Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Gastroesophageal Cancers (Part 2 of a 3-Part Series)

Thursday, January 20, 2022 6:15 PM - 7:45 PM PT

Faculty

Yelena Y Janjigian, MD Eric Van Cutsem, MD, PhD Harry H Yoon, MD

Moderator Samuel J Klempner, MD

Faculty

Yelena Y Janjigian, MD
Associate Professor
Chief, Gastrointestinal Oncology Service
Department of Medicine
Memorial Sloan Kettering Cancer Center
New York, New York

Harry H Yoon, MD
Associate Professor of Oncology
Co-Chair, Gastroesophageal Cancer Disease Group
Mayo Clinic Comprehensive Cancer Center
Rochester, Minnesota

Eric Van Cutsem, MD, PhD
Professor of Medicine
Digestive Oncology
University Hospitals Leuven
Leuven, Belgium

Moderator
Samuel J Klempner, MD
Associate Professor
Massachusetts General Hospital
Harvard Medical School
Boston, Massachusetts

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Hepatobiliary Cancers (Part 3 of a 3-Part Series)

Friday, January 21, 2022 6:15 PM – 7:45 PM PT

Faculty

Ghassan Abou-Alfa, MD, MBA Richard S Finn, MD Robin K Kelley, MD

Moderator Tanios Bekaii-Saab, MD

Clinicians in the Meeting Room

Networked iPads are available for you to

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey before the meeting. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

Virtual Zoom Clinicians

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the premeeting survey before the meeting. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

 To learn more about our education programs, visit our website, www.ResearchToPractice.com

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Gastroesophageal Cancers (Part 2 of a 3-Part Series)

Thursday, January 20, 2022 6:15 PM - 7:45 PM PT

Faculty

Yelena Y Janjigian, MD Eric Van Cutsem, MD, PhD Harry H Yoon, MD

Moderator Samuel J Klempner, MD

Agenda

Module 1 – Current and Future Front-Line Management of Advanced Gastric and Gastroesophageal Junction (GEJ) Cancer — Dr Janjigian

Module 2 – Contemporary Management of HER2-Positive Advanced Gastric and GEJ Cancer — Prof Van Cutsem

Module 3 – Selection and Sequencing of Therapy for Relapsed Gastric and GEJ Cancer — Dr Klempner

Module 4 – Key Findings Informing the Treatment of Localized and Advanced Esophageal Cancer — Dr Yoon

ASCO GI 2022 Gastroesophageal Cancers Clinical Investigator Survey Respondents

Ghassan Abou-Alfa, MD, MBA

J Randolph Hecht, MD

Thomas A Abrams, MD

Andrew E Hendifar, MD

Jaffer A Ajani, MD Yelena Y Janjigian, MD

Dirk Arnold, MD, PhD Pashtoon M Kasi, MD, MS

Tanios Bekaii-Saab, MD Samuel J Klempner, MD

Joseph Chao, MD Christopher Lieu, MD

Kristen K Ciombor, MD, MSCI Jeffrey A Meyerhardt, MD, MPH

Dustin Deming, MD Stacey M Stein, MD

Peter C Enzinger, MD Eric Van Cutsem, MD, PhD

Tim Greten, MD Harry H Yoon, MD

In general, which biomarkers, if any, do you believe oncologists in community practice should evaluate in patients with newly diagnosed advanced gastric cancer? (Select all that apply)

MODULE 1: Current and Future Front-Line Management of Advanced Gastric and Gastroesophageal Junction Cancer — Dr Janjigian

Current and Future Front-Line Management of Advanced Gastric &

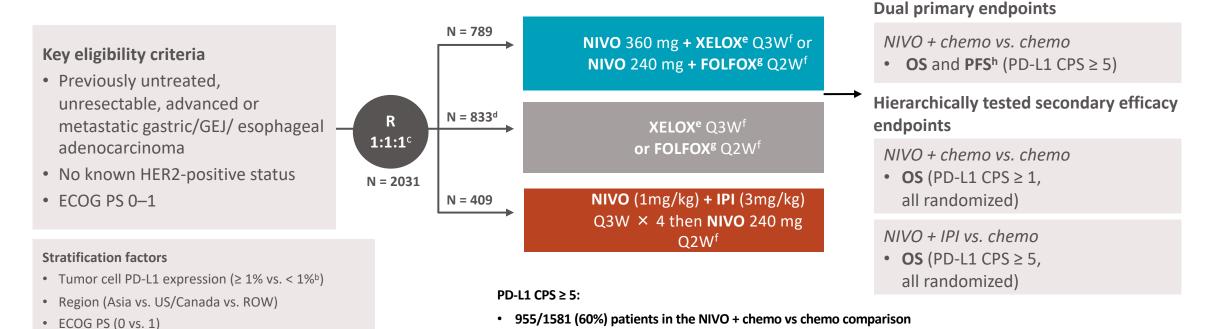
Gastroesophageal Junction (GEJ) Cancer

Yelena Y. Janjigian, MD Associate Attending Physician Associate Professor, WCMC

Chief, Gastrointestinal Oncology Service Memorial Sloan Kettering Cancer Center

Twitter: @yjanjigianMD

10 Minute Talk I 20 Slides I Thursday, January 20th I



Immunotherapy in Gastric Cancers (Adenocarcinoma)

- Nivolumab with chemotherapy approved in the United States for 1stline treament irrespective of PD-L1 status¹
- Pembrolizumab, trastuzumab, and chemotherapy approved in the United States for HER2-positive disease²
- Nivolumab approved in Asia irrespective of PD-L1 status for ≥ 3rd-line treament³
- Pembrolizumab approval for ≥ 3rd-line treatment in the United States to be withdrawn (announced in July 2021)⁴
- Pembrolizumab approved in TMB ≥ 10 mut/Mb (United States) or MSI-H tumors (United States and Japan)^{2,5}

CheckMate 649 Study Design

CheckMate 649 is a randomized, open-label, phase 3 study^a

At data cutoff (May 27, 2021), the minimum follow-upi was 24.0 months in the NIVO + chemo arm and 35.7 months in the NIVO + IPI arm

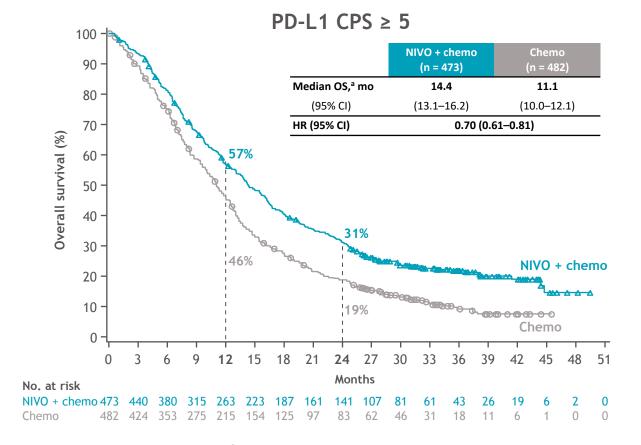
473/813 (58%) patients in the NIVO+IPI vs chemo comparison

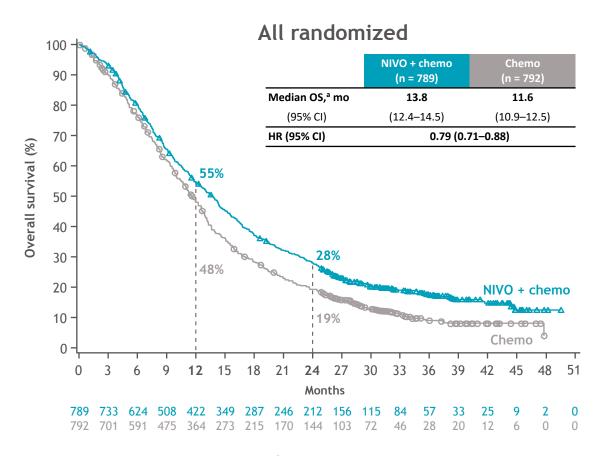
^aClinicalTrials.gov number, NCT02872116. ^b< 1% includes indeterminate tumor cell PD-L1 expression; determined by PD-L1 IHC 28-8 pharmDx assay (Dako). ^cAfter NIVO + chemo arm was added and before new patient enrollment in the NIVO + IPI arm was closed. Upon DMC recommendation (31-May-2018), enrollment to the NIVO + IPI arm was stopped early due to an observed increase in rates of early death and toxicity. Patients already in the NIVO+IPI arm were allowed to remain on study based on the DMC recommendation. ^dIncludes patients that were concurrently randomized to receive chemo versus NIVO + IPI (October 2016–June 2018) and NIVO + chemo (June 2018-Apr 2019). ^eOxaliplatin 130 mg/m² IV (day 1) and capecitabine 1000 mg/m² orally twice daily (days 1–14). ^fUntil documented disease progression (unless consented to treatment beyond progression for NIVO + chemo or NIVO + IPI), discontinuation due to toxicity, withdrawal of consent, or study end. NIVO is given for a maximum of 2 years.


^gOxaliplatin 85 mg/m², leucovorin 400 mg/m², and FU 400 mg/m² IV (day 1) and FU 1200 mg/m² IV daily (days 1–2). ^hBICR assessed. ⁱTime from concurrent randomization of the last patient to data cutoff

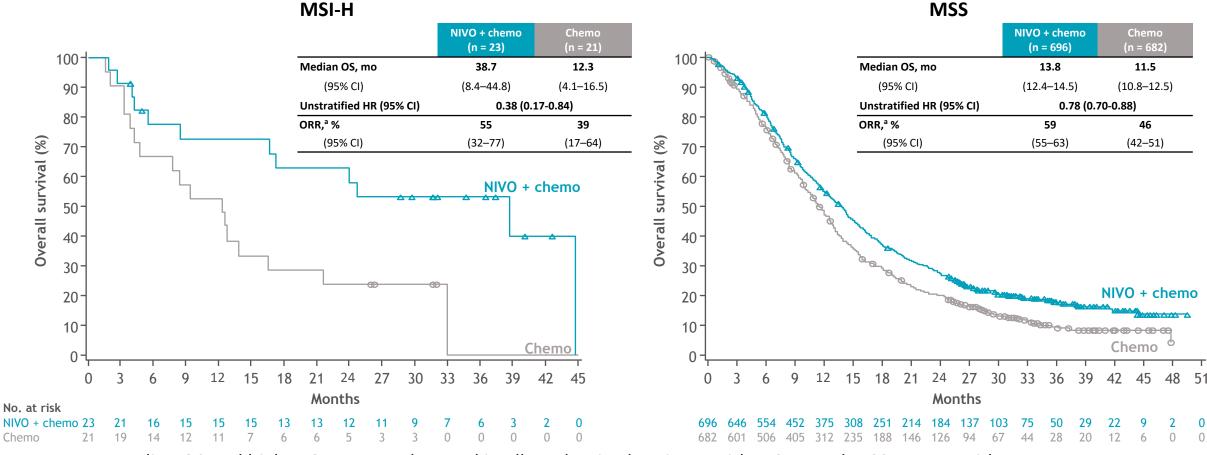
1. Janjigian YY et al. Lancet. 2021;398:27-40. 2. Janjigian YY et al. Presented at ESMO 2021.

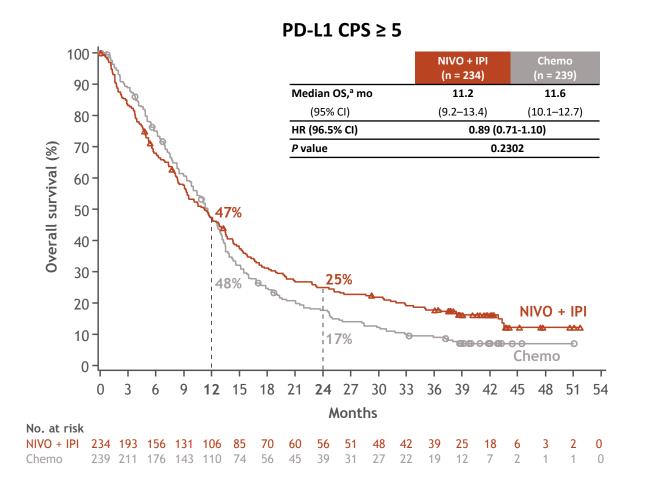
Chemo (XELOX vs. FOLFOX)

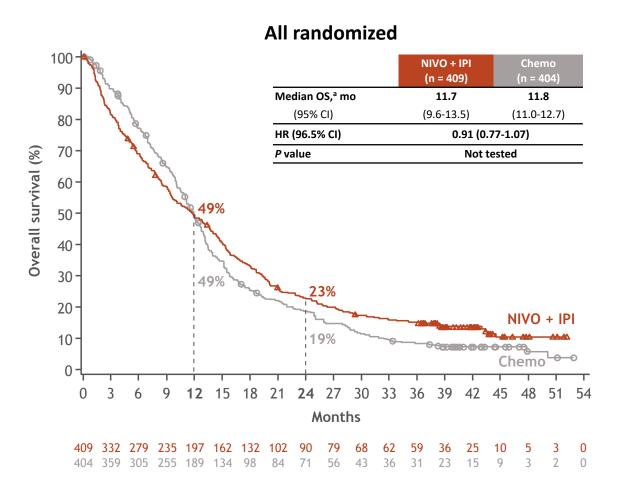

CheckMate 649: Global Phase 3 Registration Trial NIVO + Chemo Improved Survival


FDA approved April 2021¹

- Grade 3-4 TRAEs were reported in 59% of patients in the NIVO + chemo arm and 44% of patients in the chemo arm¹
- Treatment-related deaths occurred in 16 (2%) and 4 (1%) of patients in the NIVO + chemo and chemo arms, respectively¹

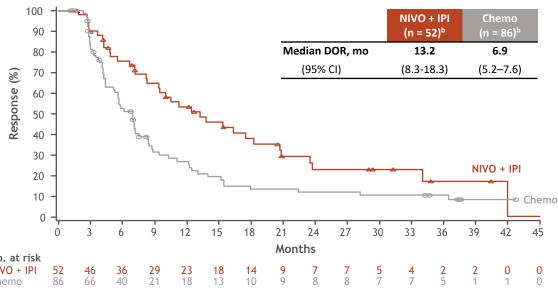

Overall survival: NIVO + chemo vs chemo


- Clinically meaningful improvement in OS with NIVO + chemo vs chemo was maintained with longer follow-up
 - PD-L1 CPS ≥ 5: 30% reduction in the risk of death and 12% improvement in 24-month OS rate
 - All randomized: 21% reduction in the risk of death and 9% improvement in 24-month OS rate
 - Directionally improved HRs relative to the 12-month follow-up (PD-L1 CPS ≥ 5, 0.71 [98.4% CI, 0.59-0.86]; all randomized, 0.80 [99.3% CI, 0.68-0.94])¹


Efficacy by MSI status: NIVO + chemo vs chemo

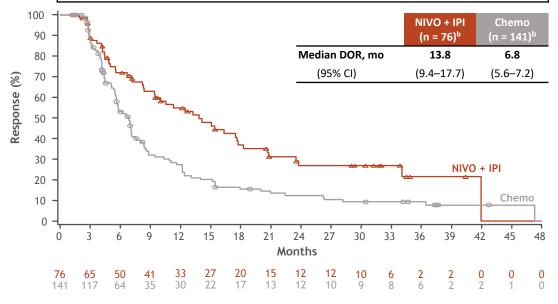
- Longer median OS and higher ORR were observed in all randomized patients with MSI-H and MSS tumors with NIVO + chemo vs chemo
 - The magnitude of benefit was greater in patients with MSI-H tumors, and patients with MSS tumors had results similar to the all randomized population
- aRandomized patients who had target lesion measurements at baseline per BICR assessment. MSI-H: NIVO + chemo, n = 20; chemo, n = 18, patients with MSS: NIVO + chemo, n = 535; chemo, n = 535.

