bladder Cancer: Using Population-Based Data to Fill a Void of Prospective Evidence

Sumanta K. Pal, City of Hope Comprehensive Cancer Center, Duarte, CA Neeraj Agarwal, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT Petros Grivas, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH Toni Choueiri, Dana-Farber Cancer Institute, Boston, MA



Baseline Characteristics

	Atezolizumab (N = 406)	Observation (N = 403)	
Median age, years (range)	67 (31-86)	66 (22-88)	
Male, n (%)	322 (79)	316 (78)	
ECOG PS, n (%) 0 1 2	248 (61) 142 (35) 16 (4)	259 (64) 130 (32) 14 (4)	
Primary tumor site, n (%) Bladder Upper tract (ureter, renal pelvis)	377 (93) 29 (7)	378 (94) 25 (6)	
Prior neoadjuvant chemotherapy, n (%) ^a	196 (48)	189 (47)	
Pathologic tumor stage, n (%) ^b pT2N0 pT3N0 pT4N0	34 (8) 124 (31) 32 (8)	39 (10) 119 (30) 33 (8)	Data cutoff: November 30, 2019. Median follow-up: 21.9 mo. * Per interactive voice/web response system (IXRS). * Per electronic case
≤pT2-4 and pN+, n (%) ^a	212 (52)	208 (52)	report form (eCRF). Archival and/or fresh pre-
PD-L1 IHC status, n (%)° IC0 IC1 IC2 IC3	57 (14) 152 (37) 147 (36) 50 (12)	66 (16) 138 (34) 144 (36) 55 (14)	treatment FFPE tumor tissue from all patients (surgical resection or lymph node dissection) were prospectively tested for PD-L1 status per a central laboratory and used as a stratification factor; 119 patients were enrolled using IC2/3 selection, and 690 patients were enrolled under an "all-comer" protocol.



CTDNA(+) PORTENDS POOR PROGNOSIS

Observation arm

Observation arm

utmb Health

IMvigor010 confirmed the prognostic value of ctDNA status

Powles et al. ESMO IO, 2020

CTDNA(+) ASSOCIATED WITH IMPROVED DFS AND OS WITH ATEZOLIZUMAB VS OBSERVATION

utmb Health

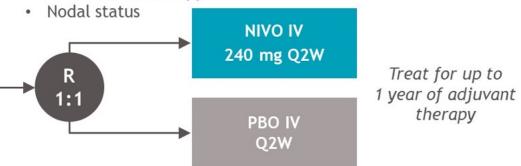
owies et al. ESIVIO IO, 2020

Powles et al. Nature, 2021

Study design

• CheckMate 274 is a phase 3, randomized, double-blind, multicenter study of adjuvant nivolumab versus placebo in patients with high-risk MIUC

N = 709


Key inclusion criteria

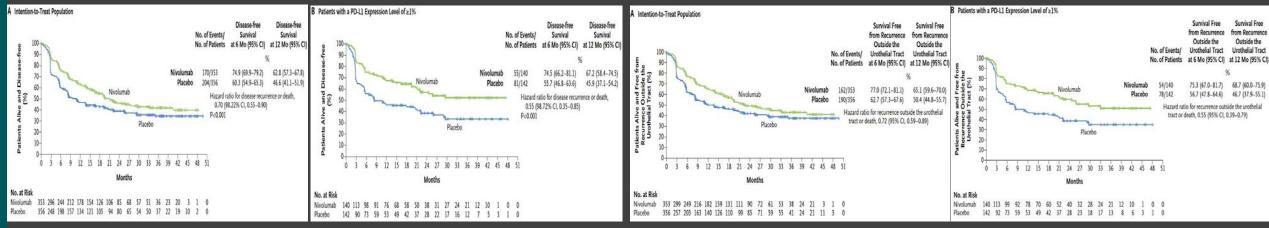
- Patients with ypT2-ypT4a or ypN+ MIUC who had neoadjuvant cisplatin chemotherapy
- Patients with pT3-pT4a or pN+ MIUC without prior neoadjuvant cisplatin chemotherapy and not eligible/refuse adjuvant cisplatin chemotherapy
- Radical surgery within the past 120 days
- · Disease-free status within 4 weeks of dosing

Minimum follow-up, 5.9 months Median follow-up in ITT population, 20.9 months (NIVO) and 19.5 months (PBO)

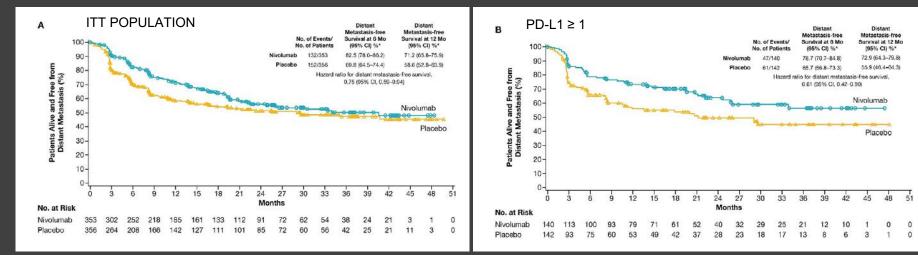
Stratification factors

- PD-L1 status (<1% vs \geq 1%)^a
- Prior neoadjuvant cisplatinbased chemotherapy

Primary endpoints: DFS in ITT population and DFS in all randomized patients with tumor PD-L1 ≥ 1% **Secondary endpoints:** NUTRFS, DSS, and OS^b **Exploratory endpoints included:** DMFS, safety, HRQoL


^aDefined by the percent of positive tumor cell membrane staining in a minimum of 100 evaluable tumor cells using the PD-L1 IHC 28-8 PharmDx immunohistochemistry assay. ^bOS data were not mature at the time of the first planned interim analysis. OS and DSS data are not presented.

DFS, disease-free survival; DMFS, distant metastasis-free survival; DSS, disease-specific survival; HRQoL, health-related quality of life; IHC, immunohistochemistry; ITT, intent-to-treat; NUTRFS, non-urothelial tract recurrence-free survival; OS, overall survival; PD-L1, programmed death ligand 1; Q2W, every 2 weeks; R, randomized.



DISEASE-FREE SURVIVAL

SURVIVAL FREE FROM RECURRENCE OUTSIDE THE UROTHELIAL TRACT

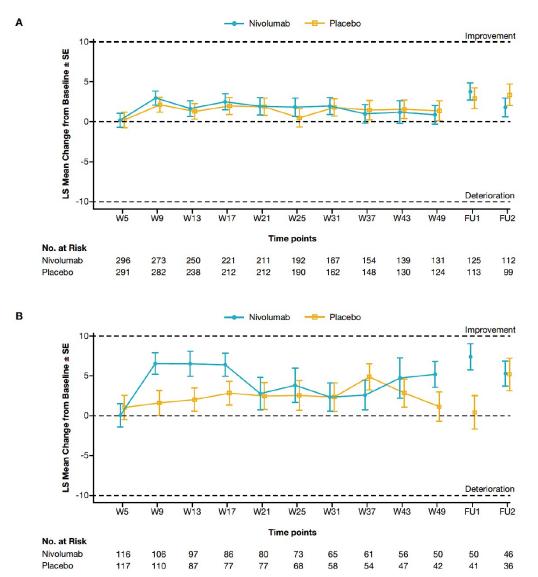

DISTANT METASTASIS-FREE SURVIVAL

Table 2. Adverse Events.*					
Adverse Event	Nivolumab (N=351)		Placebo (N = 348)		
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
		number of pat	ients (percent)		
Adverse event of any cause	347 (98.9)	150 (42.7)	332 (95.4)	128 (36.8)	
Adverse event related to nivolumab or placebo†	272 (77.5)	63 (17.9)	193 (55.5)	25 (7.2)	
Pruritus	81 (23.1)	0	40 (11.5)	0	
Fatigue	61 (17.4)	1 (0.3)	42 (12.1)	0	
Diarrhea	59 (16.8)	3 (0.9)	38 (10.9)	1 (0.3)	
Rash	53 (15.1)	2 (0.6)	19 (5.5)	0	
Increased lipase level	34 (9.7)	18 (5.1)	20 (5.7)	9 (2.6)	
Hypothyroidism	34 (9.7)	0	5 (1.4)	0	
Increased amylase level	33 (9.4)	13 (3.7)	20 (5.7)	5 (1.4)	
Hyperthyroidism	33 (9.4)	0	3 (0.9)	0	
Asthenia	24 (6.8)	2 (0.6)	17 (4.9)	0	
Nausea	24 (6.8)	0	13 (3.7)	0	
Decreased appetite	20 (5.7)	2 (0.6)	11 (3.2)	0	
Increased blood creatinine level	20 (5.7)	1 (0.3)	11 (3.2)	0	
Maculopapular rash	19 (5.4)	2 (0.6)	4 (1.1)	0	

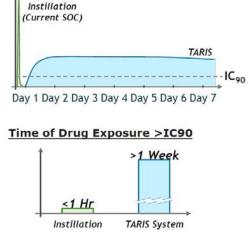

Figure S3. Mean Change from Baseline in EORTC-QLQC30 Global Health Status Score in All EORTC QLQ-C30 Evaluable Patients (Panel A) and EORTC QLQ-C30 Evaluable Patients with PD-L1 ≥1% (Panel B).

PARADIGM SHIFT: DELIVERY SYSTEMS ENTER THE ROOM...

SOLUTIONS ACROSS THE BLADDER CANCER SPECTRUM

Note: Size of bubbles roughly represents number of eligible patients

PARADIGM SHIFT: DELIVERY SYSTEMS ENTER THE ROOM...

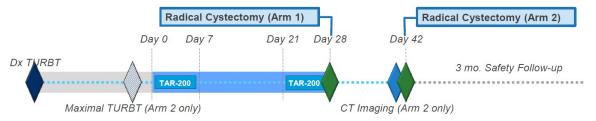

TARIS® System Allows Controlled Drug Delivery

Example of Delivery: Osmotic Engine Orifice Semi-permeable polymer (silicone) tube Solid drug core Osmotic pump modulates drug release from internal reservoir

Dose and duration tailored to specific disease states

Rational dosing maximizes intracellular drug potency

Dose Delivered Over Time

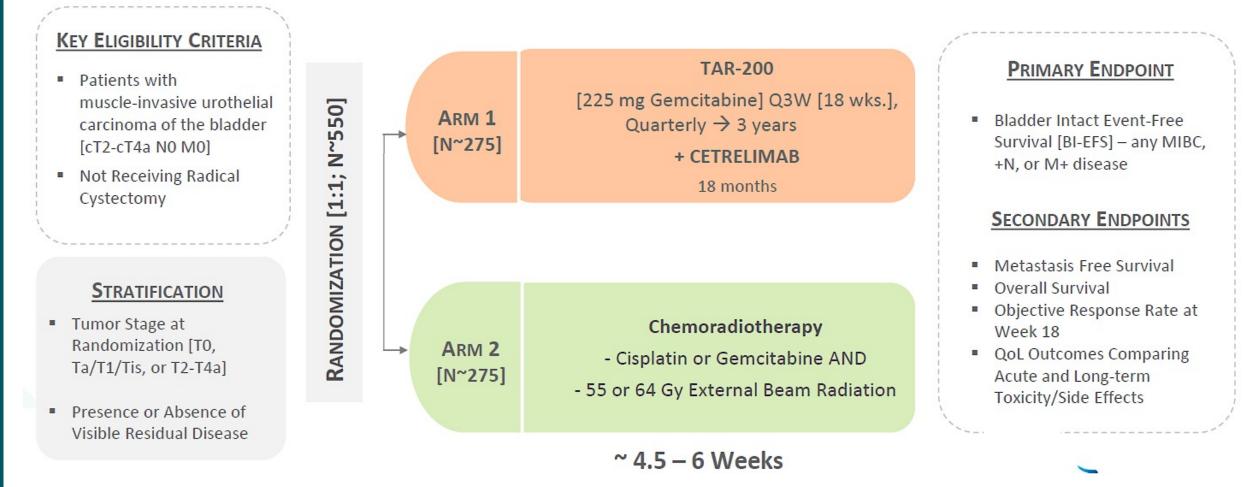

TABLE 3: Pathologic Response in the ITT Population

Response, n/N (%)	Arm 1 (> 3 cm)	Arm 2 (< 3 cm)
Underwent pathology at RC	10/11 (91)°	10/12 (83) ⁶
Pathologic response	4/10 (40)	6/10 (60)
pCR	1/10 (10)	3/10 (30)
pPR	3/10 (30)	3/10 (30)

utmb Health

*1 patient in Arm 1 did not receive either dosing cycle due to an initial unsuccessful insertion attempt. *2 patients in Arm 2 discontinued study treatment before the second dosing cycle (1 consent withdrawal, 1 local disease progression).

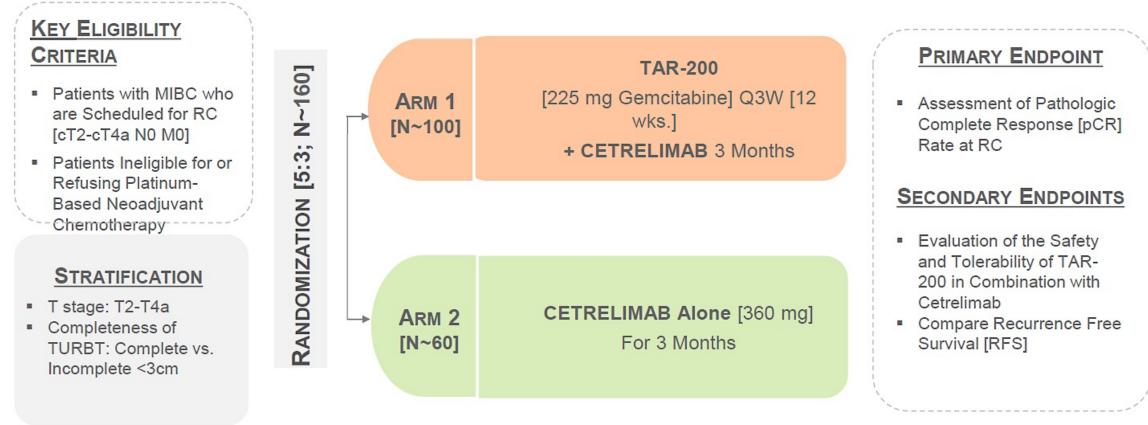
Proof of Principle: TAR-200-101 in MIBC Neoadjuvant to RC


- Organ-confined, non-metastatic MIBC patients – Clinical Staging: cT_2 - $cT_3 N_{0-1} M_0$
- TAR-200 administered neoadjuvant to radical cystectomy
- Status: Complete, 20 patients through cystectomy (10/Arm)

TAR-200 was safe, well tolerated, 50% pCR or pPR

Daneshmand S et al. Urol Oncol 2022;[Online ahead of print].