Overall survival: NIVO + IPI vs chemo

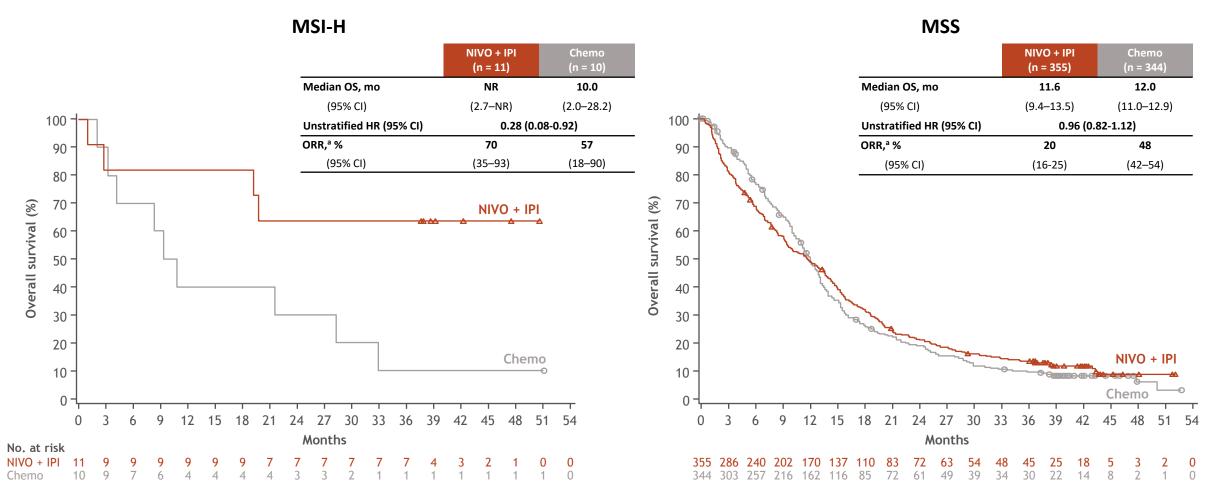


- The hierarchically tested secondary endpoint of OS with NIVO + IPI vs chemo in patients with PD-L1 CPS ≥ 5 was not met; OS in all
 randomized patients was not statistically tested
- aMinimum follow-up, 35.7 months.

Response and duration of response: NIVO + IPI vs chemo



Response per BICR	NIVO + IPI (n = 196) ^a	Chemo (n = 183) ^a
ORR, % (95% CI)	27 (20–33)	47 (40–54)
CR	5	8
PR	21	39
SD	27	35
PD	32	10


All randomized

Response per BICR	NIVO + IPI (n = 333) ^a	Chemo (n = 299) ^a
ORR, % (95% CI)	23 (18-28)	47 (41–53)
CR	6	8
PR	17	39
SD	27	34
PD	34	9

- Although response rates were lower with NIVO + IPI vs chemo, duration of response was longer in both PD-L1 CPS ≥ 5 and all randomized populations
- aRandomized patients who had target lesion measurements at baseline per BICR assessment; bNumber of responders.

Efficacy by MSI status: NIVO + IPI vs chemo

- Longer median OS and higher ORR observed in all randomized patients with MSI-H tumors with NIVO + IPI vs chemo, although sample size was small
- aRandomized patients who had target lesion measurements at baseline per BICR assessment. Patients with MSI-H: NIVO + IPI, n = 10; chemo, n = 7, patients with MSS: NIVO + IPI, n = 292; chemo, n = 257.

PD-L1 Testing

		Anti-PD-1 drug and PD-L1 assessment	
mAb	Drug	Cancer type	Scoring assessment
22C3 pharmDx Pembrolizumab	NSCLC	 TPS < 1%: No PD-L1 expression TPS = 1~49%: PD-L1 expression TPS ≥ 50%: High PD-L1 expression 	
		Gastric or GEJ adenocarcinoma	 CPS < 1: No PD-L1 expression CPS ≥ 1: PD-L1 expression
28-8 pharmDx	Nivolumab	Melanoma	 TC < 1%: No PD-L1 expression TC ≥ 1%: PD-L1 expression
		Non-squamous NSCLC	 TC < 1%: No PD-L1 expression TC ≥ 1%: PD-L1 expression
SP142 assay	Atezolizumab	NSCLC	 TC ≥ 50%: PD-L1 expression IC ≥ 10% PD-L1 expression TC < 50% and IC < 10%: No PD-L1 expression
SP263 assay	Durvalumab	UC	 TC ≥ 25%: High PD-L1 expression ICP > 1% and IC+ ≥ 25%: High PD-L1 expression ICP = 1% and IC+ = 100%: High PD-L1 expression None of the criteria for PD-L1 High Status are met: Low/negative PD-L1 expression

Adapted from Ma 2018.¹

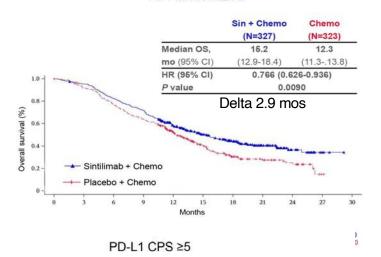
• A recent study of 55 patients with gastric cancer showed that PD-L1 22C3 and 28-8 pharmDx assays was found to be comparable at CPS cutoffs of 1, 10, and 50²

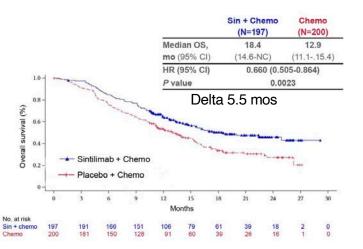
Sintilimab plus chemotherapy (chemo) versus chemo as the first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16)

Jianming Xu*, Haiping Jiang, Yueyin Pan, Kangsheng Gu, Sundong Cang, Lei Han, Yongqian Shu, Jiayi Li, Junhui Zhao, Hongming Pan, Suxia Luo, Yanru Qin, Qunyi Guo, Yuxian Bai, Yang Ling, Yingmei Guo, Ziran Li, Ying Liu, Yan Wang, Hui Zhou

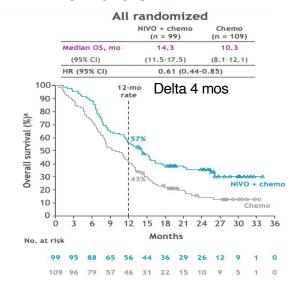
*, presenting author, MD, The Fifth Medical Center, Chinese PLA General Hospital

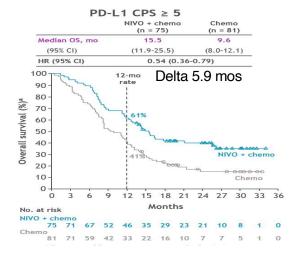
ORIENT-16 notable facts

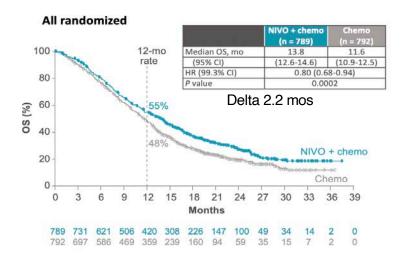

- Gastric/GEJ, no esophagus adeno (Gastric do better than GEJ/esophagus)
- XELOX/Sinti ITT mOS 15.2 mos HR .76; mPFS 7.1 HR .63; ORR 58%
- No new safety signals 59% Grade 3-4 AEs w/ XELOX/Sinti

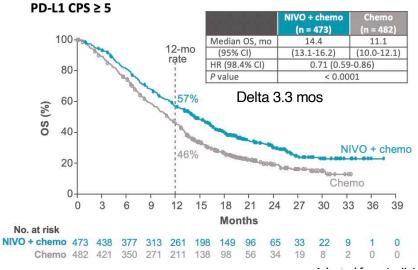

Category	Subgroup	Sin + Chemo (N)	Chemo (N)	HR (95% CI)	HR (95% CI)
PD-L1	CPS ≥10	146	142	0.56 (0.41-0.77)	
expression	CPS ≥5	197	200	0.64 (0.49-0.84)	
	CPS ≥1	275	271	0.73 (0.58-0.90)	-

Overall Survival ORIENT-16 and CM 649


ORIENT-16 ITT


All Randomized




CM 649 CHINA

CM 649 ITT

Immunotherapy in EG adenocarcinoma

	Keynote 62	Checkmate 649	Orient 16
Design	Chemo/PD-1 vs chemo PD-1 vs chemo	Chemo/PD-1 vs chemo	Chemo/PD-1 vs chemo
Major enrollment	US/ Europe/ Australia 58%	US 17%, Asia 23%, rest 60%	China
CPS≥5	NA (37% CPS ≥ 10)	60%	62%
OS HR ITT; CPS \geq 5; CPS ,<5	NA; CPS ≥1 0.85*; NA; NA and 0.91; NA;NA	0.80; 0.71; 0.94	0.76; 0.66; NA
ITT PFS	0.84* and 1.66*	0.77	0.63
ITT ORR	49% vs 37% and 15% vs 37%	58% vs 46%	58%/vs 48%
Grade 3-5 AEs	73% vs 69% and 17% vs 69%	60% vs 44%	60% vs 52%

KEYNOTE-811 —HER2 Positive Gastric Cancer

Key eligibility criteria

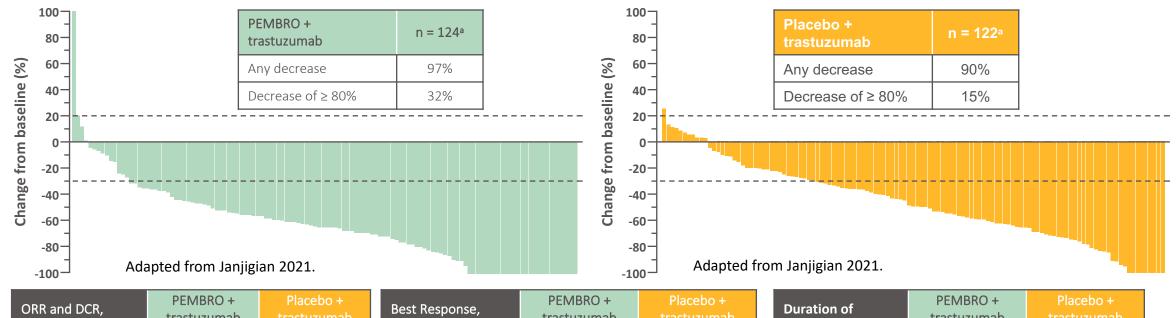
- Unresectable or metastatic gastric or GEJ adenocarcinoma
- No prior systemic therapy in advanced setting
- HER2-positive tumor by central review (IHC 3+ or IHC 2+ in combination with ISH+ (or FISH+)
- ECOG PS 0-1

PEMBRO 200 mg IV Q3W + Trastuzumab + FP or CAPOX^b × ≤ 35 R 1:1 Placebo IV Q3W + Trastuzumab

+ FP or CAPOX^b $\times \le 35$

Dual primary endpoints:

- OS and PFS^c
- Key secondary endpoints:
- ORR and DOR°
- Safety


Stratification factors

- Geographic region (Australia/Europe/ Israel/North America vs. Asia vs. ROW)
- PD-L1 CPS (≥ 1 vs. < 1)
- Chemotherapy choice (FP vs. CAPOX)

^aClinicalTrials.gov number, NCT03615326. ^bTrastuzumab: 6 mg/kg IV Q3W following an 8 mg/kg loading dose. FP: 5-fluorouracil 800 mg/m² IV on D1-5 Q3W + cisplatin 80 mg/m² IV Q3W. CAPOX: capecitabine 1000 mg/m² BID on D1-14 Q3W + oxaliplatin 130 mg/m² IV Q3W. ^cPer RECIST v1.1 by BICR.

1. ClinicalTrials.gov. NCT03615326. Accessed July 2021. 2. Janjigian YY et al. Presentated at ASCO, 2021. Abstract 4013. 3. Chung HC et al. Future Oncol. 2021;17:491-501.