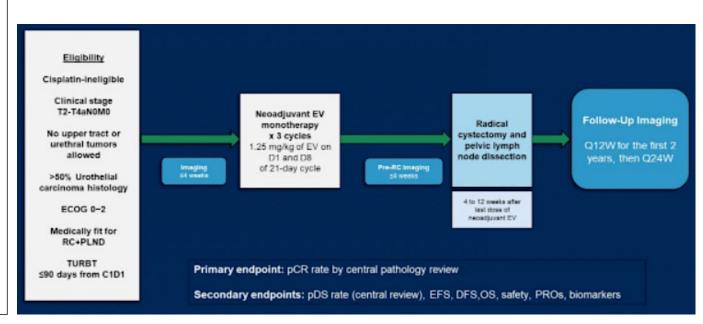
Phase 3 – TAR-200 + Cetrelimab MIBC [BLC3001]



Phase 2 – TAR-200 + Cetrelimab MIBC Neoadjuvant [BLC2002]

"Window of Opportunity" Study to Demonstrate the Activity of Cetrelimab Alone and Cetrelimab in Combination with TAR-200 with respect to pCR Rates at RC and the Potential Subsequent Correlation with Post-Surgical Metastasis-Free Survival

Meeting Abstract | 2022 ASCO Genitourinary Cancers Symposium


UROTHELIAL CARCINOMA

Study EV-103 Cohort H: Antitumor activity of neoadjuvant treatment with enfortumab vedotin monotherapy in patients (pts) with muscle invasive bladder cancer (MIBC) who are cisplatin-ineligible.

Check for updates

Daniel P. Petrylak, Thomas W. Flaig, Nataliya Mar, Theodore Stewart Gourdin, Sandy Srinivas, Jonathan E. Rosenberg, Maria Guseva, Yao Yu, Sujata Narayanan, Christopher J. Hoimes

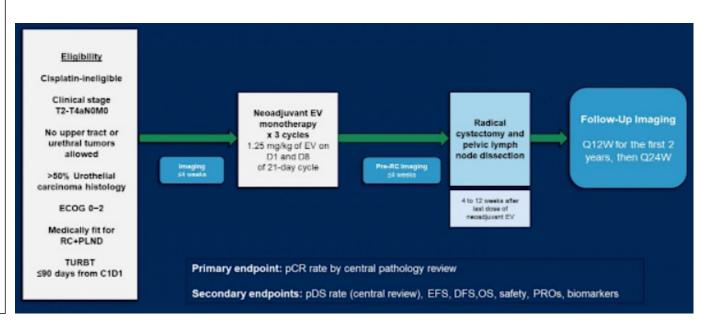
Yale Cancer Center, New Haven, CT; University of Colorado Anschutz Medical Campus, Aurora, CO; University of California Irvine, Orange, CA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC; Stanford University Medical Center, Stanford, CA; Memorial Sloan Kettering Cancer Center, New York, NY; Astellas, Northbrook, IL; Seagen Inc., Bothell, WA; Stanford University Hospital and Clinics, Stanford, CA; Duke Cancer Center, Durham, NC

Enfortumab vedotin (EV) is an antibody-drug conjugate directed to Nectin-4

Cohort H of the EV-103 phase 1b/2 trial (NCT03288545):

- cis-ineligible cT2-T4aN0M0 MIBC RC + PLND eligible.
- 3 cycles of neoadjuvant EV (1.25 mg/kg) on Days 1 and 8 of every 3-week cycle prior to RC+PLND.

Meeting Abstract | 2022 ASCO Genitourinary Cancers Symposium


UROTHELIAL CARCINOMA

Study EV-103 Cohort H: Antitumor activity of neoadjuvant treatment with enfortumab vedotin monotherapy in patients (pts) with muscle invasive bladder cancer (MIBC) who are cisplatin-ineligible.

Check for updates

Daniel P. Petrylak, Thomas W. Flaig, Nataliya Mar, Theodore Stewart Gourdin, Sandy Srinivas, Jonathan E. Rosenberg, Maria Guseva, Yao Yu, Sujata Narayanan, Christopher J. Hoimes

Yale Cancer Center, New Haven, CT; University of Colorado Anschutz Medical Campus, Aurora, CO; University of California Irvine, Orange, CA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC; Stanford University Medical Center, Stanford, CA; Memorial Sloan Kettering Cancer Center, New York, NY; Astellas, Northbrook, IL; Seagen Inc., Bothell, WA; Stanford University Hospital and Clinics, Stanford, CA; Duke Cancer Center, Durham, NC

Results: 22 pts were treated->21 underwent RC+PLND, and 1 had a partial cystectomy. -36.4% pCR-> 50% pPR-> well tolerated-> no delay to surgery.

Supports ongoing Phase II and III programs evaluating EV in MIBC.

TOMORROWLAND NO MORE: NOVEL THERAPEUTIC APPROACHES FOR MIBC

MODULE 3: Current and Future Front-Line Management of Metastatic Urothelial Bladder Carcinoma

For a patient with responding/stable disease after first-line chemotherapy for metastatic urothelial bladder cancer (mUBC), would you generally recommend maintenance therapy with a checkpoint inhibitor?

- 1. Yes
- 2. Yes, if PD-L1-positive
- 3. No

A 75-year-old man with metastatic urothelial bladder cancer (mUBC) who required bilateral percutaneous nephrostomies

Dr David Taub Boca Raton, Florida

A 69-year-old man with mUBC and peritoneal carcinomatosis

Dr Jason Hafron West Bloomfield, Michigan

The key antitumor mechanism of most antibody-drug conjugates is...

- 1. Immune-based
- 2. Antiapoptotic
- 3. Cytotoxic
- 4. Kinase inhibition
- 5. I don't know

A 73-year-old man with mUBC and recurrence in the bladder while receiving pembrolizumab

Dr Laura Bukavina Philadelphia, Pennsylvania

Sequencing immunotherapy and enfortumab vedotin

Dr Sulfi Ibrahim Richmond, Indiana

Current and Future Front-Line Management of Metastatic Urothelial Bladder Carcinoma (mUBC)

Matthew D. Galsky, MD

Professor of Medicine

Icahn School of Medicine at Mount Sinai

Associate Director, Translational Research

Co-Leader, Cancer Clinical Investigation Program

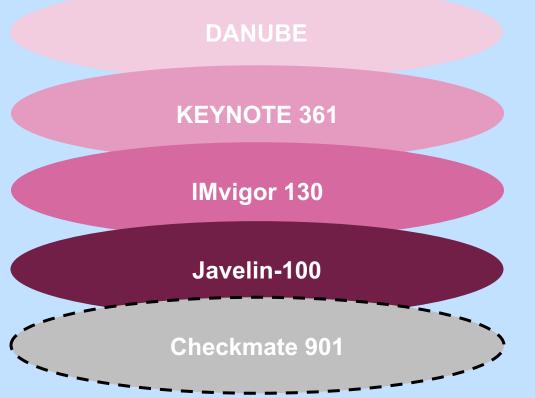
Tisch Cancer Institute

Immune Checkpoint Inhibitors for Locally Advanced and Metastatic UC

Agent	Ab Inhibits	Schedule	Post Platinum	Front-line Cis-Ineligible
Atezolizumab	PD-L1	Q3W	Accelerated	Accelerated
Nivolumab	PD-1	Q2W	Accelerated	
Durvalumab	PD-L1	Q2W	Accelerated	
Avelumab	PD-L1	Q2W	Accelerated	
Pembrolizumab	PD-1	Q3W	Level 1	Accelerated

Approximately **50%** of patients are **"cisplatin-ineligible"**

ECOG PS = 2


- Creatinine clearance < 60 mL/min
- Grade ≥ 2 hearing loss
- Grade ≥ 2 neuropathy
- New York Heart Association Class III CHF

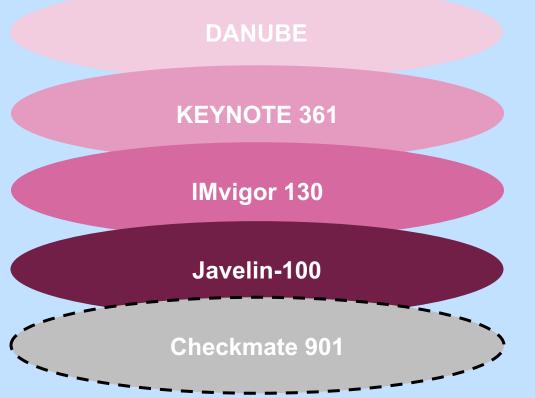
Galsky et al, Lancet Oncology, 2011

Immune Checkpoint Inhibitors for 1st line treatment of Cisplatin-ineligible patients with Metastatic UC

Study ^a	IMvigor210 ¹ Atezolizumab Phase 2 – Cohort 1	KEYNOTE-052 ² Pembrolizumab Phase 2
Patients, no.	119	370
Study arm	Atezolizumab 1200 mg IV q3w	Pembrolizumab 200 mg IV q3w
Key inclusion criteria	 Inoperable la/mUC No prior treatment for mUC ECOG PS ≤2 Cisplatin ineligible 	 Inoperable la/mUC No prior chemotherapy for mUC ECOG PS ≤2 Cisplatin ineligible
ORR (%)	23	29

A series of randomized clinical trials has recently refined first-line treatment for metastatic urothelial CA

Is there a role for chemo + IO?


Is there a role for IO alone upfront?

Is there a role for biomarker selection for IO?

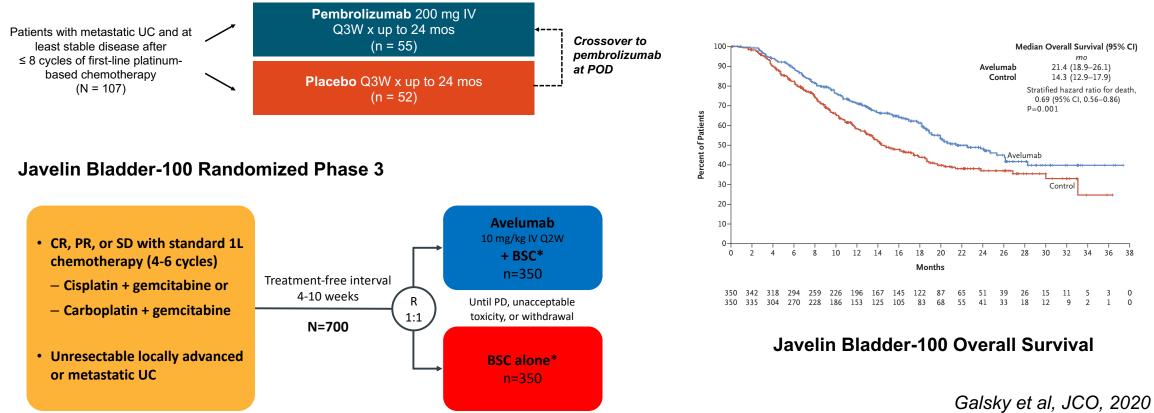
Is there a role for "switch maintenance" IO?

Is there a role for IO doublet therapy?

A series of randomized clinical trials has recently refined first-line treatment for metastatic urothelial CA

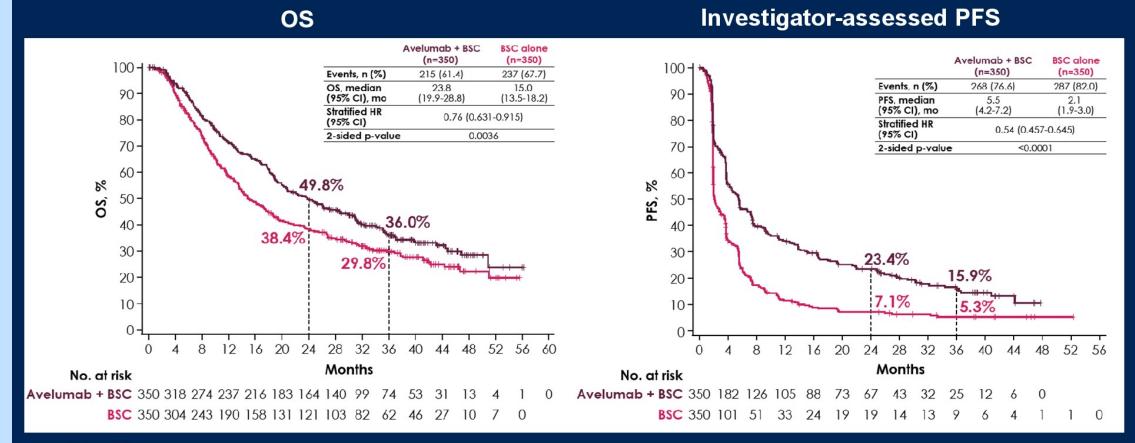
Is there a role for chemo + IO?

Is there a role for IO alone upfront?


Is there a role for biomarker selection for IO?

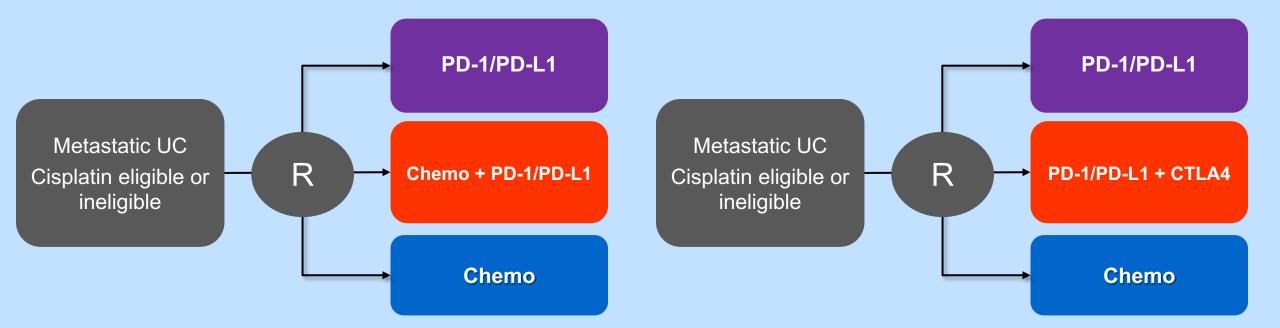
Is there a role for "switch maintenance" IO?