Pembrolizumab/Trastuzumab/Chemotherapy FDA approved May 2021

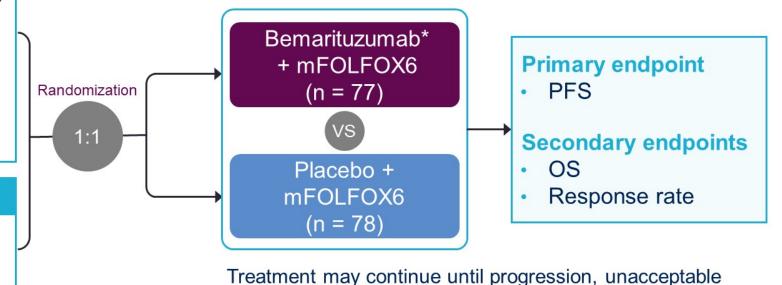
ORR and DCR, % (95% CI)	PEMBRO + trastuzumab (n = 133)	Placebo + trastuzumab (n = 131)
ORR	74.4% (66.2-81.6)	51.9% (43.0-60.7)
ORR Difference ^b	22.7% (11.2-33.7) P = 0.00006	
DCR	96.2% (91.4-98.8)	89.3% (82.7-94.0)

Best Response, n (%)	PEMBRO + trastuzumab (n = 133)	Placebo + trastuzumab (n = 131)
CR	15 (11%)	4 (3%)
PR	84 (63%)	64 (49%)
SD	29 (22%)	49 (37%)
PD	5 (4%)	7 (5%)
Not evaluable	0	2 (2%)
Not assessed	0	5 (4%)

Duration of Response	PEMBRO + trastuzumab (n = 133)	Placebo + trastuzumab (n = 131)
Median ^c	10.6 mo	9.5 mo
Range	1.1+ to 16.5+	1.4+ to 15.4+
≥ 6-mo duration ^c	70.3%	61.4%
≥ 9-mo duration ^c	58.4%	51.1%

Grade 3-5 AE rates did not differ between treatment arms (57%)

^aParticipants with RECIST-measurable disease at baseline and ≥1 evaluable post-baseline measurement. ^bCalculated using the Miettinen and Nurminen method stratified by the randomization stratification factors. ^cKaplan-Meier estimation. The treatment regimen in both arms included trastuzumab and chemotherapy. Data cutoff date: June 17, 2020.

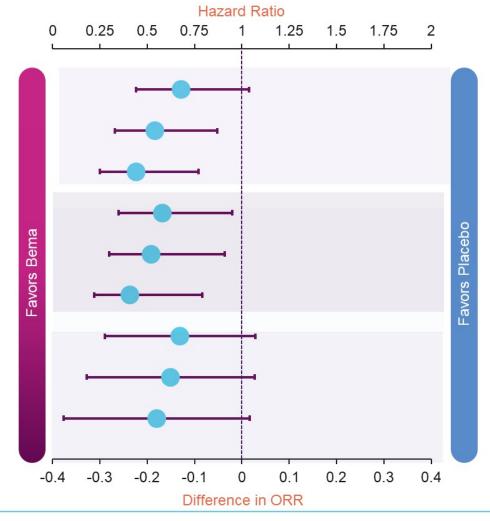

FIGHT Phase 2 Study Design

Key Eligibility Criteria

- No prior therapy for unresectable, locally advanced or metastatic gastric/GEJ adenocarcinoma
- RECIST v1.1 evaluable disease
- FGFR2b overexpression and/or FGFR2 gene amplification
- Not HER2-positive

Stratification Factors

- Geographic region
- · Single dose of FOLFOX while screening
- · Prior perioperative chemotherapy


toxicity, or the patient meets other withdrawal criteria

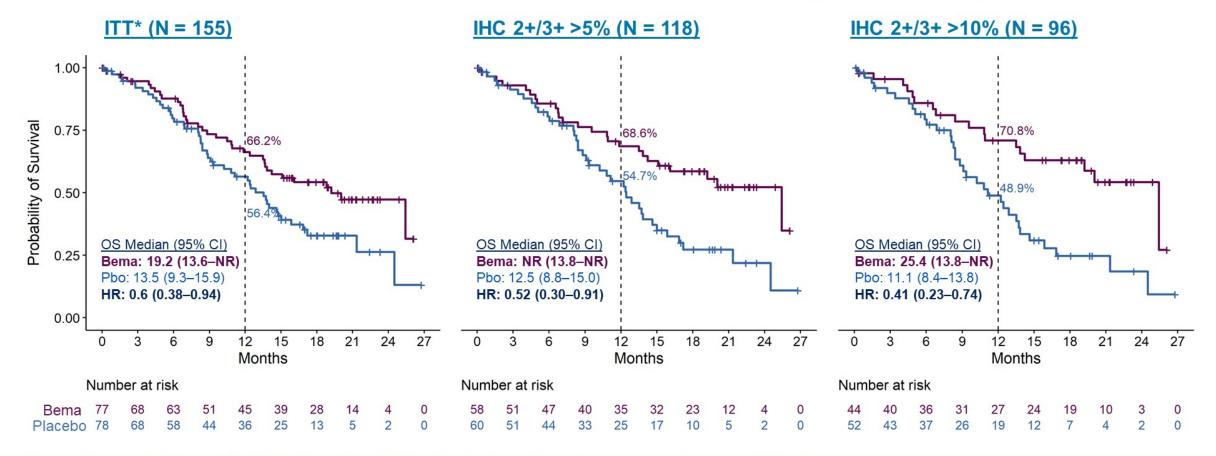
*Bemarituzumab dosing: 15 mg/kg Q2W beginning cycle 1 day 1 (plus 1 dose of 7.5 mg/kg on day 8 of cycle 1 only). FOLFOX6 dosing: standard fixed doses Q2W. FGFR2b, fibroblast growth factor receptor 2b.

2021 ASCO

Higher Bemarituzumab Efficacy With Higher % FGFR2b+

Endpoint	Subgroup	Median PFS/OS (months) Response rate	HR (95% CI) Difference in ORR (95% CI)
	Overall*	Bema: 9.5 Placebo: 7.4	0.68 (0.44, 1.04)
PFS	IHC 2+ or 3+ ≥5% [†]	Bema: 10.2 Placebo: 7.3	0.54 (0.33, 0.87)
	IHC 2+ or 3+ ≥10% [‡]	Bema: 14.1 Placebo: 7.3	0.44 (0.25, 0.77)
	Overall	Bema: NR Placebo: 12.9	0.58 (0.35, 0.95)
OS	IHC 2+ or 3+ ≥5%	Bema: NR Placebo: 12.5	0.52 (0.30, 0.91)
	IHC 2+ or 3+ ≥10%	Bema: NR Placebo: 11.1	0.41 (0.22, 0.79)
	Overall	Bema: 36 (46.8%) Placebo: 26 (33.3%)	-13.1%§ (-29.0%, 2.8%)
ORR	IHC 2+ or 3+ ≥5%	Bema: 30 (51.7%) Placebo: 22 (36.7%)	-15.1%§ (-32.8%, 2.7%)
	IHC 2+ or 3+ ≥10%	Bema: 24 (54.5%) Placebo: 19 (36.5%)	-18.0%§ (-37.7%, 1.7%)

*N = 155; † N = 118; ‡ N = 96; § difference in ORR is calculated by (placebo ORR – Bema ORR). NR, not reached.


Presented By: Daniel Catenacci, MD

ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Median OS Reached With Longer Follow-up

Addition of Bemarituzumab Showed a +5.7 Month Improvement in Median OS

*ITT = includes 149 patients with IHC 2+/3+ and 6 with IHC <2+ or not available who were enrolled based on ctDNA alone. NR, not reached.

Median Follow-up 12.5 months

*Based on February, 28th 2021 data cut

Selected Treatment-Emergent Adverse Events Summary

Selected AE	Any	Grade	Gra	de ≥3
(Preferred term)	Bema (N = 76)	Placebo (N = 77)	Bema (N = 76)	Placebo (N = 77)
Total Events	76 (100.0%)	76 (98.7%)	63 (82.9%)	57 (74.0%)
Nausea	36 (47.4%)	41 (53.2%)	0	3 (3.9%)
Vomiting	22 (28.9%)	24 (31.2%)	2 (2.6%)	2 (2.6%)
Diarrhea	31 (40.8%)	24 (31.2%)	2 (2.6%)	1 (1.3%)
Stomatitis	24 (31.6%)	10 (13.0%)	7 (9.2%)	1 (1.3%)
Peripheral sensory neuropathy	15 (19.7%)	15 (19.5%)	4 (5.3%)	3 (3.9%)
Neutrophil count decreased	31 (40.8%)	33 (42.9%)	23 (30.3%)	27 (35.1%)
Platelet count decreased	14 (18.4%)	21 (27.3%)	1 (1.3%)	0
Aspartate aminotransferase increased	23 (30.3%)	15 (19.5%)	4 (5.3%)	2 (2.6%)
Alanine aminotransferase increased	22 (28.9%)	11 (14.3%)	2 (2.6%)	1 (1.3%)
Dry eye	20 (26.3%)	5 (6.5%)	2 (2.6%)	0

AE, adverse event.

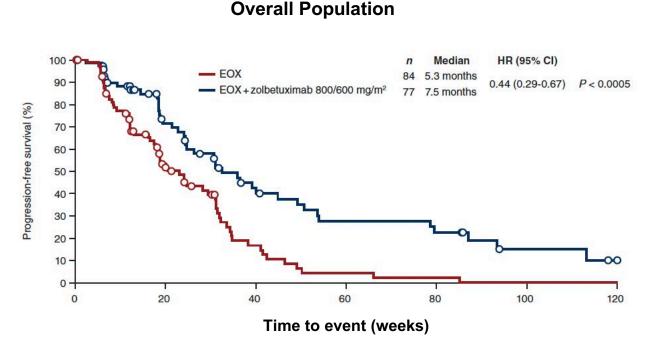
Presented By: Daniel Catenacci, MD

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

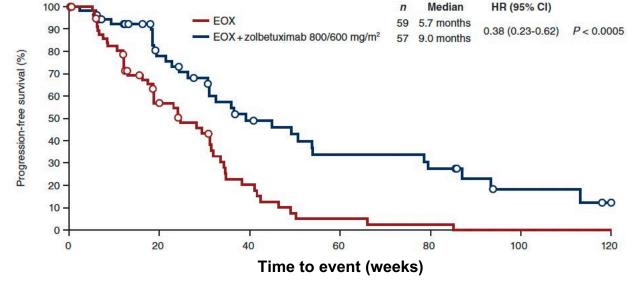
Summary of Corneal Adverse Events

Patients with corneal AEs*	Bema (N = 76)	Placebo (N = 77)
Any corneal AE	51 (67.1%)	8 (10.4%)
Grade 1 corneal AE	16 (21.1%)	6 (7.8%)
Grade 2 corneal AE	17 (22.4%)	2 (2.6%)
Grade 3 corneal AE	18 (23.7%)	0
Grade 4 corneal AE	0	0
SAE	0	0
Time to onset (grades 2 and 3) (weeks)		
N	35	2
Median	23.7	12.8
Q1, Q3	15.9, 33.1	9.0, 16.6
Time to resolution or downgraded to grade 1 (grades 2 and 3) (weeks)		
N	21†	1
Median	19.1	2.0
Q1, Q3	9.1, 25.1	2.0, 2.0

Presented By: Daniel Catenacci, MD

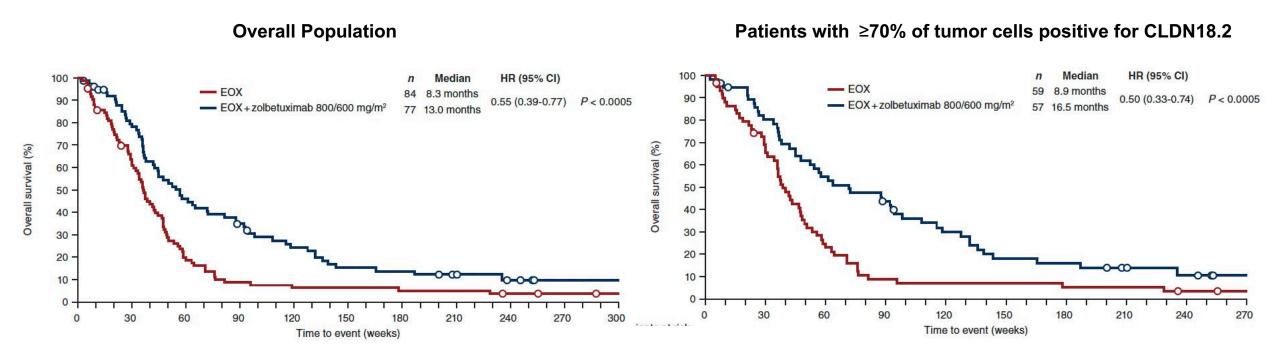

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

2021 ASCO° ANNUAL MEETING


No association with frequency or severity of corneal AE and tumor FGFR2b positivity. Corneal AEs are defined by Standardised MedDRA Queries (SMQ) of corneal disorders.