Is there a role for IO doublet therapy?


"Switch Maintenance" PD-1/PD-L1 blockade improves outcomes in metastatic UC

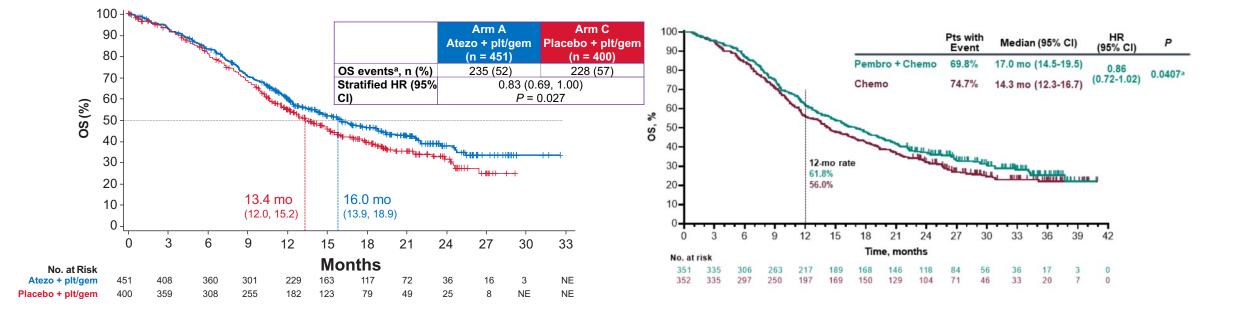
HCRN 14-182 Randomized Phase 2

Powles, NEJM, 2020


Long term follow-up of Javelin Bladder 100 (≥ 2 year follow up)

HR, hazard ratio.

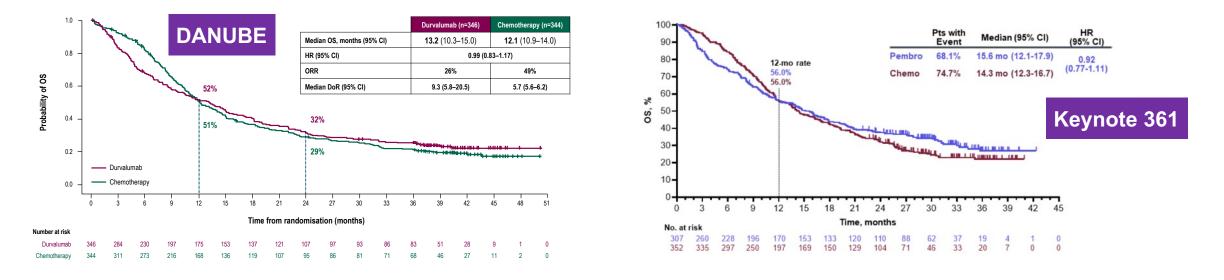
Powles et al, ASCO GU 2022 # A487

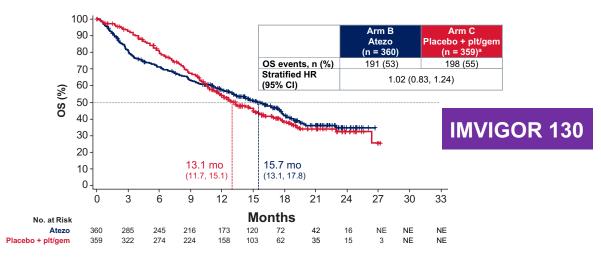

What is optimal first-line treatment for metastatic UC?

IMvigor 130 Keynote 361 Checkmate 901 (substudy) NILE

DANUBE Checkmate 901 (main study) NILE (sort of...)

Platinum-based chemo + anti-PD-1/PD-L1 leads to non-significant improvements in OS in ITT



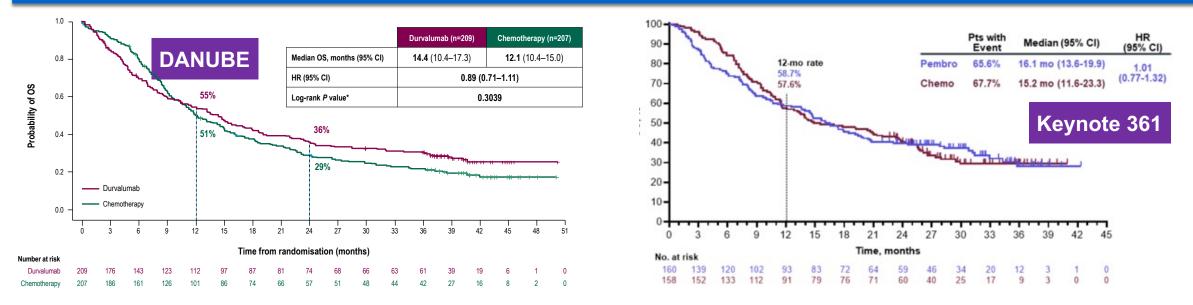

IMvigor 130

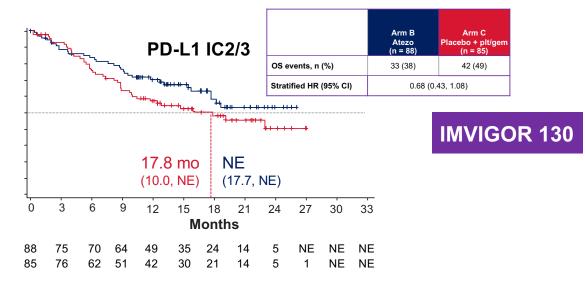
Keynote 361

Galsky et al, Lancet, 2020 Alva et al, ESMO, 2020

Platinum-based chemo vs anti-PD-1/PD-L1 in ITT populations

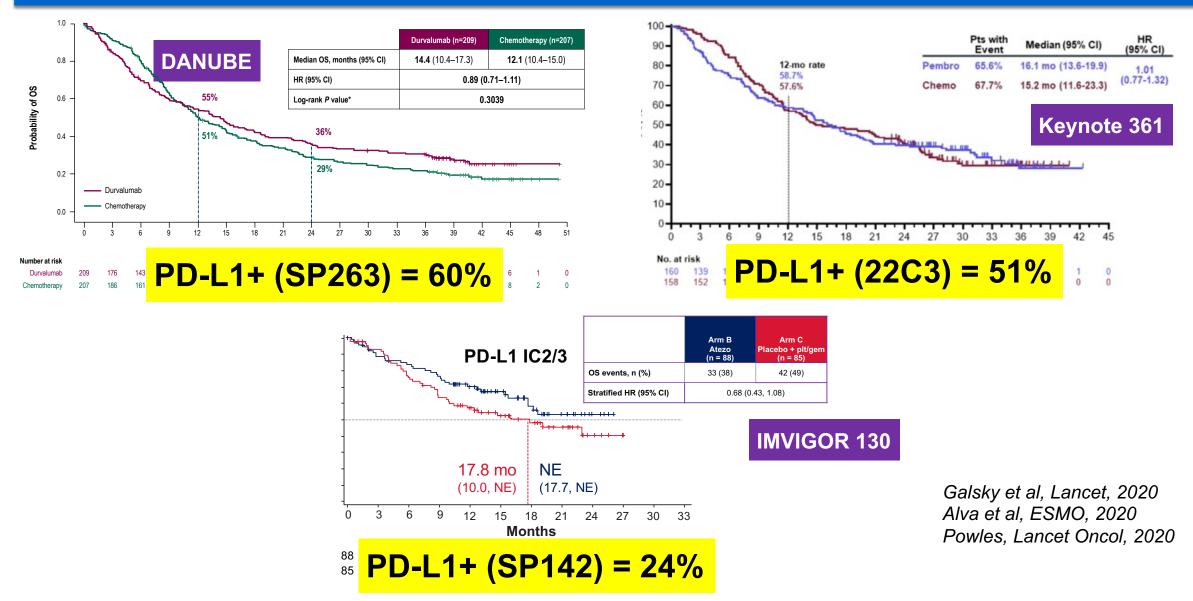
Galsky et al, Lancet, 2020 Alva et al, ESMO, 2020 Powles, Lancet Oncol, 2020

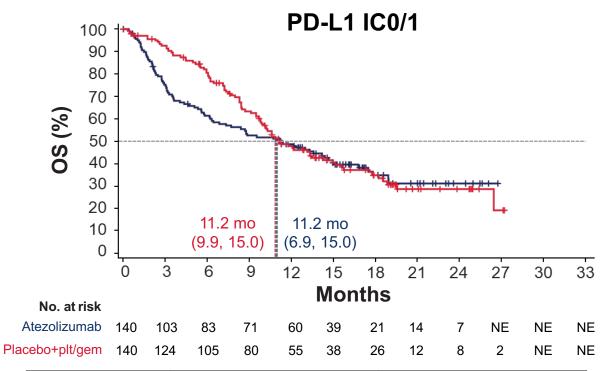

PD-L1 testing...clear as mud?


Drug	Biomarker	Scoring
Pembrolizumab	22C3	TC + IC
Atezolizumab	SP142	IC
Nivolumab	28-8	TC
Durvalumab	SP263	TC + IC
Avelumab	73-10	TC + IC

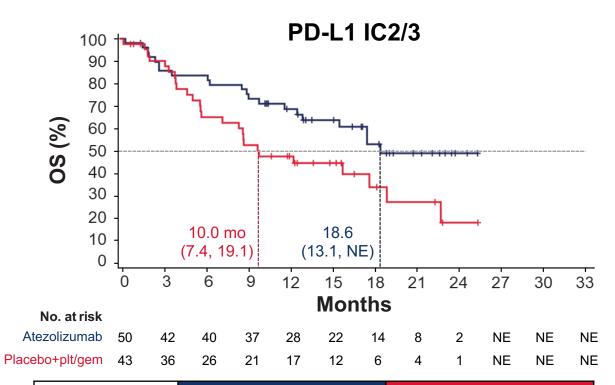
TC, tumor cell; IC, immune cell

Mar stall marking

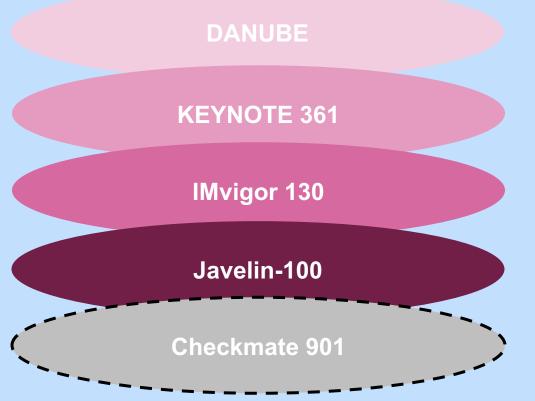

Platinum-based chemo vs anti-PD-1/PD-L1 in PD-L1+ populations



Galsky et al, Lancet, 2020 Alva et al, ESMO, 2020 Powles, Lancet Oncol, 2020


Platinum-based chemo vs anti-PD-1/PD-L1 in PD-L1+ populations

What about the current label (ie, cisplatin ineligible + PD-L1 "high")?


	Atezolizumab (Arm B) (n=140)	Placebo + plt/gem (Arm C) (n=140)	
OS events	85	85	
OS HR (95% CI)	1.11 (0.82, 1.51)		
ORR (95% CI), % ^a	16 (10, 23)	42 (34, 51)	

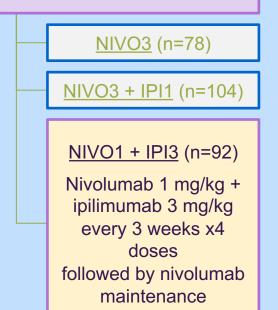
	Atezolizumab (Arm B) (n=50)	Placebo + plt/gem (Arm C) (n=43)	
OS events	21	26	
OS HR (95% CI)	0.53 (0.30, 0.94)		
ORR (95% CI), %	38 (25, 53)	33 (19, 49)	

Galsky et al, ASCO GU 21

A series of randomized clinical trials has recently refined first-line treatment for metastatic urothelial CA

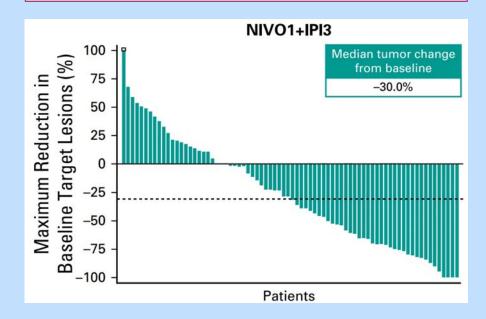
Is there a role for chemo + IO?

Is there a role for IO alone upfront?

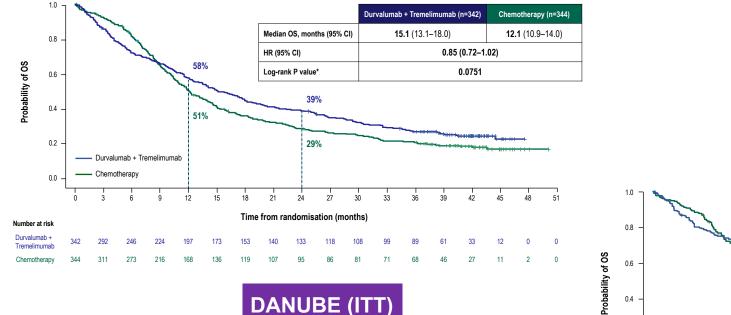

Is there a role for biomarker selection for IO?

Is there a role for "switch maintenance" IO?

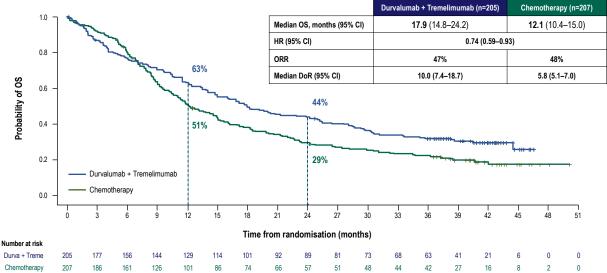
Is there a role for IO doublet therapy?


CheckMate 032: Phase 1/2 Trial of Nivolumab + Ipilimumab

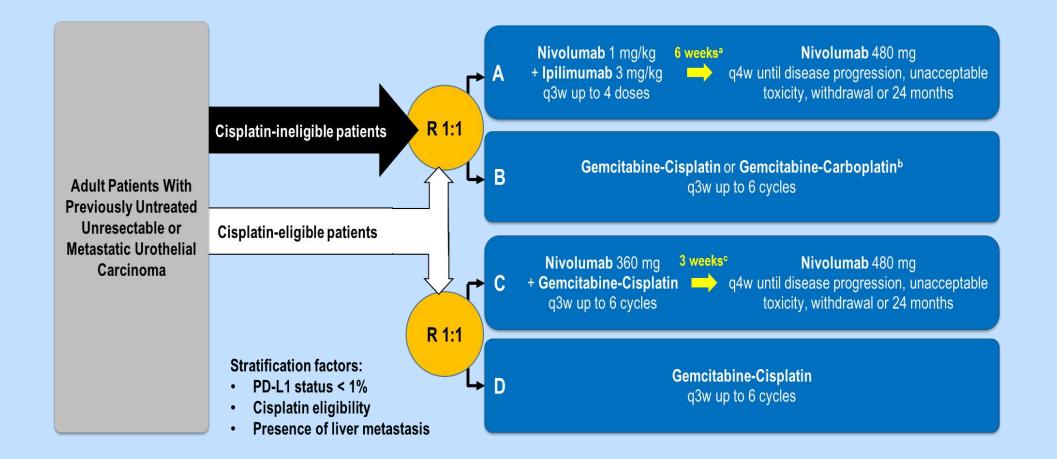
- Pretreated patients with la/mUC (or refused chemotherapy)
- Progressive disease after ≥1 prior platinum-based chemotherapy


	NIVO1 + IPI3 (n=92)
ORR 95% CI	35 (38.0%) (28.1, 48.8)
Complete response	6 (6.5%)
Partial response	29 (31.5%)

Best Tumor Change From Baseline in Target Lesion per Investigator¹


Sharma et al, JCO, 2019

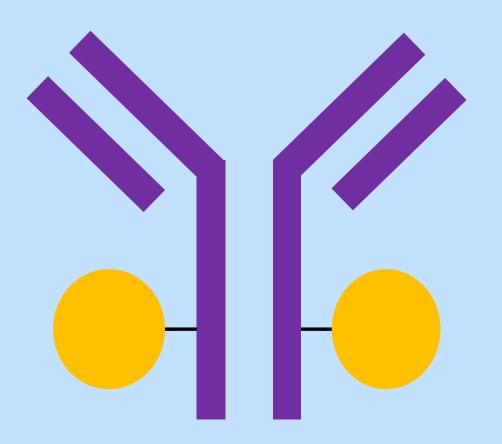
Can anti-CTLA4 + PD-L1 ORR enough to compete with chemo?


DANUBE (ITT)

DANUBE (PD-L1+)

Powles, Lancet Oncol, 2020

Checkmate 901 Trial


How can we further improve PD-1/PD-L1 blockade?

Move treatment earlier

Combination regimens

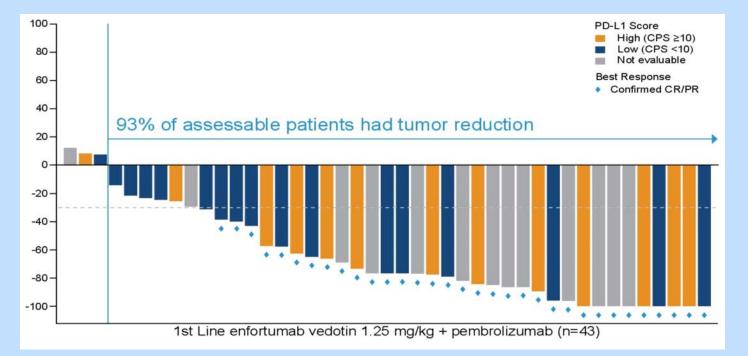
Biomarkers

Antibody-drug conjugates are changing UC treatment landscape

Antigen
 Payload
 Linker

Enfortumab Vedotin

Target: Nectin-4, a type 1 transmembrane cell adhesion molecule overexpressed in epithelial cancers


Linker: Protease cleavable Payload: MMAE

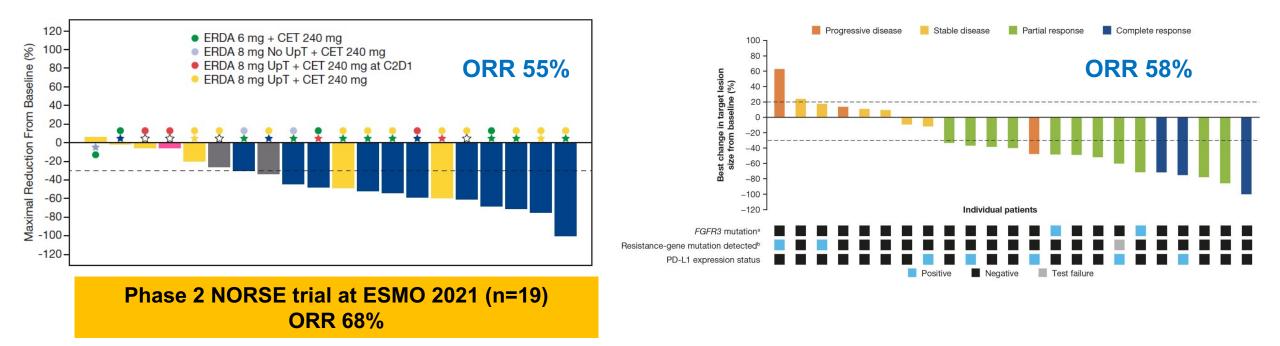
EV + Pembrolizumab in cisplatin-ineligible patients with metastatic urothelial cancer

EV 1.25 mg/kg days 1 and 8 of a 3-week cycle + Pembrolizumab 200 mg on day 1 of a 3-week cycle

Confirmed ORR 95% Cl	73.3% (33/45) (58.1, 85.4)
Complete response	15.6%
Partial response	57.8%

Median DOR =25.6 mo

Friedlander, ASCO 2021


FGFR3 mutations in urothelial cancer

- Hotspot mutations in 15-25% invasive
- Enriched in upper tract disease
- Not definitively associated with ICB resistance
- Small molecule TKIs with ORR ~40%

FGFR3 inhibition plus PD-1/PD-L1 blockade

Erdafitinib plus cetrelimab

Rogaratinib in combination with atezolizumab

Siefker-Radke, ESMO, 2020; Rosenberg, ASCO, 2021; Powles, ESMO, 2021

MODULE 4: Selection and Sequencing of Therapy for Relapsed/Refractory Urothelial Bladder Carcinoma

Current first-line treatment of metastatic disease frequently involves the use of chemotherapy in combination with a checkpoint inhibitor in which of the following tumor types?

- 1. Non-small cell lung cancer
- 2. Head and neck cancer
- 3. Esophageal cancer
- 4. Cervical cancer
- 5. Triple-negative breast cancer
- 6. All of the above
- 7. I don't know

A 68-year-old man with mUBC whose disease progressed after 4 years of nivolumab/ipilimumab

Dr Zanetta Lamar Naples, Florida

A 70-year-old woman with mUBC and PD-L1 30% with enfortumab vedotin-associated dermatologic toxicity

Dr Sulfi Ibrahim Richmond, Indiana

What would you generally recommend as second-line therapy for a patient with mUBC with an FGFR somatic mutation whose disease progresses while he is receiving avelumab maintenance after first-line chemotherapy?

- 1. Enfortumab vedotin
- 2. Erdafitinib
- 3. Sacituzumab govitecan
- 4. Other

A 58-year-old man with mUBC and an FGFR mutation

Dr Chris Prakash Paris, Texas

An 84-year-old woman with NMIBC and an FGFR2 mutation

Dr Henna Malik Houston, Texas

A 67-year-old man with mUBC who receives sacituzumab govitecan

RTP RESEARCH TO PRACTICE

Dr Ranju Gupta Bethlehem, Pennsylvania

Selection and Sequencing of Therapy for Relapsed/Refractory mUBC

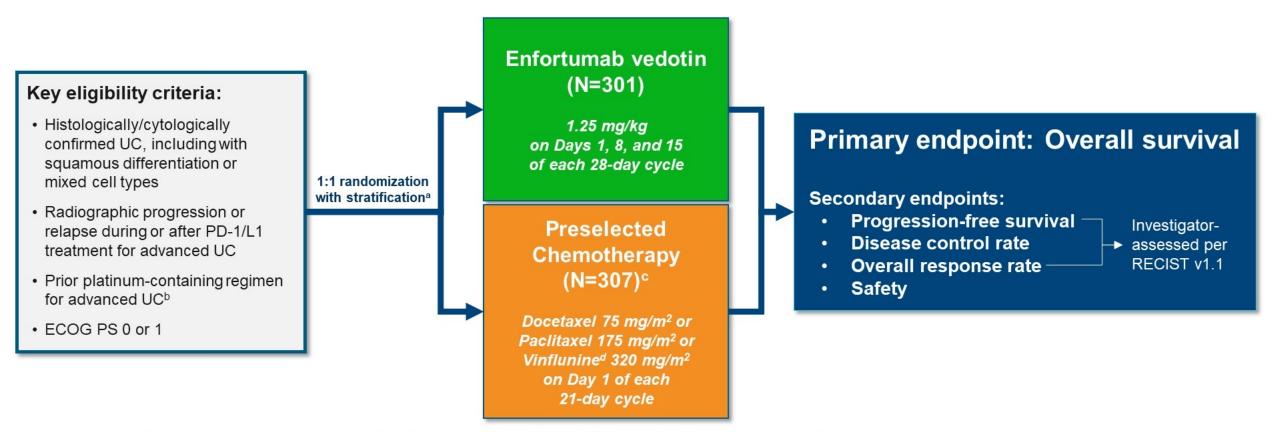
Sumanta Kumar Pal, MD

Professor, Department of Medical Oncology and Therapeutics Research City of Hope Duarte, California

Primary Results of EV-301: A Phase 3 Trial of Enfortumab Vedotin vs Chemotherapy in Patients With Previously Treated Locally Advanced or Metastatic Urothelial Carcinoma

Thomas Powles, MD^{1a}; Jonathan E Rosenberg, MD^{2a}; Guru P Sonpavde, MD³; Yohann Loriot, MD, PhD⁴; Ignacio Durán, MD, PhD⁵; Jae-Lyun Lee, MD, PhD⁶; Nobuaki Matsubara, MD⁷; Christof Vulsteke, MD, PhD⁸; Chunzhang Wu, PhD⁹; Mary Campbell, MD¹⁰; Maria Matsangou, MBChB, MD⁹; Daniel P Petrylak, MD¹¹

¹Barts Cancer Centre, Queen Mary University of London, London, United Kingdom; ²Memorial Sloan Kettering Cancer Center, New York City, NY, USA; ³Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ⁴Gustave Roussy, Université Paris-Saclay, Villejuif, France; ⁵Hospital Universitario Marques de Valdecilla, IDIVAL, Cantabria, Spain; ⁶Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea; ⁷National Cancer Center Hospital East, Chiba, Japan; ⁸Center for Oncological Research (CORE), University of Antwerp, Integrated Cancer Center Ghent, Belgium; ⁹Astellas Pharma, Inc., Northbrook, IL, USA; ¹⁰Seagen Inc., Bothell, WA, USA; ¹¹Smilow Cancer Center, Yale School of Medicine, New Haven, CT, USA


^aDual first authorship; Drs. Powles and Rosenberg contributed equally to this presentation.

Genitourinary Cancers Symposium

PRESENTED AT:

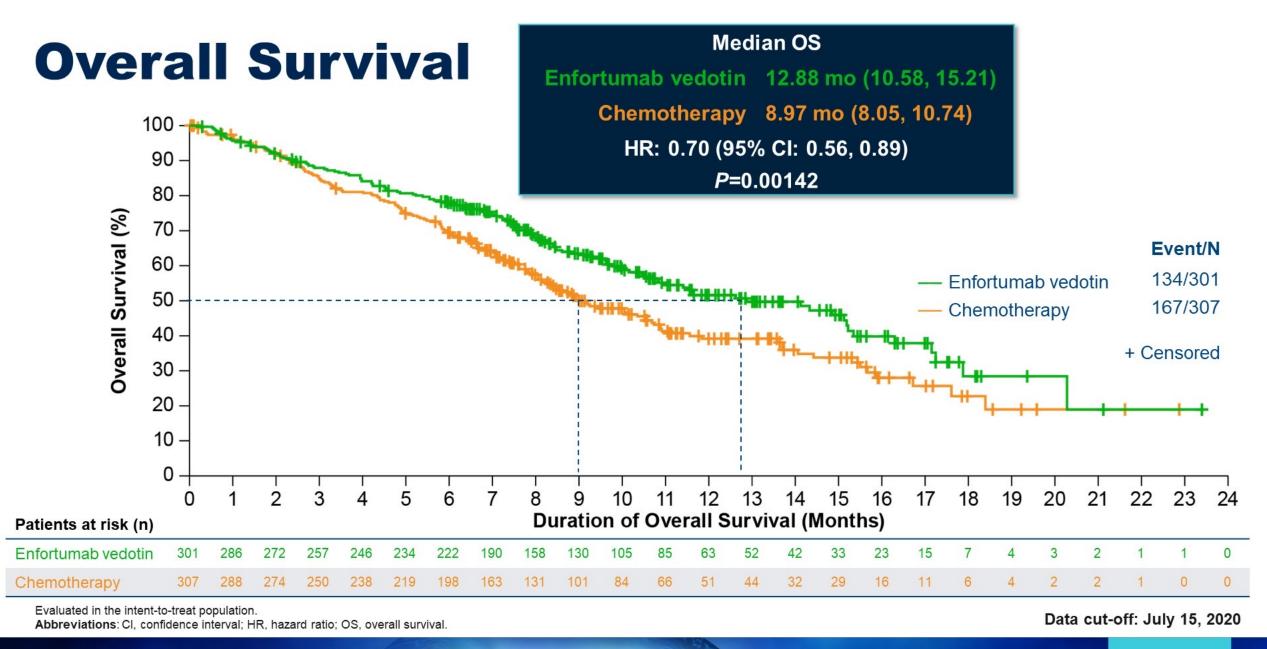
Slides are the property of the author, permission required for reuse.