Randomized Phase II FAST Study of Zolbetuximab (IMAB362) plus EOX versus EOX Alone as First-Line Therapy for Advanced VLDN18.2-Positive Gastric and Gastroesophageal Adenocarcinoma

Progression-Free Survival

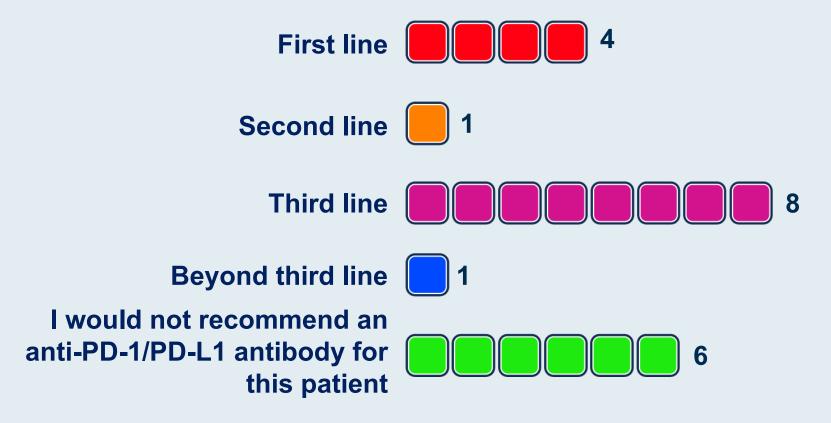

Patients with ≥70% of tumor cells positive for CLDN18.2

Sahin U et al. Ann Oncol 2021;32(5):609-19

Randomized Phase II FAST Study of First-Line Zolbetuximab (IMAB362) plus EOX versus EOX Alone

Overall Survival

FAST: Summary of Adverse Events


	EOX (N = 84)		Zolbetuximab + EO)	Zolbetuximab + $EOX (N = 77)$	
	Any grade	Grade ≥3	Any grade	Grade ≥	
reatment-emergent adverse events, n	(%)				
Any adverse event	84 (100)	54 (64.3)	74 (96.1)	54 (70.1)	
Nausea	64 (76.2)	4 (4.8)	63 (81.8)	5 (6.5)	
Vomiting	46 (54.8)	3 (3.6)	52 (67.5)	8 (10.4)	
Anaemia	30 (35.7)	6 (7.1)	35 (45.5)	9 (11.7)	
Neutropenia	29 (34.5)	18 (21.4)	34 (44.2)	25 (32.5)	
Weight loss	26 (31.0)	3 (3.6)	25 (32.5)	9 (11.7)	
Fatigue	17 (20.2)	3 (3.6)	24 (31.2)	5 (6.5)	
Alopecia	17 (20.2)	1 (1.2)	22 (28.6)	0	
Asthenia	19 (22.6)	2 (2.4)	19 (24.7)	2 (2.6)	
Decreased appetite	19 (22.6)	2 (2.4)	15 (19.5)	0	
Abdominal pain	10 (11.9)	2 (2.4)	14 (18.2)	1 (1.3)	
Diarrhoea	31 (36.9)	3 (3.6)	14 (18.2)	3 (3.9)	
Headache	18 (21.4)	2 (2.4)	12 (15.6)	0	
Leucopoenia	14 (16.7)	5 (6.0)	12 (15.6)	6 (7.8)	
Thrombocytopaenia	9 (10.7)	3 (3.6)	12 (15.6)	0	
Palmar-plantar syndrome	6 (7.1)	0	10 (13.0)	0	
Paraesthesia	9 (10.7)	0	10 (13.0)	0	
Peripheral oedema	6 (7.1)	0	10 (13.0)	0	
Increased GGT	6 (7.1)	3 (3.6)	9 (11.7)	5 (6.5)	
Pyrexia	17 (20.2)	0	9 (11.7)	0	
Increased AST	11 (13.1)	1 (1.2)	7 (9.1)	2 (2.6)	
Upper abdominal pain	18 (21.4)	1 (1.2)	7 (9.1)	0	
Increased ALT	9 (10.7)	1 (1.2)	6 (7.8)	2 (2.6)	

Median duration of exposure was 3.6 months (range, 0.03-6.0) in the EOX arm and 4.4 months (range, 0.03-58.7) in the zolbetuximab + EOX arm. Although no patient in arm 1 or arm 2 had a fatal sepsis adverse event, one patient in arm 3 died from a non-treatment-related sepsis event. ALT, alanine aminotransferase; AST, aspartate aminotransferase; EOX, epirubicin, oxaliplatin, and capecitabine; GGT, gamma-glutamyl transferase.

Firs-line therapy for GEJ and Gastric Adenocarcinoma)

- Nivolumab with chemotherapy approved in the United States for 1st-line treament irrespective of PD-L1 status
- Pembrolizumab, trastuzumab, and chemotherapy approved in the United States for HER2-positive disease
- Biomarker selection for future strategies
- Berituzumab/FOLFOX for FGFR2+
- Zolbetuximab/FOLFOX for Claudin 18.2+

Regulatory and reimbursement issues aside, in which line of therapy would you generally recommend an anti-PD-1/PD-L1 antibody (with or without chemotherapy) for a 65-year-old patient with metastatic HER2-negative, MSS adenocarcinoma of the GEJ with a PD-L1 CPS of 1?

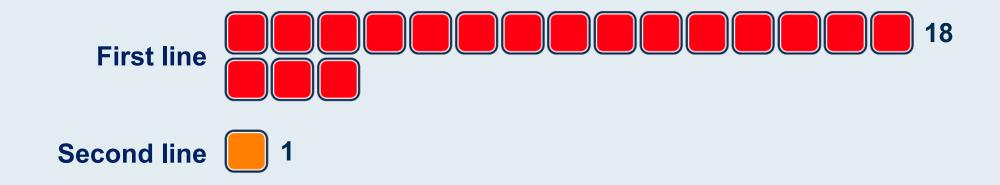
Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient with metastatic HER2-negative, microsatellite-stable (MSS) gastric adenocarcinoma with a PD-L1 combined positive score (CPS) of 1?

Capecitabine/oxaliplatin or capecitabine/cisplatin

Pembrolizumab + chemotherapy

Nivolumab + chemotherapy

Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient with metastatic HER2-negative, MSS gastric adenocarcinoma with a PD-L1 CPS of 5?


Nivolumab + chemotherapy

Pembrolizumab + chemotherapy

Regulatory and reimbursement issues aside, in which line of therapy would you generally recommend an anti-PD-1/PD-L1 antibody (with or without chemotherapy) for a 65-year-old patient with metastatic HER2-negative, MSS adenocarcinoma of the GEJ with a PD-L1 CPS of 10?

Regulatory and reimbursement issues aside, in which line of therapy would you generally recommend an anti-PD-1/PD-L1 antibody (with or without chemotherapy) for a 65-year-old patient with metastatic HER2-negative, MSI-high adenocarcinoma of the GEJ?

MODULE 2: Contemporary Management of HER2-Positive Advanced Gastric and GEJ Cancer — Prof Van Cutsem

Recent Advances in the Management of HER2-Positive Advanced Gastric Cancer

Prof Eric Van Cutsem, MD, PhD
Digestive Oncology
Leuven, Belgium

Eric.VanCutsem@uzleuven.be

HER2 targeted therapy and testing in first line treatment of gastric cancer

TOGA study: chemo ± trastuzumab

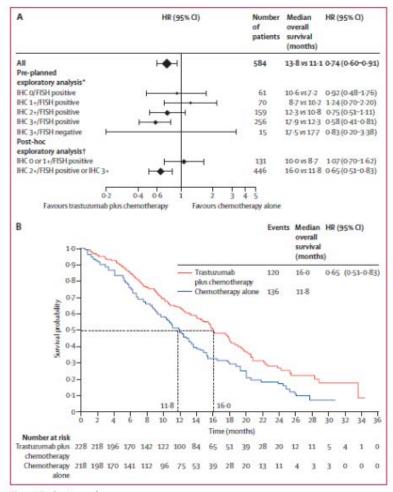


Figure 4: Exploratory analyses

HR=hazard ratio. (A) Pre-planned exploratory and post-hoc exploratory analyses of patients stratified by human epidermal growth factor receptor 2 (HER2) status. *n=561: patients with no immunohistochemistry (IHC) data (n=7) or IHC 3+ turnours with no fluorescence in-situ hybridisation (FISH) data (n=16) were excluded from this analysis. *fn=577: patients with no IHC data (n=7) were excluded from this analysis. (B) Overall survival according to the post-hoc exploratory analysis (FISH and IHC) in patients with IHC 2+ and FISH-positive turnours or IHC 3+ turnours.

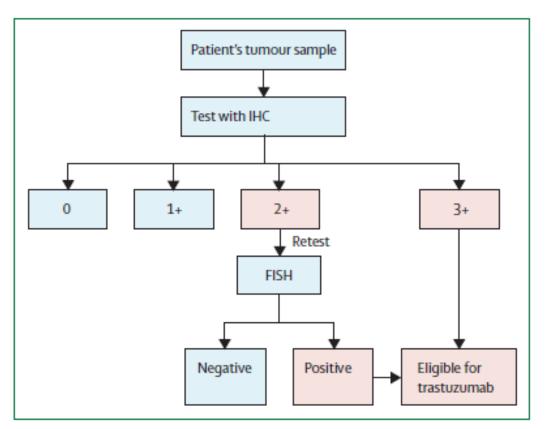
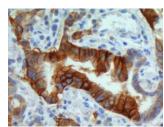
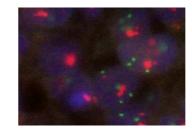




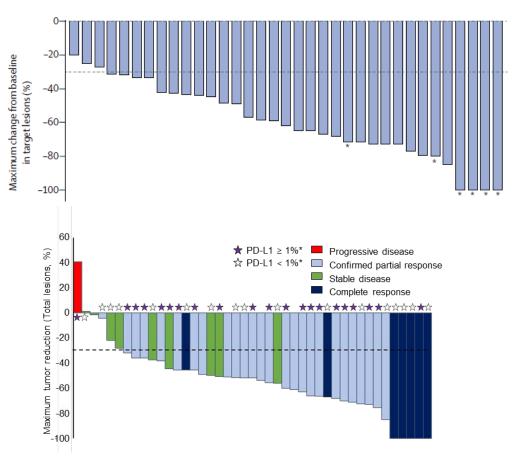
Figure 2: Testing algorithm for HER2 status in gastric and gastrooesophageal-junction adenocarcinomas

IHC-immunohistochemistry. FISH-fluorescence in-situ hybridisation.

IHC 3+

FISH +

Available Phase II Clinical Data in HER2 + Gastric/GEJ Adenocarcinoma



Phase 2 data suggest antitumor activity and manageable safety for adding pembrolizumab

(anti–PD-1) to trastuzumab and chemotherapy

✓ MSKCC study (N = 37)¹: 91% ORR, 100% DCR, 70% 6-mo PFS, 80% 12-mo OS

✓ PANTHERA (N = 43)²: 77% ORR, 98% DCR, 77% 6-mo PFS, 77% 12-mo OS

Pembrolizumab Plus Trastuzumab and Chemotherapy for HER2+ Metastatic Gastric or Gastroesophageal Junction Cancer: Initial Findings of the Global Phase 3 KEYNOTE-811 Study

Yelena Y. Janjigian,¹ Akihito Kawazoe,² Patricio Yañez,³ Suxia Luo,⁴ Sara Lonardi,⁵ Oleksii Kolesnik,⁶ Olga Barajas,⁷ Yuxian Bai,⁸ Lin Shen,⁹ Yong Tang,¹⁰ Lucjan S. Wyrwicz,¹¹ Kohei Shitara,² Shukui Qin,¹² Eric Van Cutsem,¹³ Josep Tabernero,¹⁴ Lie Li,¹⁵ Chie-Schin Shih,¹⁵ Pooja Bhagia,¹⁵ Hyun Cheol Chung,¹⁶ on behalf of the KEYNOTE-811 Investigators

¹Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²National Cancer Center Hospital East, Kashiwa, Japan; ³Universidad de La Frontera, James Lind Cancer Research Center, Temuco, Chile; ⁴Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China; ⁵Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy; ⁶Medical Center "Oncolife", Zaporizhzhia, Ukraine; ¬Arturo López Pérez Foundation, Santiago, Chile; ⁶Harbin Medical University Cancer Hospital, Harbin, China; ⁶Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China; ¹¹Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China; ¹¹Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; ¹²Cancer Center of People's Liberation Army, Nanjing, China; ¹³University Hospitals Gasthuisberg and KU Leuven, Leuven, Belgium; ¹⁴Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain; ¹⁵Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁶Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea

KEYNOTE-811 Global Cohort: Randomized, Double-Blind, Phase 3 Study

Key Eligibility Criteria

- Unresectable or metastatic gastric or GEJ adenocarcinoma
- No prior systemic therapy in advanced setting
- HER2-positive tumor by central review (IHC 3+ or IHC 2+ ISH+)
- ECOG PS 0 or 1

Trastuzumab and FP or CAPOX^a

for up to 35 cycles

Pembrolizumab 200 mg IV Q3W

Placebo IV Q3W

Trastuzumab and FP or CAPOX^a for up to 35 cycles

Stratification Factors

- Geographic region (Australia/Europe/ Israel/North America vs Asia vs ROW)
- PD-L1 CPS (≥1 vs <1)
- Chemotherapy choice (FP vs CAPOX)

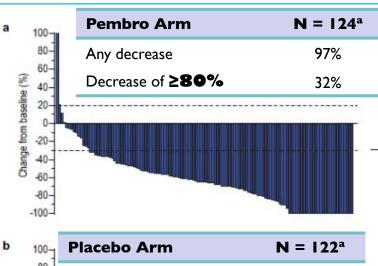
End Points

R 1:1

N ≈ 692

- Dual primary: OS and PFS per RECIST v1.1 by BICR
- Key secondary: ORR and DOR per RECIST v1.1 by BICR and safety

^aTrastuzumab: 6 mg/kg IV Q3W following an 8 mg/kg loading dose. FP: 5-fluorouracil 800 mg/m² IV on D1-5 Q3W + cisplatin 80 mg/m² IV Q3W. CAPOX: capecitabine 1000 mg/m² BID on D1-14 Q3W + oxaliplatin 130 mg/m² IV Q3W.


BICR, blinded independent central review; CPS, combined positive score (number of PD-L1–staining cells [tumor cells, lymphocytes, macrophages] divided by the total number of viable tumor cells, multiplied by 100). KEYNOTE-811 ClinicalTrials.gov identifier, NCT03615326.