EV-301 Open-Label Phase 3 Trial Design

^aStratification variables were ECOG performance status (0 or 1), regions of the world (United States, western Europe, or rest of world), liver metastasis (yes or no).

^bIf used in the adjuvant/neoadjuvant setting, progression must be within 12 months of completion.

^cInvestigator selected prior to randomization.


dIn countries where approved; overall proportion of patients receiving vinflunine capped at 35%.

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; PD-1/L1, programmed cell death protein-1/programmed death-ligand 1; RECIST, Response Evaluation Criteria in Solid Tumors; UC, advanced urothelial carcinoma.

PRESENTED AT: Genitourinary Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Thomas Powles

#GU21

Slides are the property of the author, permission Cancers Symposium required for reuse.

Genitourinary

PRESENTED AT:

PRESENTED BY: Thomas Powles

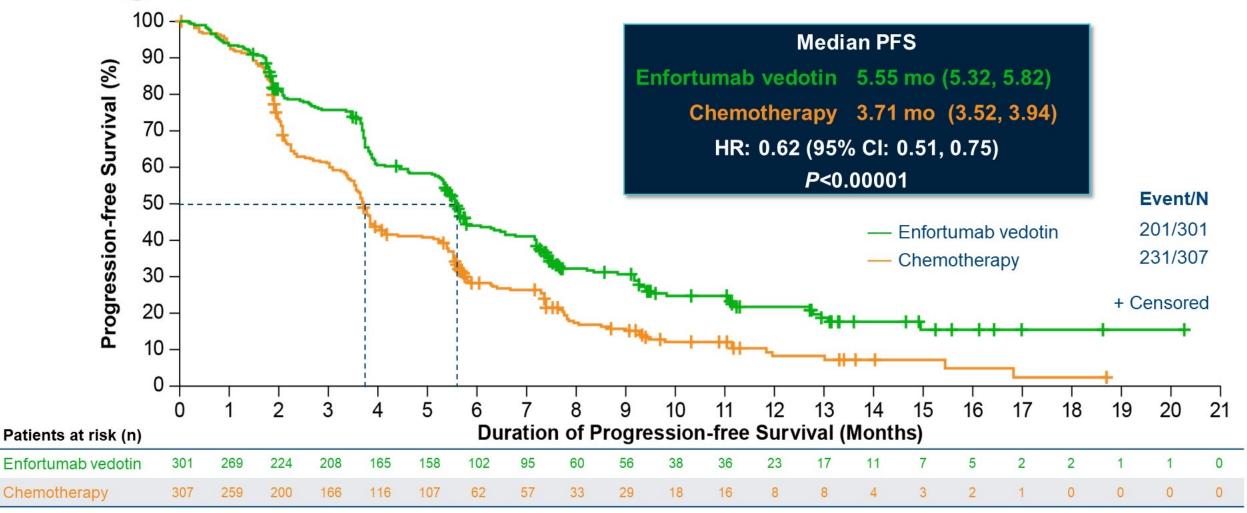
#GU21

Overall Survival: Subgroup Analyses

			HR (95% CI)	Enfortumab vedotin (Event/N)	Chemotherapy (Event/N)
All subjects		⊢ ◆(0.70 (0.56, 0.89)	134/301	167/307
A	<65 years	⊢	0.68 (0.47, 0.99)	49/108	66/111
Age, group 1	≥65 years	⊢ ●	0.75 (0.56, 1.00)	85/193	101/196
Sav	Male	⊢♦ −−1	0.61 (0.47, 0.79)	101/238	132/232
Sex	Female	⊢	1.17 (0.72, 1.89)	33/63	35/75
	W Europe	I	0.76 (0.53, 1.07)	57/126	72/129
Region	US	⊢	- 0.88 (0.51, 1.54)	25/43	25/44
	Rest of World	⊢	0.64 (0.45, 0.92)	52/132	70/134
ECOG PS	0	⊢	0.81 (0.53, 1.24)	40/120	46/124
ECOG PS	1	⊢	0.67 (0.51, 0.87)	94/181	121/183
Liver metastasis	Yes	⊢	0.66 (0.46, 0.96)	53/93	63/95
	No	⊢	0.73 (0.55, 0.98)	81/208	104/212
	Paclitaxel	→	0.71 (0.49, 1.01)	63/141	59/112
Pre-selected control therapy	Docetaxel	⊢	0.71 (0.48, 1.04)	41/87	67/117
	Vinflunine	⊢	0.77 (0.48, 1.24)	30/73	41/78
Primary site of tumor	Upper tract	⊢	0.85 (0.57, 1.27)	44/98	52/107
	Bladder/other	⊢ →	0.67 (0.51, 0.88)	90/203	115/200
Prior lines of systemic therapy	1-2	⊢	0.69 (0.54, 0.88)	115/262	147/270
	≥3	⊢		19/39	20/37
Best response to prior CPI	Responder	⊢ • · · · · · · · · · · · · · · · · · ·	0.63 (0.34, 1.17)	18/61	23/50
	Non-responder	⊢ → I	0.76 (0.58, 0.99)	100/207	120/215

Favors enfortumab vedotin Favors chemotherapy

Abbreviations: CI, confidence interval; CPI, checkpoint inhibitor; ECOG PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; US, United States; W, western.


Data cut-off: July 15, 2020

PRESENTED AT: Genitourinary Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Thomas Powles

#GU21

Progression-free Survival

Evaluated in the intent-to-treat population.

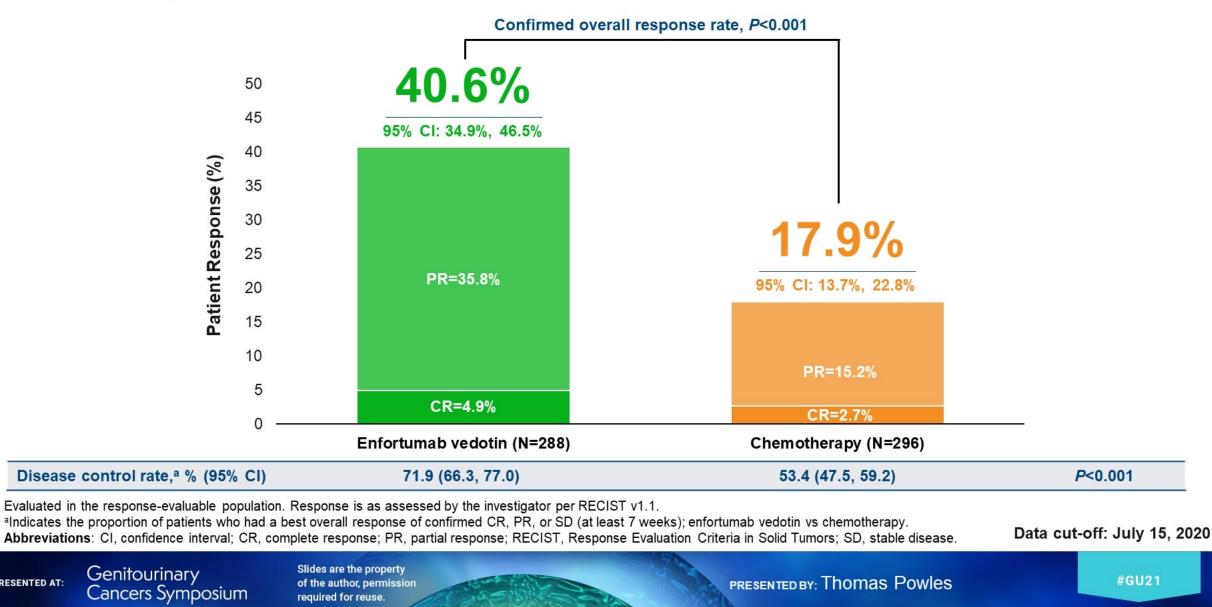
PRESENTED AT:

Genitourinary

Cancers Symposium

Abbreviations: CI, confidence interval; HR, hazard ratio; mo, months; PFS, progression-free survival.

Data cut-off: July 15, 2020


Slides are the property of the author, permission required for reuse.

PRESENTED BY: Thomas Powles

#GU21

Investigator-Assessed Overall Response

PRESENTED AT:

Treatment-Related Adverse Events

		ab Vedotin 296	Chemotherapy N=291		
Adverse Event	All Grade	Grade ≥3	All Grade	Grade ≥3	
Any adverse event	94%	51%	92%	50%	
Alopecia	45%	0	36%	0	
Peripheral sensory neuropathy	34%	3%	21%	2%	
Pruritus	32%	1%	4%	0	
Fatigue	31%	6%	23%	4%	
Decreased appetite	31%	3%	23%	2%	
Diarrhea	24%	3%	16%	2%	
Dysgeusia	24%	0	7%	0	
Nausea	23%	1%	22%	1%	
Rash maculopapular	16%	7%	2%	0	
Anemia	12%	3%	20%	8%	
Neutrophil count decreased	10%	6%	17%	13%	
Neutropenia	7%	5%	8%	6%	
White blood cell decreased	5%	1%	11%	7%	
Febrile neutropenia	1%	1%	5%	5%	
Serious adverse events ^a	23%		23%	-	
_eading to treatment withdrawal	14%	-	11%	-	

TRAEs leading to death, excluding disease progression, occurred in 7 patients (2.4%) treated with EV and 3 (1.0%) treated with chemotherapy.

Evaluated in the safety population; displaying adverse events (AEs) occurring in ≥20% or grade ≥3 AEs occurring in ≥5% of patients in either treatment group. Dashes indicate 'not applicable.'

Treatment-related AEs are events with a reasonable possibility of relationship to treatment (investigator-assessed) or missing relationship and are not time-adjusted.

This slide contains updated data in the chemotherapy arm to adjust for compounded rounding.

^aAEs that were deemed "serious" in the view of the investigator or sponsor and based upon predefined criteria.

Abbreviations: AE, adverse event; EV, enfortumab vedotin; TRAEs, treatment-related adverse events.

PRESENTED AT:

Genitourinary Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Thomas Powles

Data cut-off: July 15, 2020

#GU21

Adverse Events of Special Interest

		ab Vedotin 296	Chemo N=	therapy 291	
Treatment-Related Adverse Event	All Grade	Grade ≥3	All Grade	Grade ≥3	
Skin Reactions ^a	47%	15%	16%	1%	
Rash	44%	15%	10%	0°	
Severe cutaneous adverse reactions ^b	20%	5%	8%	1%	
Peripheral neuropathy	46%	5%	31%	2%	
Sensory events	44%	4%	30%	2%	
Motor events	7%	2%	2%	0	
Hyperglycemia	6%	4%	0 ^c	0	

The majority of TRAEs of special interest were mild-to-moderate in severity.

Evaluated in the safety population; displaying selected TRAEs of special interest to EV. Differences between AE rates in current and prior slide may be due to preferred term groupings. TRAE are events with a reasonable possibility of relationship to study treatment as assessed by the investigator or missing relationship.

^aEncompasses rash and severe cutaneous adverse reactions.

^bSevere cutaneous adverse reactions included the following (by Preferred Term): stomatitis, drug eruption, conjunctivitis, blister, dermatitis bullous, skin exfoliation,

erythema multiforme, exfoliative rash, fixed eruption, mouth ulceration, pemphigus, and toxic skin eruption.

^cOne patient had the TRAE that is listed.

Abbreviations: EV, enfortumab vedotin; TRAE, treatment-related adverse event.

PRESENTED AT:

Genitourinary Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Thomas Powles

Data cut-off: July 15, 2020

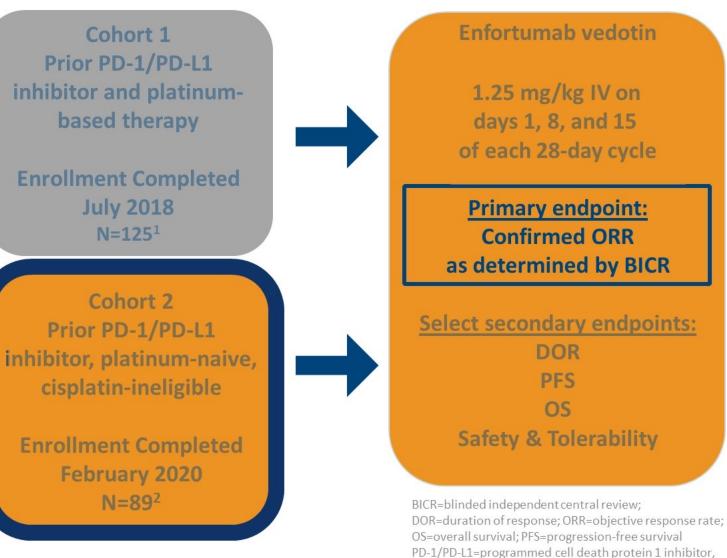
#GU21

EV-201: Non-Comparative, Pivotal Phase 2 Trial

Enrollment 59 Global Sites

Previously treated locally advanced or metastatic urothelial carcinoma

Target Enrollment: ~100 patients/cohort


¹3 additional patients were enrolled but did not receive enfortumab vedotin due to patient decision, clinical deterioration, and low hemoglobin, respectively

²2 additional patients were enrolled but did not receive enfortumab vedotin due to admission to the hospital for disease progression and hospice care, respectively

Cancers Symposium

Genitourinary

PRESENTED AT:

Slides are the property of the author, permission required for reuse.

PRESENTED BY: Arjun V. Balar

programmed death-ligand 1 inhibitor

EV-201 Cohort 2: Best Overall Response per BICR

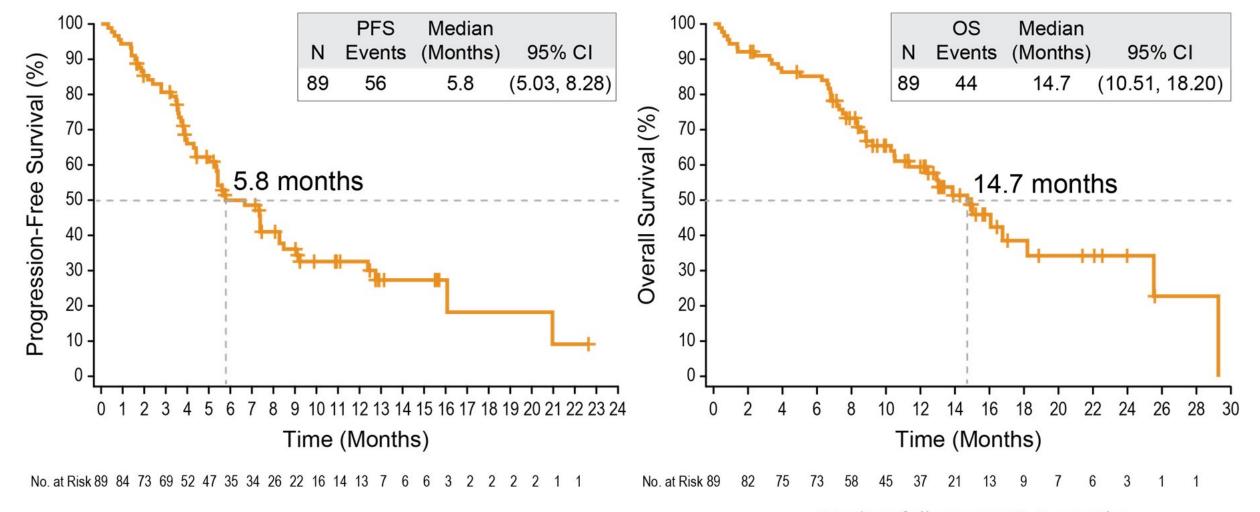
ORR per RECIST v 1.1 assessed by BICR	Patients (N=89) %
Confirmed ORR, 95% Cl ¹	52 (40.8, 62.4)
Best overall response ²	
Confirmed complete response	20
Confirmed partial response	31
Stable disease	30
Progressive disease	9
Not evaluable ³	9

ORR = Objective Response Rate; RECIST = Response Evaluation Criteria in Solid Tumors; BICR = Blinded Independent Central Review

¹Cl = Confidence Interval, Computed using the Clopper-Pearson method

²Best overall response according to RECIST v1.1. Complete response and partial response were confirmed with repeat scans ≥28 days after initial response.

³Includes five subjects who did not have response assessment post-baseline, two subjects whose post-baseline assessment did not meet the minimum interval requirement for stable disease, and one subject whose response cannot be assessed due to incomplete anatomy.


Genitourinary Cancers Symposium

PRESENTED AT:

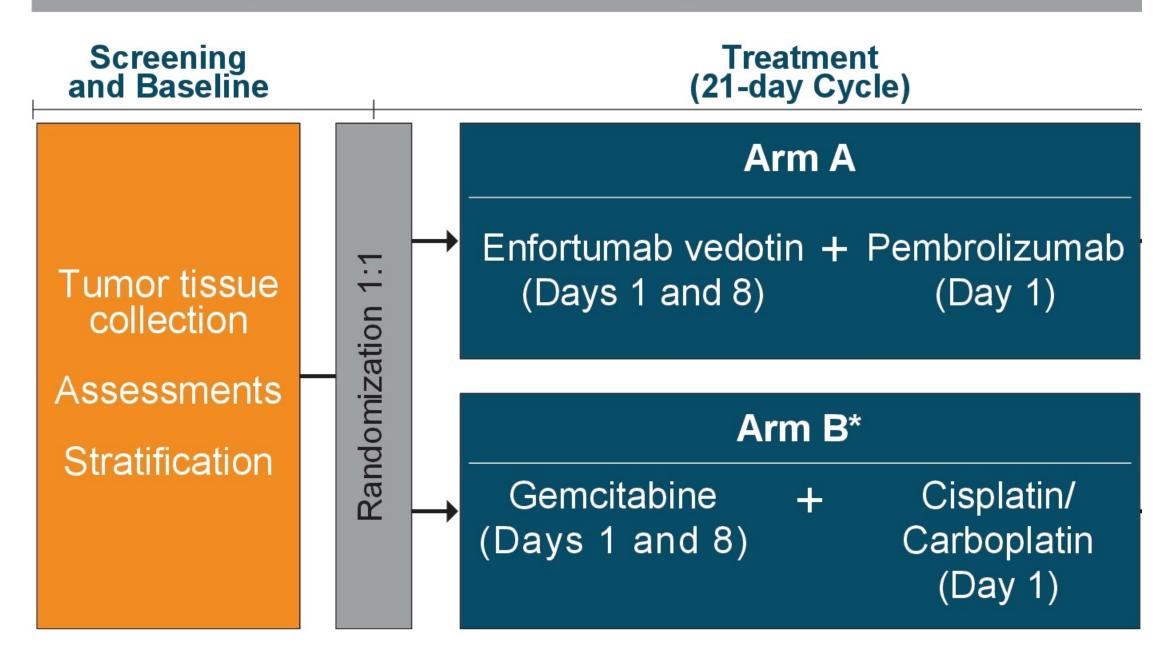
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Arjun V. Balar

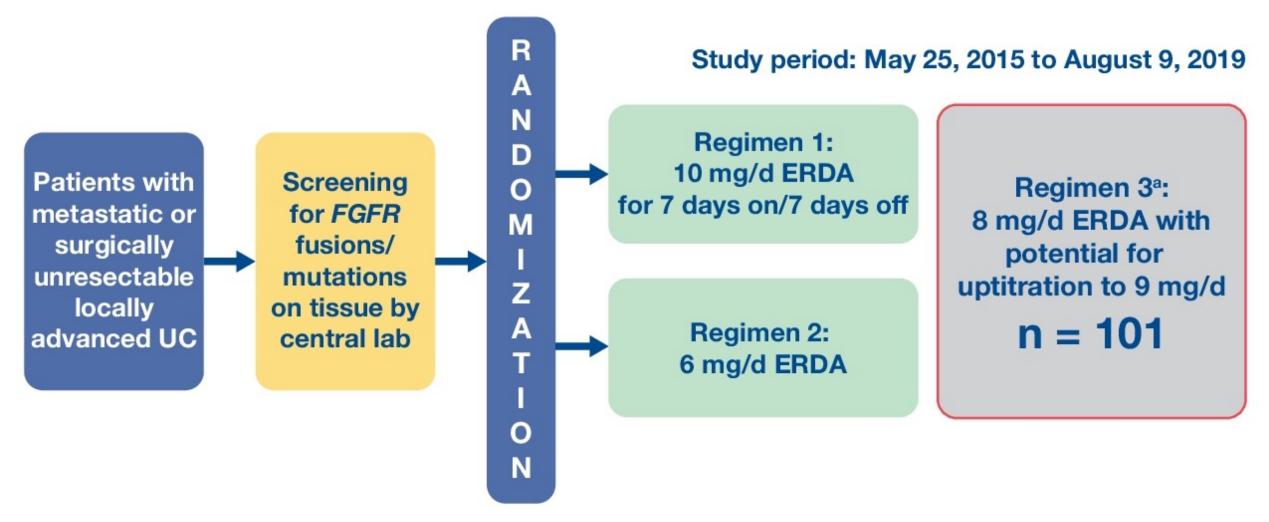
EV-201 Cohort 2: Progression-Free Survival and Overall Survival

Median follow-up: 13.4 months

Slides are the property of the author, permission Cancers Symposium required for reuse.


Genitourinary

PRESENTED AT:

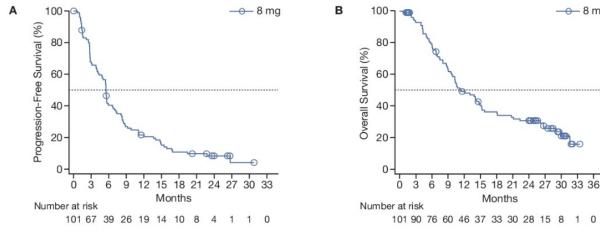

PRESENTED BY: Arjun V. Balar

#GU21

EV-302/Keynote-A39 Study Design

Erdafitinib in locally advanced or metastatic urothelial carcinoma (mUC): Long-term outcomes in BLC2001.

^aDose uptitration if \geq 5.5 mg/dL target serum phosphate not reached by Day 14 and if no TRAEs.


Siefker-Radtke et al ASCO 2020 (Abstr 5015)

Patients, n (%)		ERDA 8 mg/d UpT n = 101°
Age, median (range), years		67 (36-87)
ECOG PS	0 1 2	51 (50) 43 (43) 7 (7)
Pretreatment	Progressed or relapsed after chemo Chemo naive Prior immunotherapy	89 (88) 12 (12) 24 (24)
Number of lines of prior treatment	0 1 2 ≥3	10 (10) 48 (48) 28 (28) 15 (15)
Visceral metastases	Present Absent	78 (77) 23 (23)
Hemoglobin level, g/dL	≥ 10 < 10	86 (85) 15 (15)
Tumor location	Upper tract Lower tract	25 (25) 76 (75)
Creatinine clearance rate	< 60 mL/min ≥ 60 mL/min	53 (52) 48 (48)

Efficacy

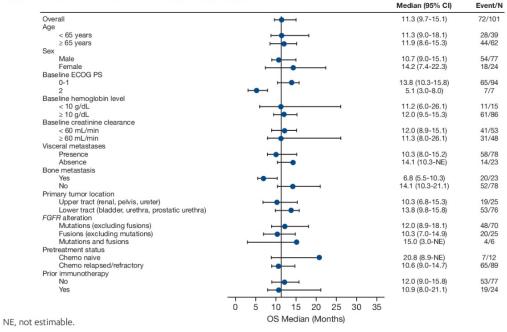

- ◆ At final analysis, the confirmed investigator-assessed ORR was 40% (95% confidence interval [CI], 30%-49%) among all patients, consistent with the 40% ORR (95% CI, 31%-50%) at the time of primary analysis.³
- ◆ Confirmed ORR was 39% (95% CI, 29%-50%) for the treated chemo-relapsed/refractory (R/R) population.
- ◆ Median DOR was 6.0 (95% CI, 4.2-7.5) months and independent of age, sex, and most baseline characteristics, eq, hemoglobin level and renal function; 31% of responders had DOR \geq 12 months.
- ◆ Median PFS was 5.5 months (95% CI, 4.0-6.0) for all treated patients (Figure 2A), and:
 - 5.5 months (95% CI, 4.0-5.7 months) for treated chemo-R/R patients
 - 5.7 months (95% CI, 4.9-8.3 months) for patients with prior immunotherapy
 - 5.5 months (95% CI, 2.8-6.0), 5.5 months (95% CI, 2.7-8.3), and 5.7 months (95% CI, 4.0-9.2), among patients with 1, 2, and 3 prior lines of therapy, respectively

Figure 2. A) Progression-Free Survival^a and B) Overall Survival

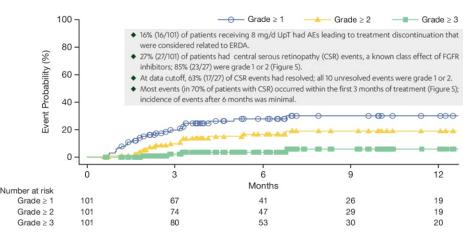
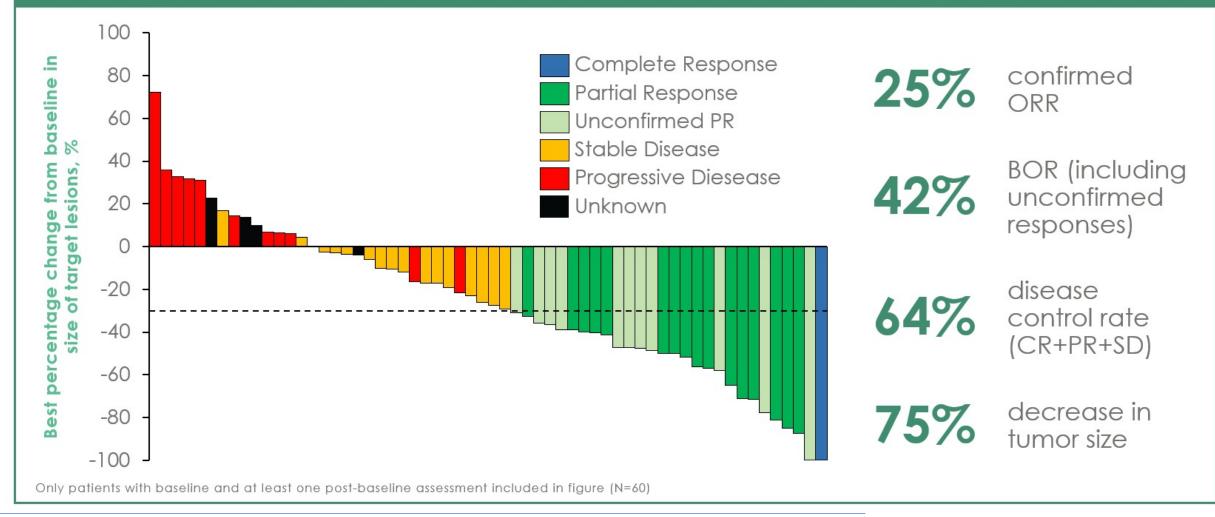

^aBy investigator assessment.

Figure 4. Forest Plot of OS by Subgroup

Figure 5. Central Serous Retinopathy

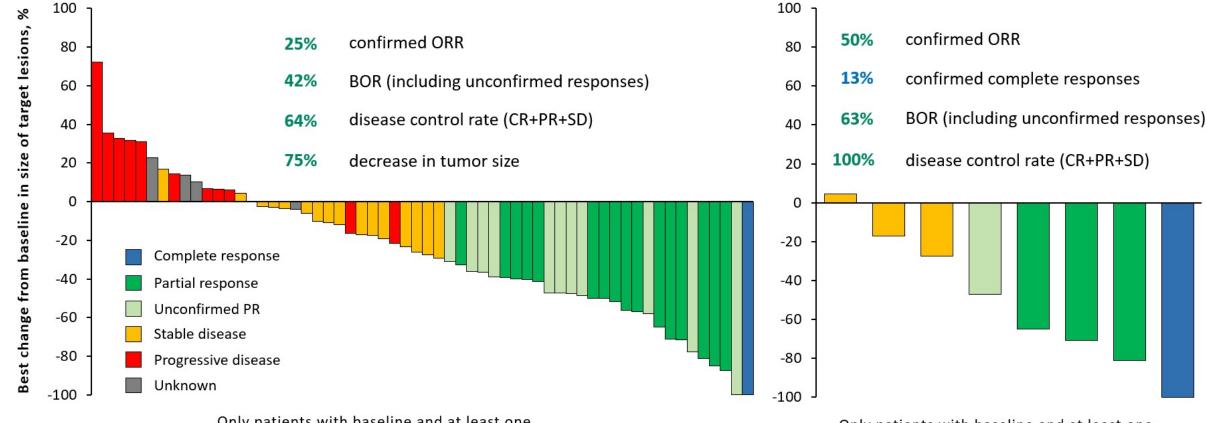
-0 8 mg



Three patients had grade 3 CSR events that resolved or lessened in severity to grade 1 following dose reduction or interruption in 2 patients and no dose modification in another patient, and 1 patient had grade 3 detachment of retinal pigment epithelium, which initially resolved but then recurred as a grade 2 event following dose reduction (ultimately leading to discontinuation of ERDA in this patient).