ESMO GI/WCIGC Ann Onc 2021,LBA4

KEYNOTE-811 Global Cohort: Phase 3 Study in HER2 pos. Gastric Adenocarcinoma

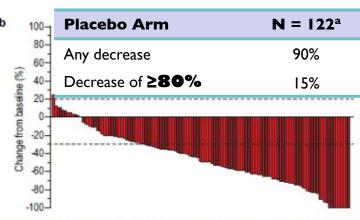
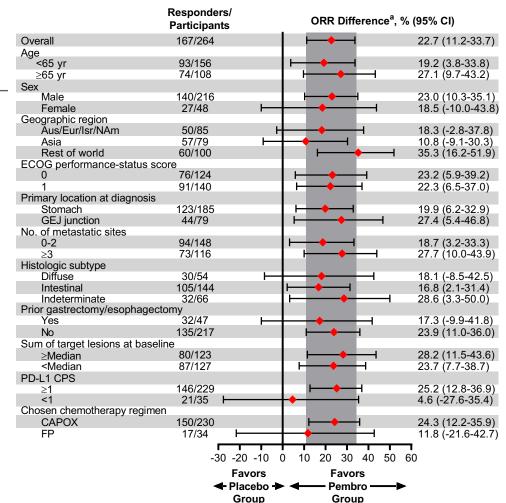
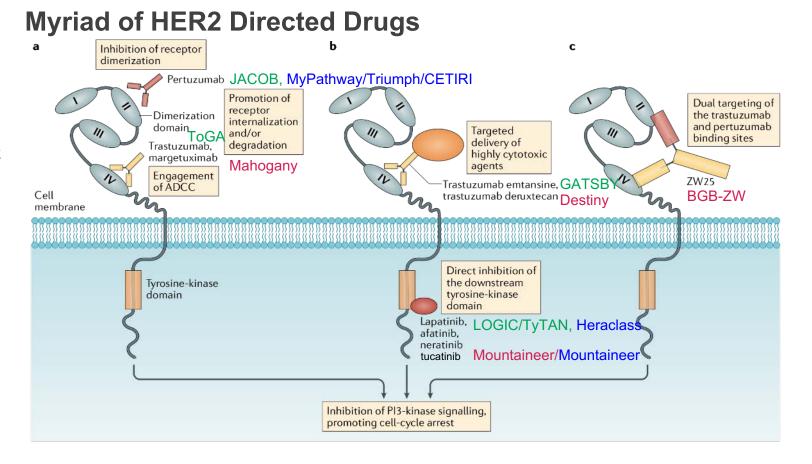



Fig. 1 | Best percentage change from baseline in the size of target lesions among participants in the efficacy population. a, Pembrolizumab group. b, Placebo group. Only those participants in the efficacy population who had RECIST-measurable disease at baseline and at least one evaluable post-baseline measurement are evaluable for change from baseline (n = 124 in the pembrolizumab group, n = 122 in the placebo group). The treatment regimen included trastuzumab and chemotherapy in both groups. Increases from baseline greater than 100% were truncated at 100%.

Table 1 | Summary of confirmed objective response in the efficacy population

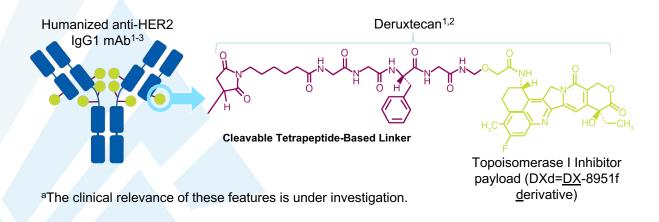
Variable	Pembrolizumab group (n = 133)	Placebo group (n = 131)		
Objective response (% (95% confidence interval))*	74.4 (66.2-81.6)	51.9 (43.0-60.7)		
Disease control (% (95% confidence interval)) ^b	96.2 (91.4–98.8)	89.3 (82.7-94.0)		
Best overall response (number (%))				
Complete response	15 (11.3)	4 (3.1)		
Partial response	84 (63.2)	64 (48.9)		
Stable disease	29 (21.8)	49 (37.4)		
Progressive disease	5 (3.8)	7 (5.3)		
Not evaluable ^c	0 (0.0)	2 (1.5)		
Not assessed [□]	0 (0.0)	5 (3.8)		



LEUVEN Armamentarium Against Resistance

- Trastuzumab beyond PD
- Chemotherapy backbone change
- High-dose trastuzumab
- Other HER2 directed treatment: ADC
- Heterodimerization with HER3
- HER2-HER3 pathways
- Combination with Antiangiogenesis
- Combination with IO
- New agents

Trastuzumab-deruxtecan (T-DXd), a novel a ADC (Antibody-Drug-Conjugate)



An ADC composed of 3 components^{1,2}:

A humanized anti-HER2 IgG1 mAb with the same amino acid sequence as trastuzumab, covalently linked to:

A topoisomerase I inhibitor payload, an exatecan derivative, via

A tetrapeptide-based cleavable linker

Characteristics

Payload MOA: topoisomerase I **inhibitor**^{1,2,a}

High potency of payload^{1,2,a}

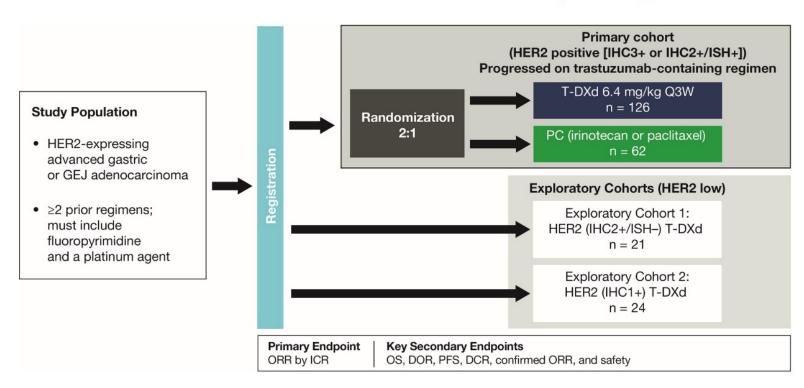
High DAR ≈81,2,a

Payload with short systemic half-life^{1,2,a}

Stable linker-payload^{1,2,a}

Tumor-selective cleavable linker^{1,2,a}

Membrane permeable payload^{1,4,a}

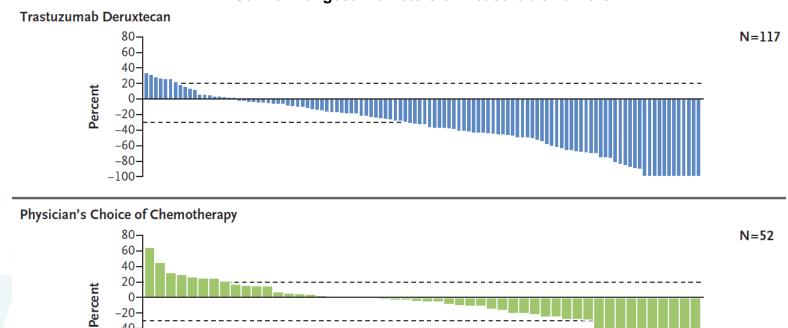

DESTINY-Gastric01

An open-label, multicenter, randomized, phase 2 study

DESTINY-Gastric01 Study Design

- ✓ Patients had a median of 2 prior lines of therapy (range, 2-9); 44.4% of patients had ≥3 previous lines
- As of June 3, 2020, 10 patients (8%) receiving T-DXd and no patients receiving PC remained on treatment

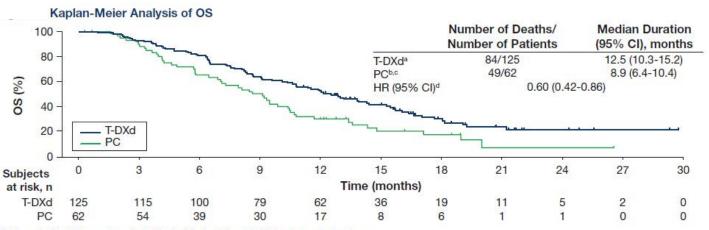
Key secondary endpoint of OS was to be statistically evaluated hierarchically if the primary endpoint was statistically significant



-100-

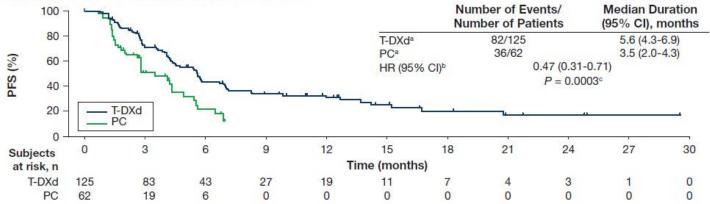
DESTINY-Gastric01: Response Rate IHC3+ or IHC2+/ISH+

Best Percent Change from Baseline in the Sum of Longest Diameters of Measurable Tumors


	T-DXd (n=119)	PC (n=56)
ORR ^a	51.3%	14.3%
CR	9.2%	0
PR	42.0%	14.3%
SD	35.3%	48.2%
PD	11.8%	30.4%
NE	1.7%	7.1%
Confirmed ORR ^a	42.0%	12.5%

Data cutoff: June 3, 2020. The line at 20% indicates progressive disease, and the line at −30% indicates a partial response. The analyses included patients who had both baseline and postbaseline target-lesion assessments according to independent central review. Six patients (two in the trastuzumab deruxtecan group and four in the physician's choice group) were excluded from this analysis because they did not undergo postbaseline tumor assessment. alncludes data for the response-evaluable set: all randomized patients who received ≥1 dose of study drug and had measurable tumors based on ICR at baseline (T-DXd, n = 119; PC overall, n = 56; irinotecan, n = 51; paclitaxel, n = 5). bAccording to the procedure of the ICR, the adjudicator assessment was changed from PR to SD in 1 patient at data cutoff of the final OS analysis.

DESTINY-Gastric01: Survival



HR, hazard ratio; OS, overall survival; PC, physician's choice; T-DXd, trastuzumab deruxtecan.

dHI onding 95% CI were estimated using Cox proportional hazards model stratified by region.

HR, hazard ratio; ICR, independent central review; PC, physician's choice; PFS, progression-free survival; T-DXd, trastuzumab deruxtecan.

"In the T-DXd arm, 71 patients (56.8%) had PD and 11 (8.8%) had death as the first event. In the PC arm, 34 patients (54.8%) had PD and two (3.2%) had death as the first event. 43 (34.4%) and 26 (41.9%) patients were censored in the T-DXd and PC arms, respectively, for no baseline (T-DXd [n = 0]; PC [n = 2]) or postbaseline tumor assessment (n = 1; n = 3), receiving new anticancer therapy (n = 14; n = 14), and missing two consecutive tumor assessments (n = 5; n = 1); the remaining patients were censored without an event. bHR and corresponding 95% CI were estimated using Cox proportional hazards model stratified by region.

Comparison between T-DXd and PC overall using a stratified log-rank test with region as a stratification factor.

Data cutoff: June 3, 2020

In the T-DXd arm, 41 patients (32.8%) were censored.

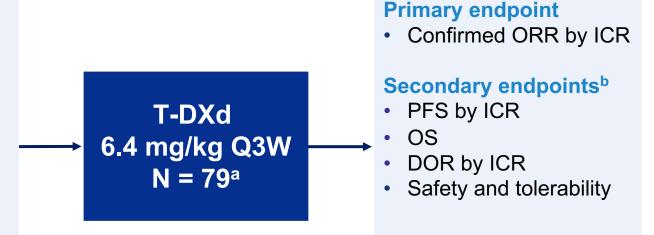
bln the PC arm, 13 patients (21.0%) were censored.

One patient in the PC arm received crossover treatment of T-DXd.

Primary Analysis of a Phase 2 Single-Arm Trial of Trastuzumab Deruxtecan (T-DXd) in Western Patients With HER2-Positive (HER2+) Unresectable or Metastatic Gastric or Gastroesophageal Junction (GEJ) Cancer Who Progressed on or After a Trastuzumab-containing Regimen

Eric Van Cutsem, MD^{a,} Maria di Bartolomeo, Elizabeth Smyth, Ian Chau, Haeseong Park, Salvatore Siena, Sara Lonardi, Zev A. Wainberg, Jaffer Ajani, Joseph Chao, Jabed Seraj, Yoshinori Kawaguchi, Amy Qin, Jasmeet Singh, Gerold Meinhardt, Geoffrey Ku

On behalf of the DESTINY-Gastric02 investigators


^aUniversity Hospital Gasthuisberg, Leuven and KU Leuven, Leuven, Belgium

DESTINY-Gastric02 Study Design

An open-label, multicenter phase 2 study in Western patients with HER2+ gastric or GEJ cancer (NCT04014075)

Key eligibility criteria

- Pathologically documented, unresectable or metastatic gastric or GEJ cancer
- Centrally confirmed HER2
 positive disease (defined as IHC
 3+ or IHC 2+/ISH+) on biopsy
 after progression on first-line
 trastuzumab-containing regimen
- ECOG PS 0 or 1

- DESTINY-Gastric02 is the first study focused only on second-line T-DXd monotherapy in Western patients with HER2+ gastric/GEJ cancer who have progressed on a trastuzumab-containing regimen
 - It is the follow-on study to DESTINY-Gastric01, which evaluated T-DXd third-line or later in Asian patients¹
- Patients were enrolled in Europe (Belgium, Great Britain, Italy, Spain) and the United States (data cutoff: April 9, 2021)

^aEnrollment of 80 patients was planned; actual enrollment was 79 patients.

^bOther secondary endpoints were ORR, PFS, and DOR by investigator assessment, pharmacokinetics, anti-drug antibodies, and patient-reported outcomes.