Siefker-Radtke et al ASCO 2020 (Abstr 5015)

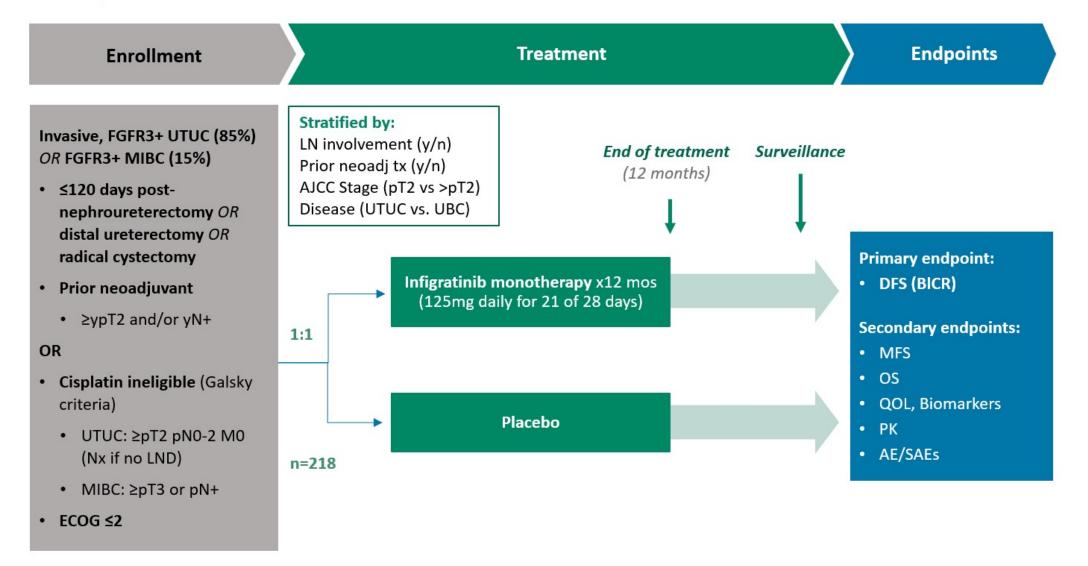
Infigratinib: FGFR3 inhibitor


Phase 1 expansion cohort advanced urothelial carcinoma with FGFR GAs (N=67)

Pal, Sumanta K., Jonathan E. Rosenberg, Jean H. Hoffman-Censits, Raanan Berger, David I. Quinn, Matthew D. Galsky, Juergen Wolf, et al. "Efficacy of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Inhibitor, in Patients with Previously Treated Advanced Urothelial Carcinoma with FGFR3 Alterations." *Cancer Discovery* 8, no. 7 (July 2018): 812–21. https://doi.org/10.1158/2159-8290.CD-18-0229.

Responses seen in urothelial patients

Total (n=67)


Only patients with baseline and at least one post-baseline assessment included in figure (n=60)

Only patients with baseline and at least one post-baseline assessment included in figure (n=8)

UTUC (n=8)

Pal, Sumanta K., Siamak Daneshmand, Surena F. Matin, Yohann Loriot, Srikala S. Sridhar, Petros Grivas, Shilpa Gupta, et al. "PROOF 302: A Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Infigratinib as Adjuvant Therapy in Patients with Invasive Urothelial Carcinoma Harboring FGFR3 Alterations." *Journal of Clinical Oncology* 38, no. 6_suppl (February 20, 2020): TPS600–TPS600. https://doi.org/10.1200/JCO.2020.38.6_suppl.TPS600.

PROOF 302: adjuvant infigratinib vs. placebo for invasive urothelial carcinoma with susceptible *FGFR3* alterations

Pal, Sumanta K., Siamak Daneshmand, Surena F. Matin, Yohann Loriot, Srikala S. Sridhar, Petros Grivas, Shilpa Gupta, et al. "PROOF 302: A Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Infigratinib as Adjuvant Therapy in Patients with Invasive Urothelial Carcinoma Harboring FGFR3 Alterations." *Journal of Clinical Oncology* 38, no. 6_suppl (February 20, 2020): TPS600–TPS600. <u>https://doi.org/10.1200/JCO.2020.38.6_suppl.TPS600</u>.

TROPHY-U-O1: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients With Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors

Scott T. Tagawa, MD, MS¹; Arjun V. Balar, MD²; Daniel P. Petrylak, MD³; Arash Rezazadeh Kalebasty, MD⁴; Yohann Loriot, MD, PhD⁵; Aude Fléchon, MD, PhD⁶; Rohit K. Jain, MD⁷; Neeraj Agarwal, MD⁸; Manojkumar Bupathi, MD, MS⁹; Philippe Barthelemy, MD, PhD¹⁰; Philippe Beuzeboc, MD, PhD¹¹; Phillip Palmbos, MD, PhD¹²; Christos E. Kyriakopoulos, MD¹³; Damien Pouessel, MD, PhD¹⁴; Cora N. Sternberg, MD¹; Quan Hong, MD¹⁵; Trishna Goswami, MD¹⁵; Loretta M. Itri, MD¹⁵; and Petros Grivas, MD, PhD¹⁶

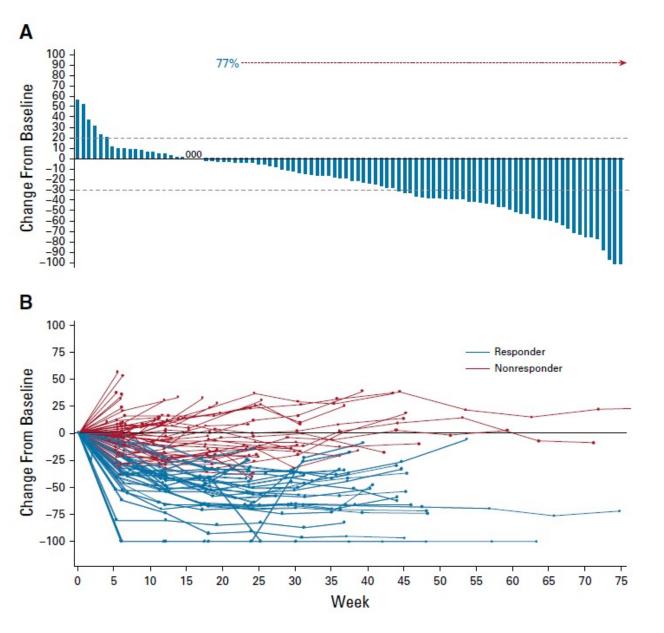
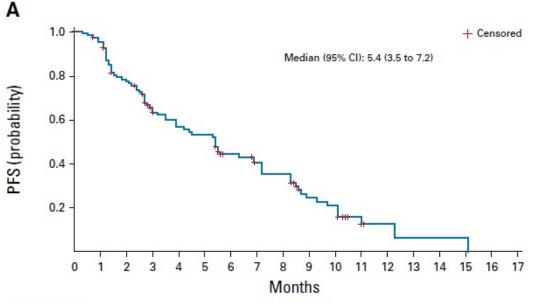
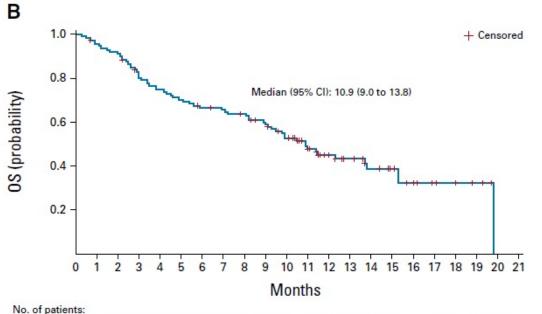
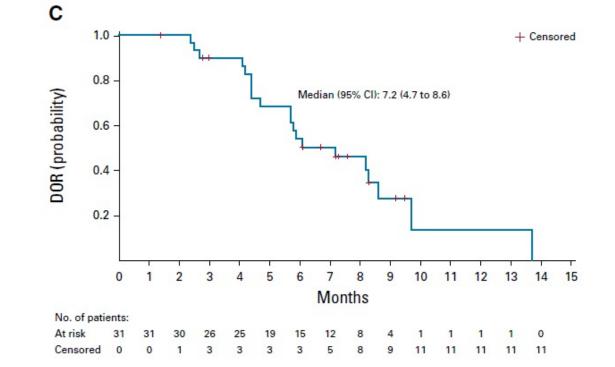

ASCO 2474 Volume 39, Issue 22 Journal of Clinical Oncology®

TABLE 1. Patient Demographics	TABLE 2. Summary of Treatment Ef	Tupo of discoso No. (%)		
Characteristic	Variable	(N = 113)		108 (96)
Age, median (range), years	Best response, No. (%)			4 (3.5)
≥ 75, No. (%)	CR	6 (5)		1 (0.09)
Male, No. (%)	PR	25 (22)	а	75 (66)
Race, No. (%)	SD	38 (34)		49 (43)
White	PD	21 (19)		38 (34)
Black	Not evaluable	8 (7)		15 (13)
Asian	Not assessed ^a	15 (13)	No. (%)	
Other	ORR	10 (10)		22 (19.5)
Not reported	No. of patients	31		108 (95.6)
ECOG PS, No. (%)	% patients (95% CI)	27 (19 to 37)		36 (31.9)
0	CBR ^b	27 (19 (0 57)		112 (99) ^b
1		42	, No. (%)	113 (100)
	No. of patients			89 (79)
	% patients (95% CI)	37 (28 to 47)		24 (21)
	Time to onset of response (months)	10 (8.8)
	Median	1.6		2 (1.8)
Tagawa <i>et al</i> JCO 2021	Range	Phor anticancer regimens, media	n, No. (range)	3.0 (1-8)


TABLE 2. Summary of Treatment Efficacy

Variable	(N = 113)
Best response, No. (%)	
CR	6 (5)
PR	25 (22)
SD	38 (34)
PD	21 (19)
Not evaluable	8 (7)
Not assessed ^a	15 (13)
ORR	
No. of patients	31
% patients (95% CI)	27 (19 to 37)
CBR ^b	
No. of patients	42
% patients (95% CI)	37 (28 to 47)
Time to onset of response (months)	
Median	1.6
	1000


1.2-2.9


Tagawa *et al* JCO 2021

No. of pati	ents:																
At risk	113	102	81	60	51	48	36	31	27	14	12	5	2	1	1	1	0
Censored	5	6	9	18	18	18	22	24	24	30	30	35	36	36	36	36	36

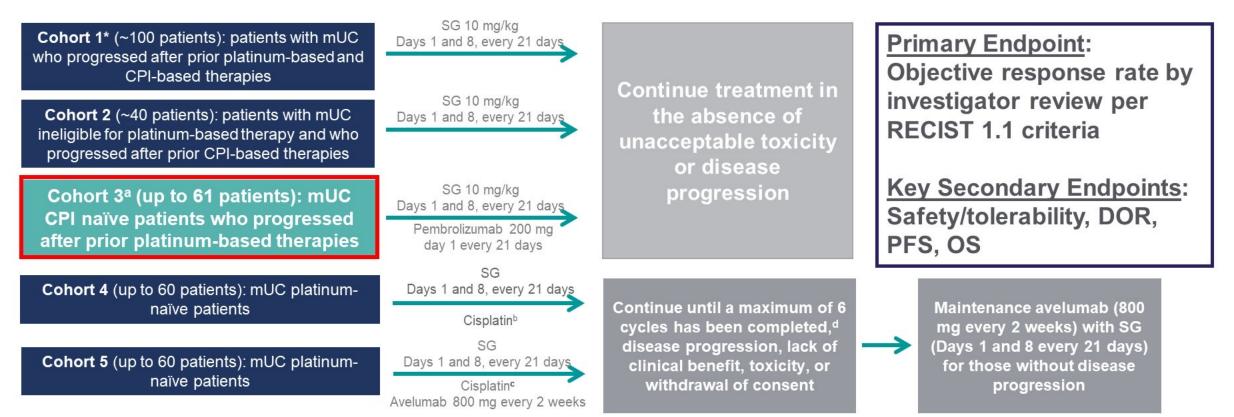


TABLE 3. Most Common TRAEs of Any Grade (Observed in \geq 20% of Patients) or TRAEs Grade \geq 3 (Observed in \geq 5% of Patients) (N = 113)

Category	Event	All Grades (%)	Grade 3 (%)	Grade 4 (%)
Hematologicª	Neutropenia	46	22	12
	Leukopenia	25	12	5
	Anemia	33	14	0
	Lymphopenia	11	5	2
	Febrile neutropenia	10	7	3
GI	Diarrhea	65	9	1
	Nausea	60	4	0
	Vomiting	30	1	0
General disorders and administrative site conditions	Fatigue	52	4	0
Skin and subcutaneous tissue	Alopecia	47	0	0
Metabolism and nutrition	Decreased appetite	36	3	0
Infections and infestations	Urinary tract infection	8	6	0

Tagawa et al JCO 2021

TROPHY-U-01 Is a Registrational, Open-Label, Multicohort Phase 2 Trial in Patients With mUC

Key Inclusion Criteria: Age ≥18 years, ECOG of 0/1, creatinine clearance (CrCl) ≥30 mL/min,^{b,c} adequate hepatic function **Key Exclusion Criteria**: Immunodeficiency, active Hepatitis B or C, active secondary malignancy, or active brain metastases

*Accelerated FDA approval for treatment of patients with locally advanced or mUC who previously received platinum-containing chemotherapy and PD-1/L1 inhibitor¹

ASCO[®] Genitourinary

Cancers Symposium

^aExclusions for Cohort 3 only: active autoimmune disease or history of interstitial lung disease. ^bIn patients with CrCl ≥60 mL/min; ^cIn patients with creatinine clearance 50–60 mL/min. ^dFor patients who have not progressed, maintenance therapy will begin with infusions of avelumab (800 mg every 2 weeks beginning cycle 1, day 1 and every 2 weeks thereafter) followed by SG on days 1 and 8 every 21 days. CBR, clinical benefit rate; CPI, checkpoint inhibitor; CrCl, creatinine clearance; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; mUC, metastatic urothelial cancer; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; SG, sacituzumab govitecan. 1. TRODELVYTM (sacituzumab govitecan-hziy). Prescribing Information. Immunomedics, Inc.; April 2021; EudraCT Number: 2018-001167-23; ClinicalTrials.gov Number: NCT03547973. IMMU-132-06 study.

Abstract # 434. Content of this presentation is the property of the authors and licensed by ASCO. Permission required for reuse

Demographics

	Cohort 3 (N=41)
Male, n (%)	34 (83)
Median age, y (range)	67 (46–86)
Race, n (%)	
White	22 (54)
Other or not reported	19 (46)
ECOG PS 1, n (%)	25 (61)
Baseline Hgb <10 g/dl	5 (12)
Tumor stage at screening, n (%)	
Loco-regional only	9 (22)
Distant metastasis	32 (78)
Site of disease at baseline	
Visceral	28 (68)
Liver metastasis at baseline, n (%)	12 (29)
Non-visceral	13 (32)
Median prior anticancer chemotherapy regimens, (range)	1 (1-2)
≤2 prior anticancer chemotherapy regimen, n (%)	41 (100)
Prior platinum chemotherapy, n (%)	
Cisplatin	28 (68)
Carboplatin	12 (29)

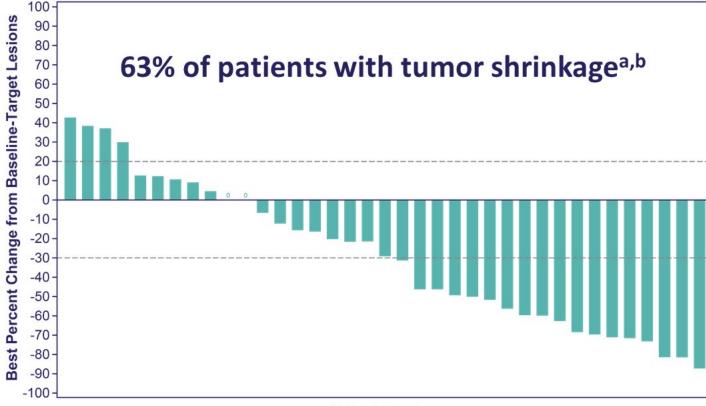
ASCO[•] Genitourinary Cancers Symposium

ECOG PS, Eastern Cooperative Oncology Group performance status; Hgb, hemoglobin. Abstract # 434. Content of this presentation is the property of the authors and licensed by ASCO. Permission required for reuse.

Baseline Disease Characteristics and Prior Therapy

	Cohort 3 (N=41)
Bellmunt risk factor	
0	10 (24)
1	20 (49)
2	11 (27)
Setting of prior systemic therapy, n (%)	
(Neo)adjuvant	20 (49)
Median time from end of most recent prior systemic therapy to screening start date, months	6.8
Metastatic*	21 (51)
Median time from end of most recent prior systemic therapy to screening start date, months	1.6
Best response to prior systemic therapy in metastatic setting [¶] , n (%)	
Complete response	1 (2)
Partial response	2 (5)
Stable disease	11 (27)
Disease progression	6 (15)

ASCO[•] Genitourinary Cancers Symposium


*Makrakis, D et al. 2022 ASCO-GU. Abs ID505; [¶]Pending data query for one patient (n=1)

Abstract # 434. Content of this presentation is the property of the authors and licensed by ASCO. Permission required for reuse.

Overall Response and Best % Change From Baseline in Tumor Size

- Median follow-up: 5.8 months (data cutoff date: 2021-09-24)
- Median time to response: 2 months (1.3–2.8; n=14)
- Median DOR not yet reached: N/A (2.80-N/A)
- Median PFS (95% CI), 5.5 months (1.7–NR); median OS, not reached

	Cohort 3ª (N=41)
Objective response rate (CR + PR), n (%) [95%Cl]	14 (34) [20.1-50.6]
Objective response rate (CR + PR), evaluable patients, n (%)	14 (38)
Best overall response, n (%)	
CR	1 (2)
PR	13 (32)
SD	11 (27)
$SD \ge 6$ months	4 (10)
PD	12 (29)
Not assessed	4 (10)
Clinical Benefit Rate (CR + PR + SD), n (%) [95%Cl]	25 (61) [44.5-75.8]

Patient Number

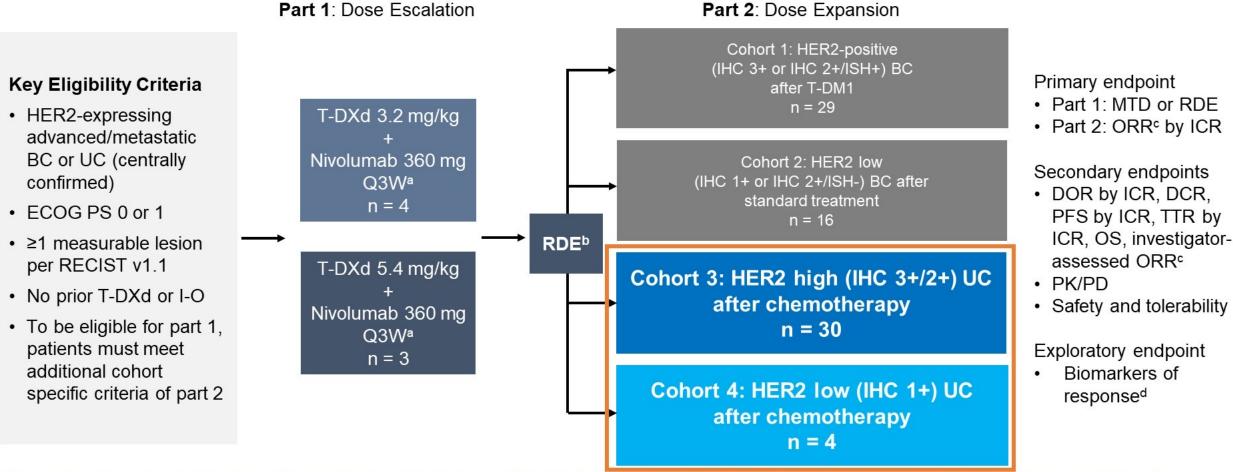
^aResponses assessed by investigator in the intent-to-treat population. ^bPatients without post-baseline assessments are not shown here. CI, confidence interval; CR, complete response; DOR, duration of response; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease

Abstract # 434. Content of this presentation is the property of the authors and licensed by ASCO. Permission required for reuse

Primary Analysis From DS8201-A-U105: A Phase 1b, 2-Part, Open-Label Study of Trastuzumab Deruxtecan (T-DXd) With Nivolumab in Patients With HER2-Expressing Urothelial Carcinoma (UC)

Matthew D. Galsky, Gianluca Del Conte, Silvia Foti, Evan Y. Yu, Jean-Pascal H. Machiels, Bernard Doger, Andrea Necchi, Filippo G. De Braud, Erika P. Hamilton, Audrey Hennequin, Tom Van den Mooter, Philip R. Debruyne, Irene Moreno, Hendrik-Tobias Arkenau, Zenta Tsuchihashi, Fu-Chih Cheng, Bincy Augustine, Ben Cheng, Daniel Barrios, Diana Lüftner

Matthew D. Galsky, MD Icahn School of Medicine at Mount Sinai, New York, NY


ASCO[®] Genitourinary Cancers Symposium

PRESENTED BY: Matthew D. Galsky, MD Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

DS8201-A-U105 Study Design

BC, breast cancer; bTMB, blood tumor mutation burden; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; HER2, human epidermal growth factor receptor 2; I-O, immunooncology; ICR, independent central review; IHC, immunohistochemistry; MTD, maximum tolerated dose; ORR, objective response rate; OS, overall survival; PD-L1, programmed death ligand 1; PFS, progression-free survival; PK/PD, pharmacokinetics/pharmacodynamics; Q3W, every 3 weeks; RECIST v1.1, Response Evaluation Criteria in Solid Tumors, version 1.1; RDE, recommended dose for expansion; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; TTR, time to response; UC, urothelial carcinoma.

^aNivolumab 360 mg Q3W is an approved dose in the United States for certain indications in combination with ipilimumab or fluoropyrimidine- and platinum-containing chemotherapy (Opdivo [nivolumab] prescribing information) and is currently under investigation in monotherapy oncology studies. ^bThe RDE for T-DXd was 5.4 mg/kg. ^cORR was based on RECIST v1.1. ^dBiomarker data (PD-L1 expression by IHC and bTMB) were assessed from baseline archival or new tumor tissue biopsies.

ASCO[°] Genitourinary Cancers Symposium

PRESENTED BY: Matthew D. Galsky, MD

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

AMERICAN SOCIETY OF

CLINICAL ONCOLOGY

KNOWLEDGE CONQUERS CANCER

Summary of Efficacy Results in UC Cohorts

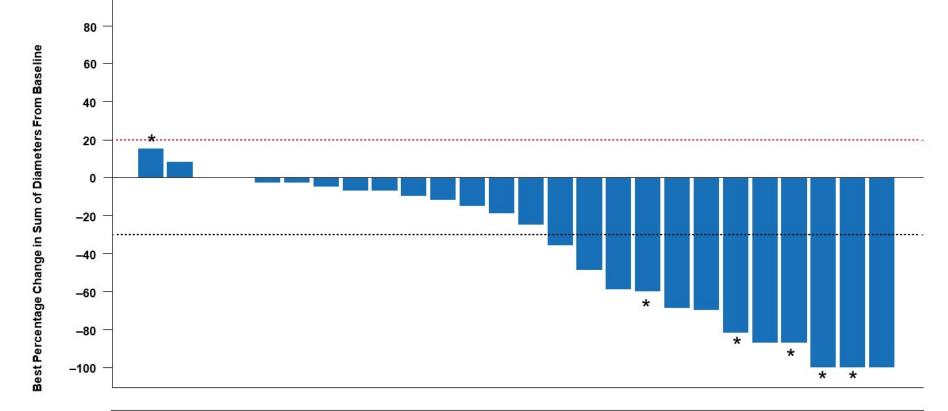
	Cohort 3 HER2 IHC 3+/2+ n = 30	
Confirmed ORR by ICR (ORR, CR + PR)		
n (%)	11 (36.7)	
95% CI	(19.9-56.1)	
Best overall response, n (%)		
CR	4 (13.3)	
PR	7 (23.3)	
SD	12 (40.0)	
PD	5 (16.7)	
NEª	2 (6.7)	
DOR, median (95% CI), months	13.1 (4.1-NE)	
PFS, median (95% CI), months	6.9 (2.7-14.4)	
TTR, median (95% CI), months	1.9 (1.2-6.9)	
OS, median (95% CI), months	11.0 (7.2-NE)	
Treatment duration, median (range), months		
T-DXd	3.9 (1-21)	
Nivolumab	4.1 (1-20)	

- Data cutoff: July 22, 2021
- In cohort 3:
 - HER2 IHC 3+: 62.5% (5/8) patients had a confirmed objective response, including 2 CR (25%)
 - HER2 IHC 2+: 27.3% (6/22) patients had a confirmed objective response, including 2 CR (9.1%)
- In cohort 4 (HER2 IHC 1+)^b:
 - 2 patients had a PR
 - 1 patient had SD
 - 1 patient had PD

CR, complete response; DOR, duration of response; ICR, independent central review; NE, nonevaluable; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; TTR, time to response.

^aPatients were missing postbaseline scans.

^bFor cohort 4, efficacy endpoints are not summarized because of the small sample size (n = 4).


#GU22

PRESENTED BY: Matthew D. Galsky, MD

Best Percentage Change in Tumor Size by ICR in HER2 IHC 3+/2+ Cohort^a

Cohort 3 HER 3+/2+ (n = 30) (part 2: T-DXd 5.4 mg/kg and nivolumab 360 mg)									
Best (minimum) percentage change									
n	Mean	SD	Median	Min	Max				
26	-37.8	38.52	-22.0	-100	15				

*Cohort 3 patient with HER2 IHC 3+. The line at 20% indicates PD, and the line at -30% indicates a PR.

#GU22

aln cohort 3, 4 patients did not have best percentage change available, of whom 2 were IHC 3+. For cohort 4, efficacy endpoints are not summarized because of the small sample size (n = 4).

ASCO[°] Genitourinary Cancers Symposium

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse

Adverse Events of Special Interest: ILD/Pneumonitis and LV Dysfunction

Adjudicated as drug-related ILD/pneumonitis, ^{a,b} n (%)									
	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade/Total			
Cohort 3 HER2 IHC 3+/2+ n = 30	0	4 (13.3)	1 (3.3)	0	1 (3.3)	6 (20.0)			
Cohort 4 HER2 IHC 1+ n = 4	2 (50.0)	0	0	0	0	2 (50.0)			
Overall N = 34	2 (5.9)	4 (11.8)°	1 (2.9)	0	1 (2.9)	8 (23.5)			

• All 8 cases of ILD/pneumonitis occurring before the data cutoff (July 22, 2021) were adjudicated

- 6 of 8 cases of ILD/pneumonitis were low grade (grade 1/2)
- Median time to adjudicated onset was 129 days (range, 35-342)

LV dysfunction

- In cohort 3, 1 (3.3%) patient experienced grade 3 LV dysfunction^d
 - At the time of the AE onset, the patient had already discontinued T-DXd because of progressive disease. Nivolumab was
 ongoing and was continued until further clinical progression.
- In cohort 4, none of the patients experienced LV dysfunction^d

ILD, interstitial lung disease; MedDRA, Medical Dictionary of Regulatory Activities.

^aCases of potential ILD or pneumonitis were evaluated by an independent adjudication committee that was separate from the response assessment committee. Data shown here are for cases that were deemed drug-related by the adjudication committee. ^bThe adjudication committee did not discriminate between T-DXd- and nivolumab-related ILD/pneumonitis. ^c2 grade 1 ILD events by the principal investigator were adjudicated as grade 2. ^dPer Standardized MedDRA Query of Cardiac Failure and of Myocardial Infarction.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse

Thank you for attending!

CME Credit Information

For those participating in person today, please remit your CME credit form as you exit the meeting room.

For all others, a CME credit link will be provided in the chat room at the conclusion of the program.