1. Shitara K et al. *N Engl J Med*. 2020;382:2419-30.

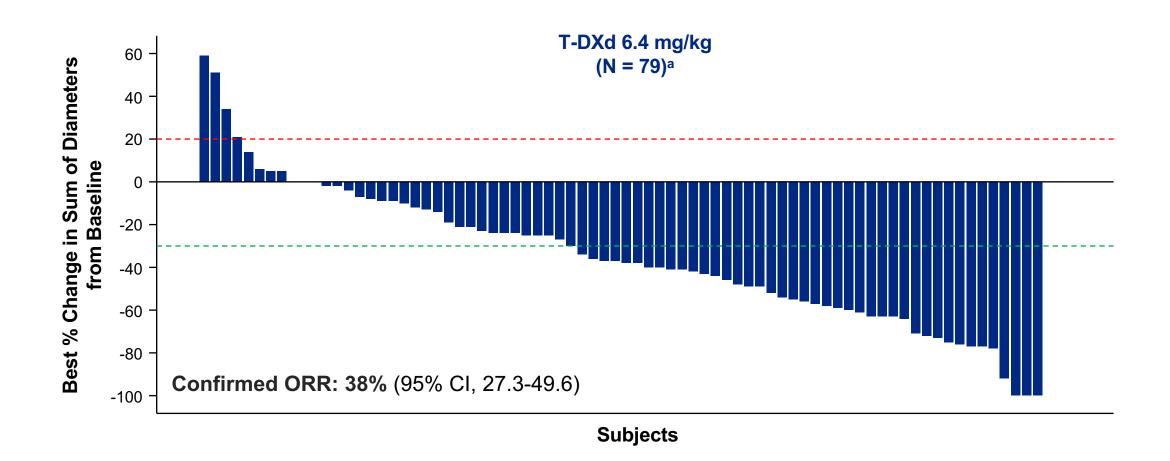
Patient Demographics and Disease Characteristics

Demographics	Patients N = 79
Age	
Median (range), years	60.7 (20.3 - 77.8)
<65, %	58.2
≥65, %	41.8
Male, %	72.2
Race, %	
White	87.3
Black or African American	1.3
Asian	5.1
American Indian or Alaskan native	0
Native Hawaiian or Pacific Islander	1.3
Other	3.8
Missing	1.3

	Patients
Disease characteristics	N = 79
ECOG PS, %	
0	36.7
1	63.3
HER2 expression, %	
IHC 3+	86.1
IHC 2+/ISH+	12.7
Not evaluable	1.3 ^a
Adenocarcinoma, %	98.7
Intestinal	24.1
Diffuse	1.3
Mixed	1.3
Unknown	72.2 ^b
Cancer type, %	
Gastric	34.2
GEJ	65.8
Number of metastatic sites, %	
<2	6.3
≥2	93.7
Liver metastasis at baseline, %	63.3
Time from diagnosis, median (range), mo	14.2 (3.6 – 88.5)

Efficacy Endpoints

	Patients (N = 79)	
Confirmed ORRa, n (%)	30 (38) (95% CI, 27.3-49.6)	
Confirmed best overall response, n (%)		
CR	3 (3.8)	
PR	27 (34.2)	
SD	34 (43.0)	
PD	13 (16.5)	
Not evaluable	2 (2.5)	
Median DOR, ^b months	8.1 (95% CI, 4.1-NE)	
Confirmed DCR ^c , n (%)	64 (81.0) (95% CI, 70.6-89.0)	
Median TTR, months	1.4 (95% CI, 1.4-2.6)	
Median PFS, ^d months	5.5 (95% CI, 4.2-7.3)	
Median follow up, months	5.7 (range, 0.7-15.2)	


Cutoff date: April 9, 2021.

^aPrimary endpoint. ^bSecondary endpoint analysis based on responders (n=30); 21 patients were censored (reasons: initiating new anticancer therapy, adequate tumor assessment no longer available, and ongoing without occurrence of progressive disease or death). ^cExploratory endpoint. ^dSecondary endpoint analysis in the full analysis set based on 42 events (36 PD, 6 deaths).

BOR, best overall response; CR, complete response; DCR, disease control rate; mo, months; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease; TTR, time to response.

Best Percentage Change of Tumor Size from Baseline

Drug-related TEAEs in ≥15% of Patients

	Patients (N = 79)						
n (%)	Any Grade	Grade ≥3					
Patients with ≥1 drug-related TEAEs	74 (93.7)	21 (26.6)					
Drug-related TEAEs with ≥15% incidence in all patients							
Nausea	46 (58.2)	3 (3.8)					
Fatigue	29 (36.7)	3 (3.8)					
Vomiting	26 (32.9)	1 (1.3)					
Diarrhea	22 (27.8)	1 (1.3)					
Decreased appetite	18 (22.8)	1 (1.3)					
Alopecia	17 (21.5)	0					
Anemia	15 (19.0)	6 (7.6)					
Decreased platelet count	13 (16.5)	1 (1.3)					
Decreased neutrophil count	12 (15.2)	6 (7.6)					

- Median treatment duration was 4.3 months (range, 0.7-15.9 months)
- The most common drug-related TEAEs associated with treatment discontinuation were investigator-reported pneumonitis (3.8%) and ILD (2.5%)
- The most common drug-related TEAEs associated with dose reduction were nausea (7.6%) and decreased neutrophil count (5.1%)

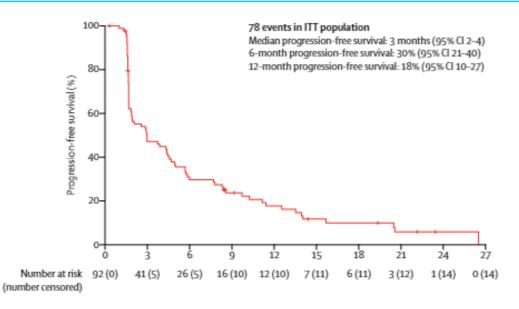
Adjudicated Drug-Related ILD/Pneumonitis

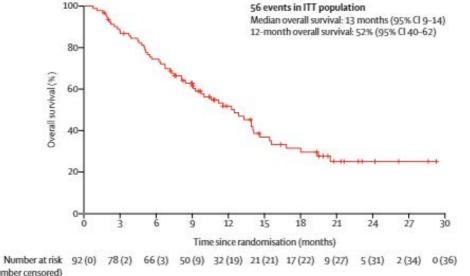
	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
n (%)	2 (2.5)	3 (3.8)	0	0	1 (1.3)	6 (7.6)

- Median time to onset of adjudicated drug-related ILD/pneumonitis was 80.5 days (range, 53-85 days), with a median duration of 38.0 days (range, 15-142 days)
- 83% of adjudicated drug-related ILD/pneumonitis cases were low grade (Grade 1-2)

Margetuximab

Study Design and Patients

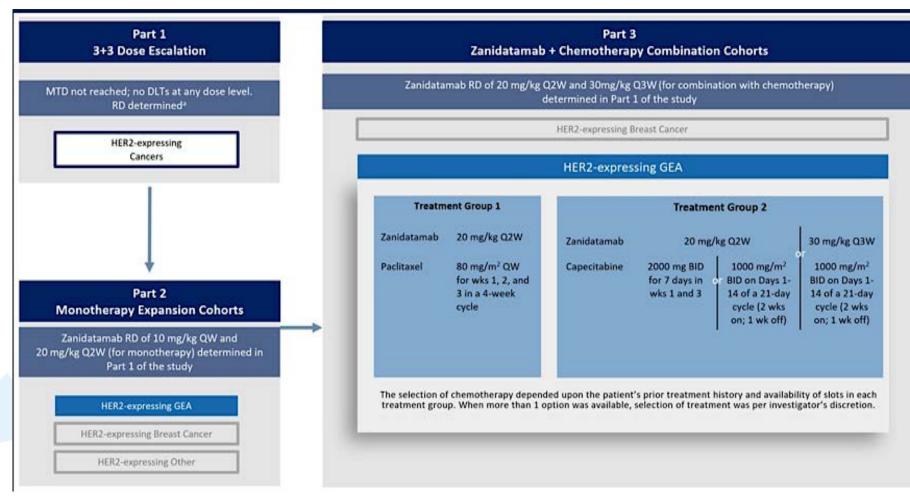

- Single-arm, open-label, phase 1b-2 doseescalation and cohort expansion study
- Unresectable, locally advanced or metastatic, HER2-positive, PD-L1-unselected gastrooesophageal adenocarcinoma
- Progressed after at least one previous line of therapy with trastuzumab plus chemotherapy
- Received 10-15 mg/kg margetuximab plus a flat dose of pembrolizumab 200 mg
- N = 95


Safety: Primary Endpoint

- TRAEs occurred in 63% of patients
- 20% experienced ≥ Grade 3 TEAEs
- Most common grade 3-4 TRAEs were: anaemia (4%) and infusion-related reactions (3%)
- 8 pts discontinued treatment due TEAEs; 4 due to **TRAEs**
- No deaths due to TRAEs were reported

PFS

OS


(number censored)

Zanidatamab (ZW25) *ZW25-101 (NCT02892123)*

- An antibody that binds two distinct sites on HER2: ECD4 (trastuzumab-targeted domain) and ECD2 (pertuzumab-targeted domain)
- Study Design and Patients
 - Phase 1 study
 - N = 63; n = 35 zanidatamabmonotherapy; n = 28zanidatamab + chemo
 - Primary endpoint: Safety and tolerability
 - Median number of prior therapies was 3 for zanidatamab monotherapy and zanidatamab + paclitaxel and 2 for zanidatamab + capecitabine

Zanidatamab (ZW25) ZW25-101 (NCT02892123)

• Response

Zanidatamab monotherapy:

• Confirmed ORR: 33%

• DCR: 61%

• Median DOR: 6 mos

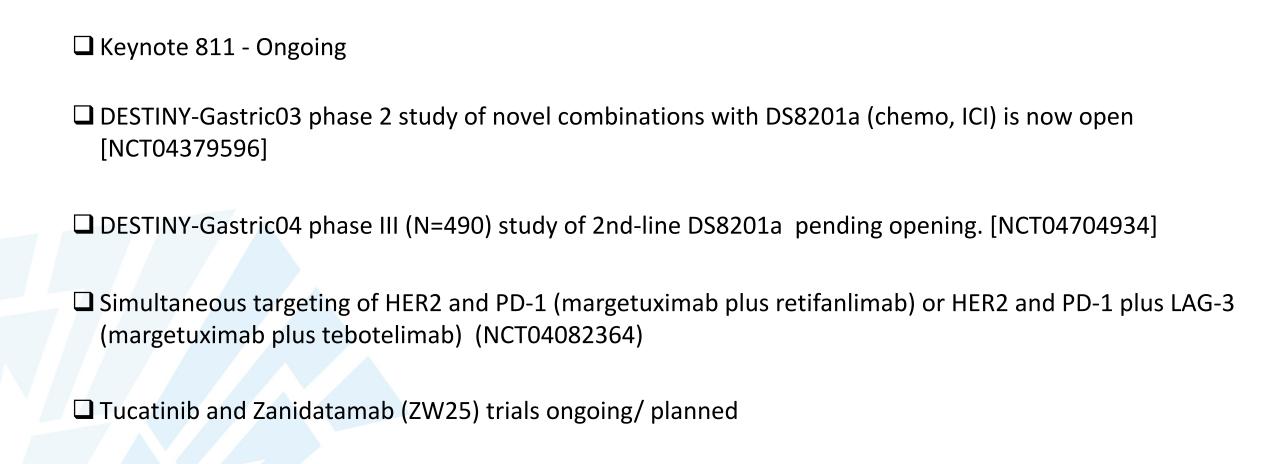
Median PFS: 3.6 mos

Zanidatamab + Chemo

• Confirmed ORR: 54%

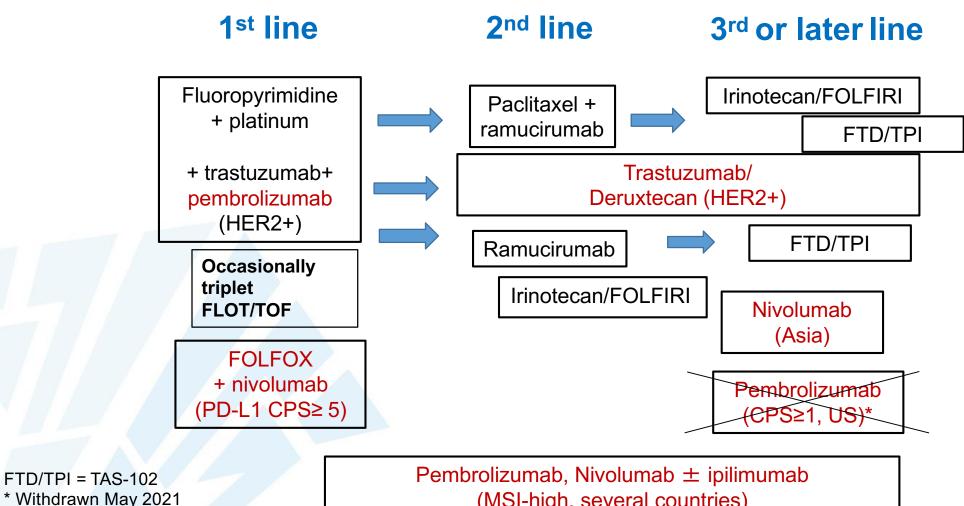
• DCR: 79%

• Median DOR: 8.9 mos


• Median PFS: 5.6 mos

	Zanid	atamab	Zanidatamab + Chemotherapy Combination				
	Monotherapy (N = 35)		Zanidatamab + Pac (N = 11)		Zanidatamab + Cape (N = 17)		
	Any Grade	Grade 3 or higher	Any Grade	Grade 3 or higher	Any Grade	Grade 3 or higher	
Patients with treatment-emergent AEs, n (%)	34 (97)	17 (49)	11 (100)	9 (82)	17 (100)	10 (59)	
Patients with treatment-related AEs	25 (71)	4 (11)	11 (100)	7 (64)	15 (88)	2 (12)	
Most common AEs ^c							
Diarrhea	16 (46)	1 (3)	7 (64)	0	10 (59)	0	
Infusion-related reaction	12 (34)	0	3 (27)	0	0	0	
Nausea	4 (11)	0	4 (36)	0	3 (18)	0	
Fatigue	4 (11)	0	7 (64)	2 (18)	3 (18)	0	

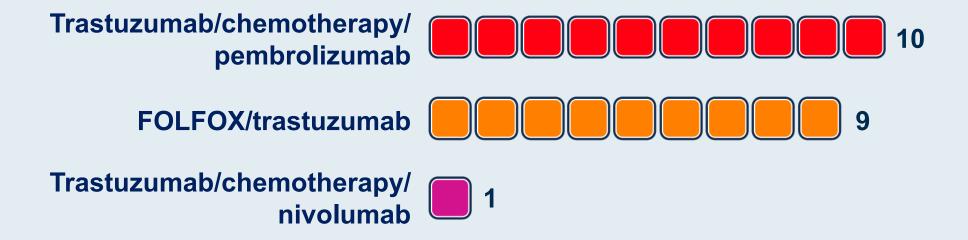
Ongoing studies with HER2 targeting agents



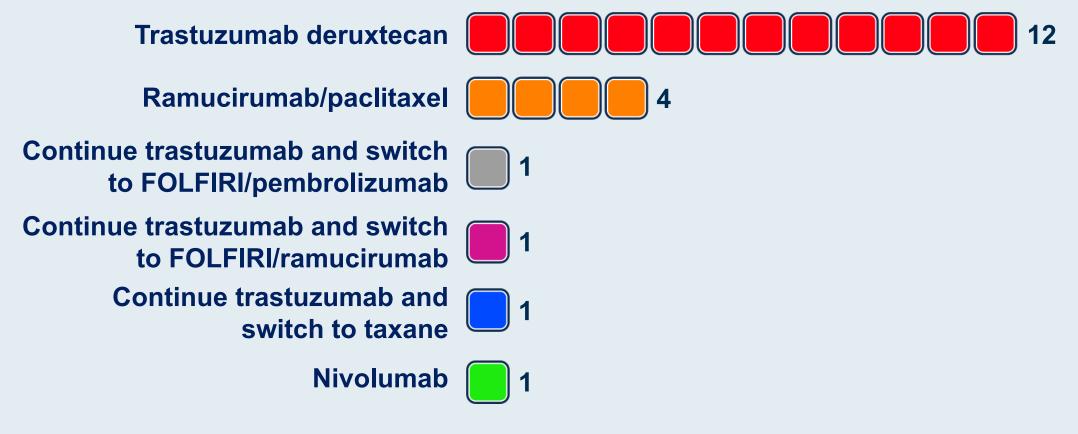
Updated algorithm for metastatic gastric cancer in 2022 (personal opinion EVC based on evidence)

New data are discussed on drugs, including data for which an approval is not yet granted

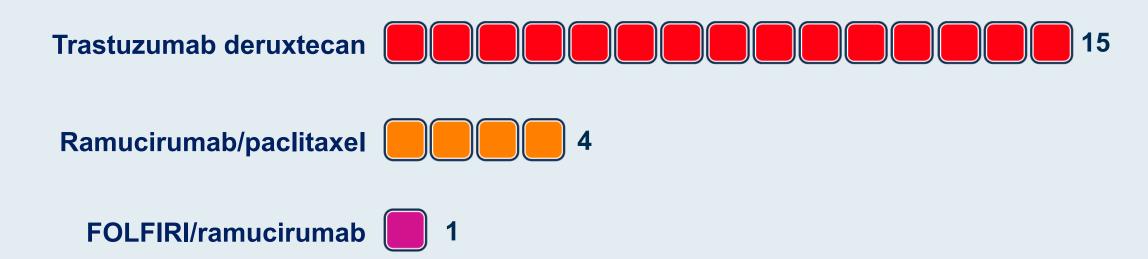
* Withdrawn May 2021

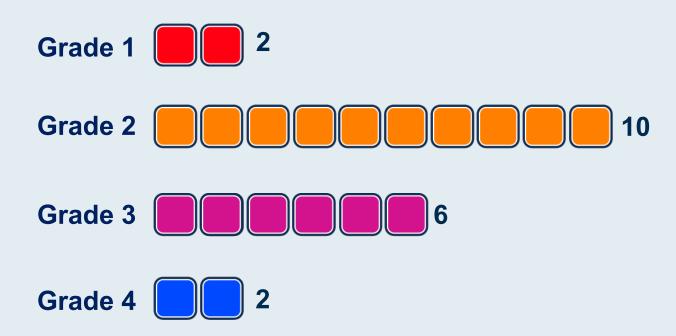

(MSI-high, several countries)

Regulatory and reimbursement issues aside, what would be your preferred first-line treatment for a patient with newly diagnosed metastatic <u>HER2-positive</u>, MSS adenocarcinoma of the GEJ with a PD-L1 CPS ≥1?


Trastuzumab/chemotherapy/ pembrolizumab 19

FOLFOX/trastuzumab 1


Regulatory and reimbursement issues aside, what would be your preferred first-line treatment for a patient with newly diagnosed metastatic <u>HER2-positive</u>, MSS adenocarcinoma of the GEJ with a PD-L1 CPS <1?


Regulatory and reimbursement issues aside, what would you currently recommend as second-line therapy for a patient with metastatic HER2-positive, MSS adenocarcinoma of the GEJ (PD-L1 CPS ≥1) with disease progression on <u>FOLFOX/trastuzumab</u>?

Regulatory and reimbursement issues aside, what would you currently recommend as second-line therapy for a patient with metastatic HER2-positive, MSS adenocarcinoma of the GEJ (PD-L1 CPS ≥1) with disease progression on FOLFOX/trastuzumab/pembrolizumab?

At what grade of ILD would you permanently discontinue therapy with trastuzumab deruxtecan for a patient with HER2-positive gastric/GEJ cancer?

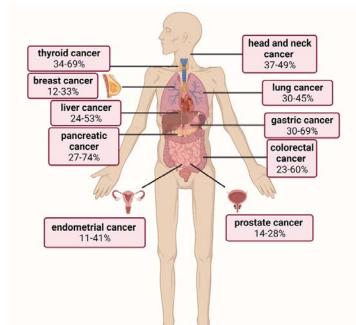
MODULE 3: Selection and Sequencing of Therapy for Relapsed Gastric and GEJ Cancer — **Dr Klempner**

Refractory and Late Line Therapy for Gastroesophageal Cancers

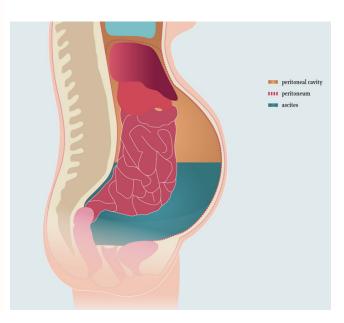
Samuel J. Klempner

Associate Professor

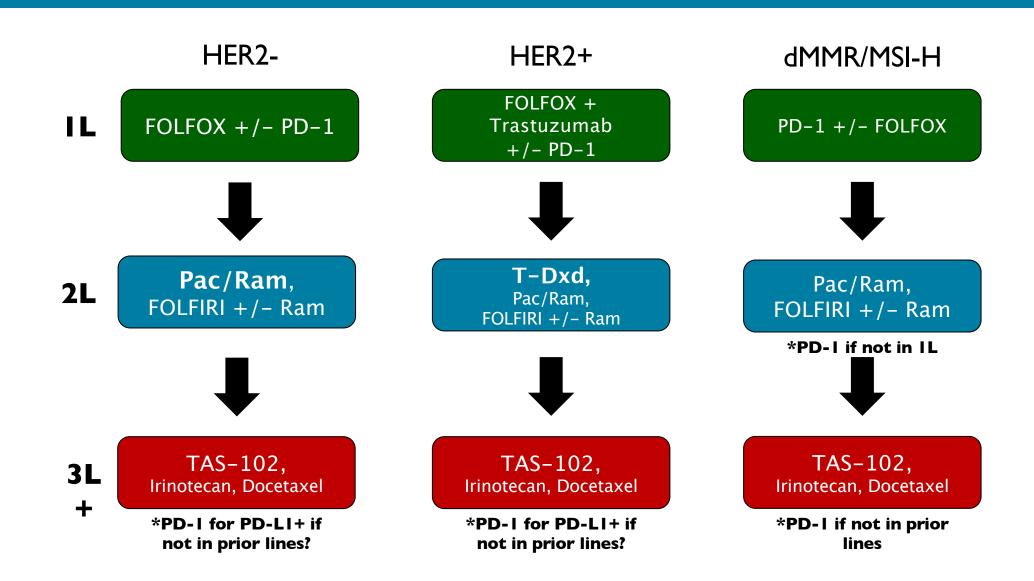
MGH Cancer Center



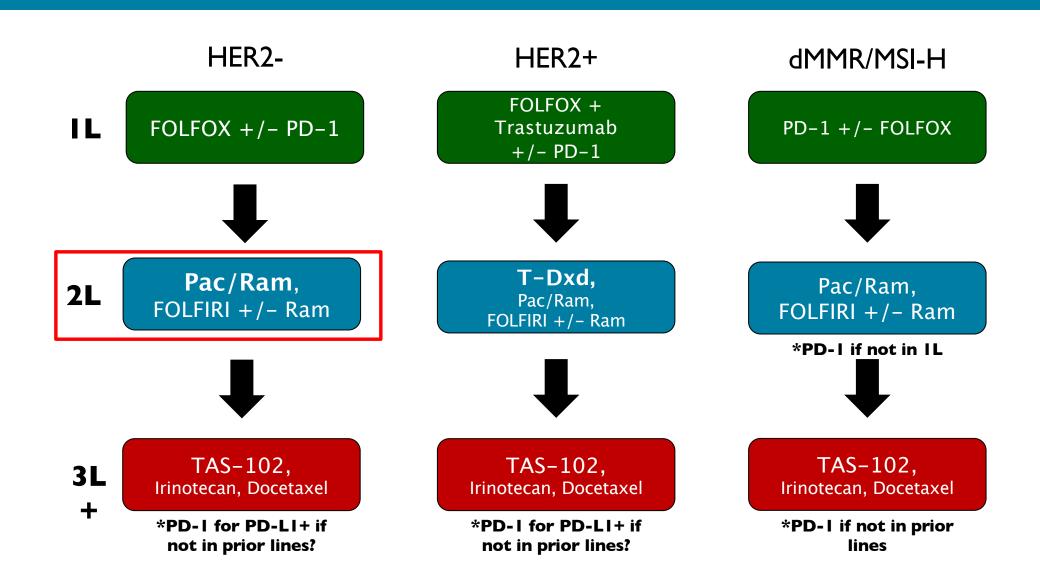
Gastroesophageal Cancers Are Bad: A Reminder


Among Phase III 1L trials <u>only ~38-55%</u> get subsequent therapy

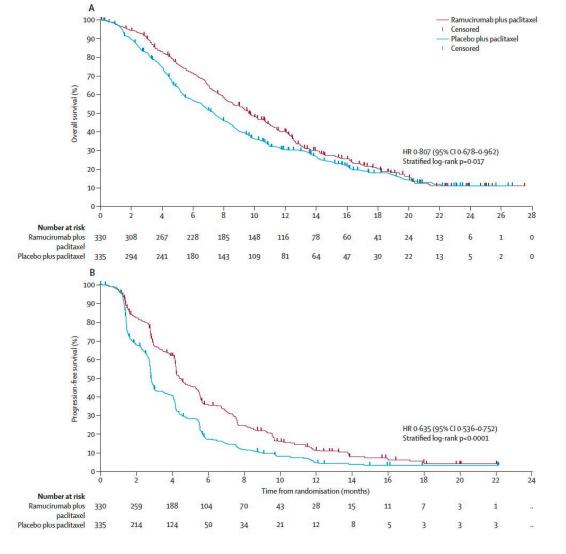
High Symptom Burden, declining ECOG



Cancer Cachexia (30-69%), malnutrition



Increasing rates of peritoneal disease and ascites


Current Paradigms – The Toolbox

Current Paradigms – The Toolbox

Level Setting: Paclitaxel and Ramucirumab is a Global 2L Standard

 Phase III 2L RCT of Pac/Ram vs Pac (RAINBOW) in Gastric/GEJ

Primary endpoint = OS

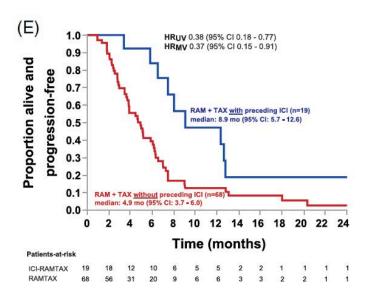
Median OS 9.6m vs 7.4m (HR 0.80)

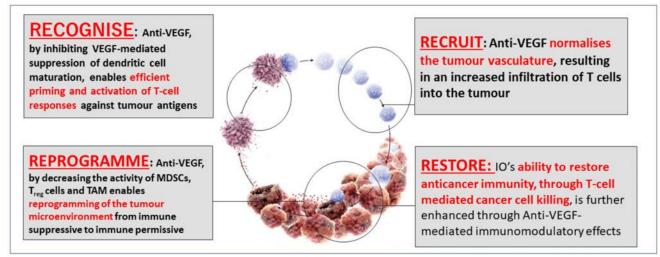
Median PFS 4.4m vs 2.9m (HR 0.63)

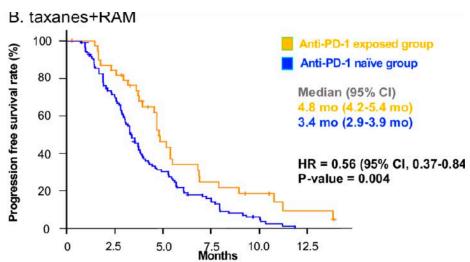
Overall response rate 27% vs 16%

There is no phase III trial to beat this

Taxane-Free Ramucirumab-based Therapy is a 2L and Later Option

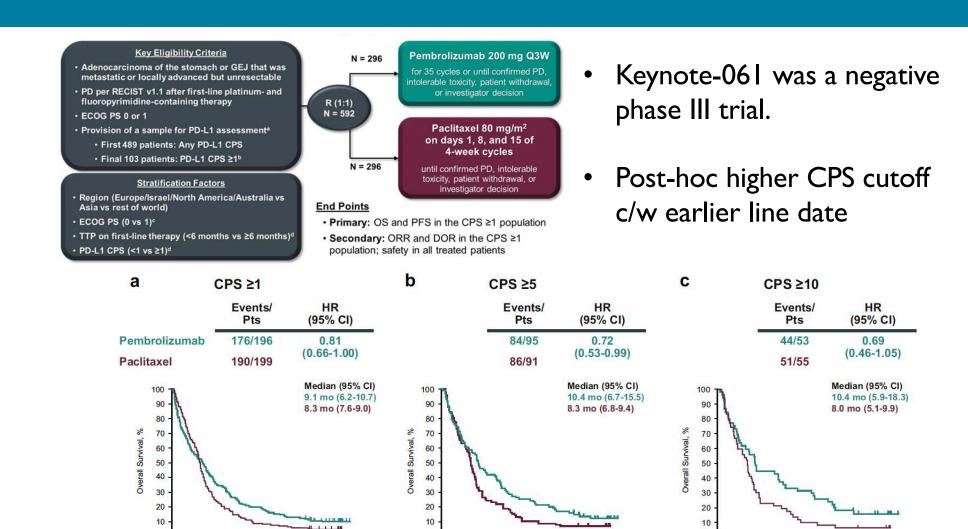



Second-Line or Subsequent Therapy Dependent on prior therapy and PS Preferred Regimens Ramucirumab and paclitaxel (category 1)³⁵ Fam-trastuzumab deruxtecan-nxki for HER2 overexpression positive adenocarcinoma³⁶ Docetaxel (category 1)^{28,29} Paclitaxel (category 1)^{24,25,37} Irinotecan (category 1)³⁷⁻⁴⁰ Fluorouracilb-i and irinotecan^{38,41,42} Trifluridine and tipiracil for third-line or subsequent therapy (category 1)⁴³ Other Recommended Regimens Ramucirumab (category 1)⁴⁴ Irinotecan and cisplatin^{14,45} Fluorouracil and irinotecan - ramucirumab^{67,45} Fluorouracil and irinotecan (category 2B)⁴⁸ Useful in Certain Circumstances Entrectinib or larotrectinib for NTRK gene fusion-positive tumors^{49,50} Pembrolizumab^{9,h} for MSI-H or dMMR tumors⁵¹⁻⁵³ Pembrolizumab^{9,h} for TMB high (210 mutations/megabase) tumors⁵⁴ Dostarlimab-gxly^{9,h}, for MSI-H or dMMR tumors⁵⁵


2L FOLFIRI-Ram

- RAMIRIS phase II/III ongoing
- ORR ~22% (25% in prior taxane)
- mPFS 4.6 months in docetaxel pre-treated
 - Consideration in significant neuropathy

Ramucirumab after PD-1: More than an Observation?



Pac-Ram post-PD-1

- Retrospective work in USA and Asia
- ORR 58-60% in patients with PD-1 prior to Pac + Ram
- mPFS 5-12m
- Ongoing prospective trials

PD-1 is Not a 2L Therapy in GEJ/GC Adenocarcinomas

12 18 24

61

Months

43 30 23 19 15

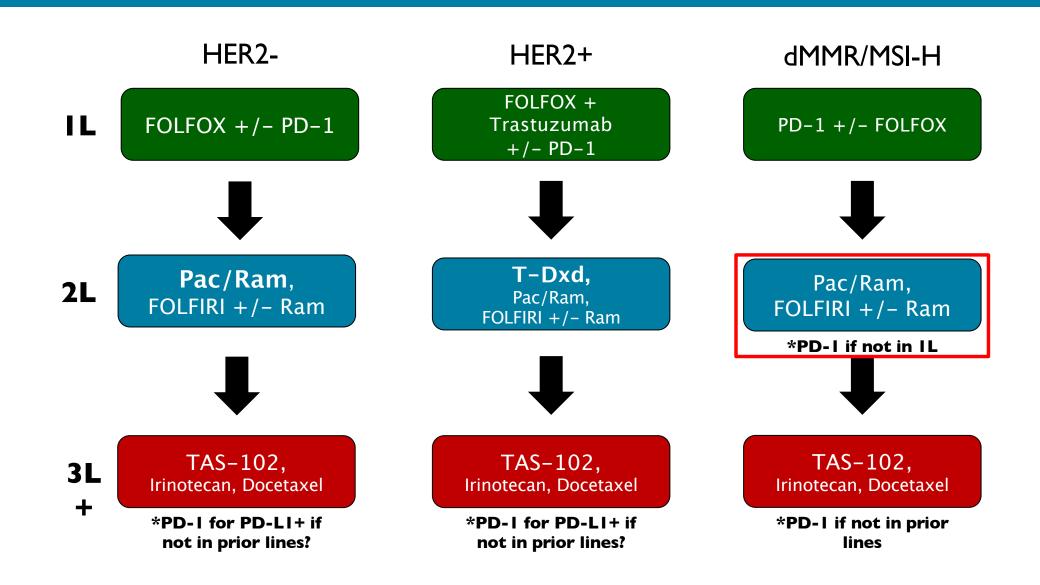
91 57 23 16 8 7 5 4

Months

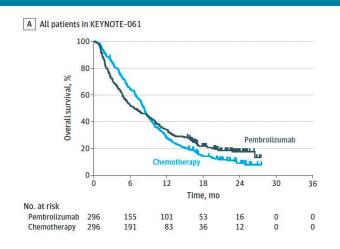
24 20 17 14 10 7 5 0

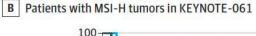
13 11 6 5 4 3 2

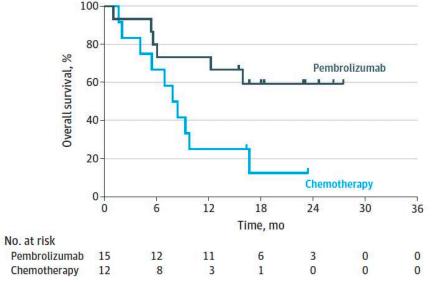
Lancet. 2018;392:123-33., Gastric Cancer. 2022;25:197-206.


114 78

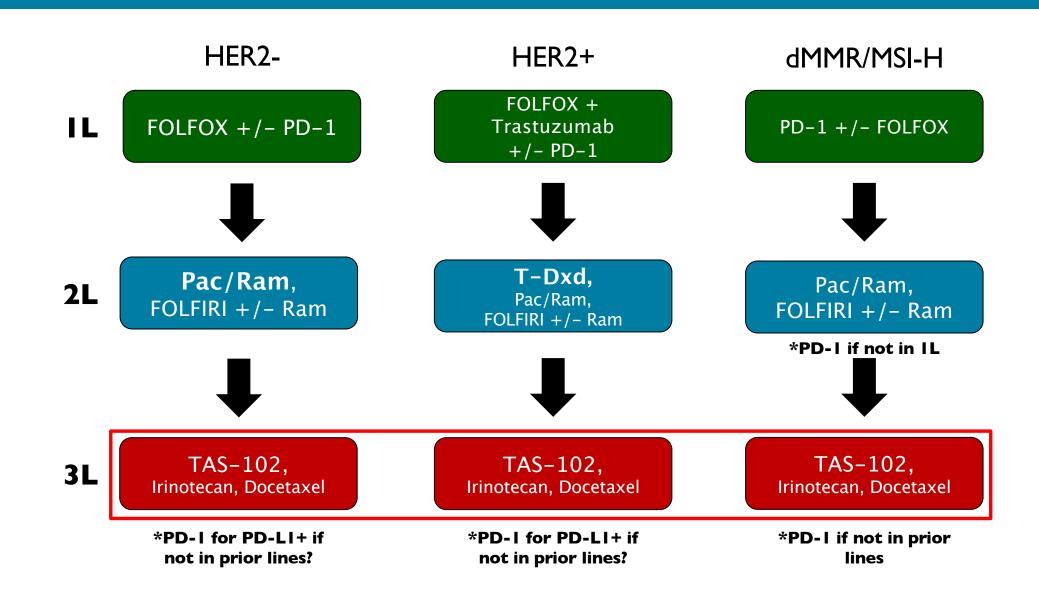
52 39 30


25 16

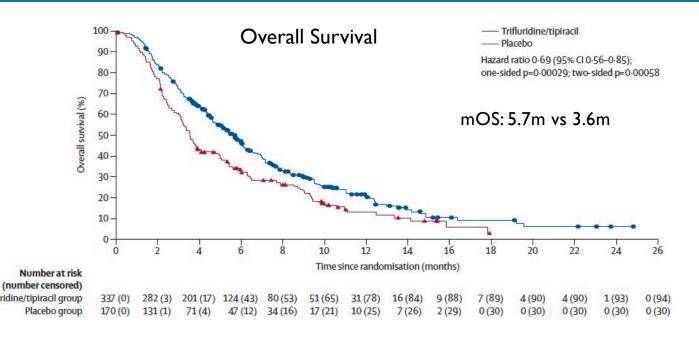

17 15 11 7 2 0


Current Paradigms – The Toolbox

A Caveat to 2L PD-1: MSI-High/dMMR Tumors



- 3-5% of stage IV patients are MSI-H/dMMR.
- Vast majority of MSI-H/dMMR are also PD-L1 high (>50% are CPS 10 or higher)
- ORR ~47-60% for PD-1 monotherapy
- mPFS 17.8m, mOS not reached
- A 2L and beyond option in MSI-H/dMMR without prior PD-I


Current Paradigms – The Toolbox

3L and Beyond: TAS-102 and the Phase III TAGS Trial

	Trifluridine/tipiracil group (n=337)	Placebo group (n=170)
(Continued from previous co	lumn)	
HER2 status		
Positive	67 (20%)	27 (16%)
Negative	207 (61%)	106 (62%)
Not assessed or unknown	63 (19%)	37 (22%)
Number of metastatic sites		
1-2	155 (46%)	72 (42%)
≥3	182 (54%)	98 (58%)
Peritoneal metastases	87 (26%)	53 (31%)
Previous gastrectomy	147 (44%)	74 (44%)
Number of previous chemoth	nerapy regimens	
2	126 (37%)	64 (38%)
3	134 (40%)	60 (35%)
≥4	77 (23%)	46 (27%)
Previous systemic anticancer	agents	
Platinum	337 (100%)	170 (100%)
Fluoropyrimidine	336 (>99%*)	170 (100%)
Taxane†	311 (92%)	148 (87%)
Irinotecan†	183 (54%)	98 (58%)
Ramucirumab	114 (34%)	55 (32%)
Anti-HER2 therapy	60 (18%)	24 (14%)
Immunotherapy (anti-PD-1 or anti-PD-L1)	25 (7%)	7 (4%)
Other	77 (23%)	41 (24%)

mPFS: 2.0 vs 1.8 months

ORR: 4% vs 2%

DCR: 44% vs 14%

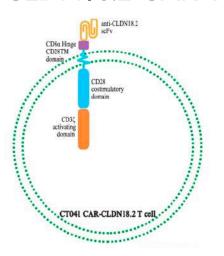
FDA 2/2019: Trifluridine/tipiracil for 3L and beyond in gastric or gastroesophageal junction (GEJ) adenocarcinoma previously treated a fluoropyrimidine, a platinum, either a taxane or irinotecan

Later Line TAS-102 and Ramucirumab-Containing Regimens

- Ramucirumab with Paclitaxel remains a global standard for 2L therapy.
- Ramucirumab has demonstrated clinical activity in combination with FOLFIRI
- Trifluridine/tiperacil plus bevacizumab demonstrated activity in colorectal cancers

Phase 2 TAS-I02 + Ram

Overall Population


	2L, no prior Ram	≥3L, prior Ram
	Cohort A (n=33)	Cohort B (n=31)
Complete response	0	0
Partial response	3 (9%)	5 (16%)
Stable disease	25 (76%)	19 (61%)
Progressive disease	3 (9%)	7 (23%)
Not evaluable	2 (6%)	0
Overall response rate*	3 (9%, 2-24)	5 (16%, 6-34)
Disease control rate†	28 (85%, 68-95)	24 (77%, 59-90)
Oata are n (%) or n (%, 95% Complete response plus pa		

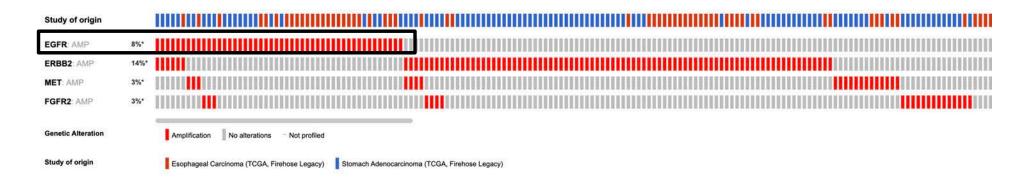
Prior IO exposed

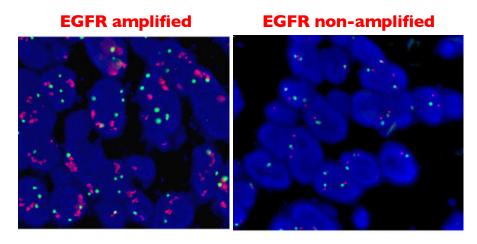
	Cohort A (n=33)	Cohort A (n=33)		
	Previous use (n=7)	No previous use (n=26)	Previous use (n=15)	No previous use (n=16)
Overall response rate*	2 (29%, 4–71)	1 (4%, 0-20)	5 (33%, 12-62)	0 (0%, 0-21)
Disease control rate†	7 (100%, 59–100)	21 (81%, 61-93)	10 (67%, 38–88)	14 (88%, 62-98)
Progression-free survival, months	6-1 (4-1-NA)	5-3 (3-6-7-9)	5·4 (1·4-NA)	5.0 (2.1–6.1)
Event	3 (43%)	15 (58%)	9 (60%)	12 (75%)
Censored	4 (57%)	11 (42%)	6 (40%)	4 (25%)

Emerging Targets in 2L and Beyond: CAR-T

CT041: CLDN18.2 CAR-T

Characteristics of all patients	Total (N = 37)	Characteristics of GC	Total (N = 28)
Median age (range), year	53.0 (25-74)	Histological classification(WHO classification), n (%	
Disease Type, n(%)		Mucinous adenocarcinoma	1 (3.6)
GC/GEJ	28 (75.7)	Signet ring cell carcinoma	12 (42.9)
PC	5 (13.5)	Other	14 (50.0)
Other	4 (10.8)	Expression intensity and rate of CLDN 18.2 in tumor	
ECOG, n (%)	1)	Low expression	2 (7.1)
0	2 (5.4)	Medium expression	7 (25.0)
1	35 (94.6)	High expression	19 (67.9)
Bridging therapy, n (%)	28(75.7)	Numbers of metastatic organs	0.5
Expression intensity and rate of CLDN 18.2 in tumor tissue, n (%)		Median	2.5 1.0, 7.0
		Min, Max Peritoneal metastases, n (%)	19 (67.9)
Low expression	5 (13.5)	Liver metastases, n (%)	10 (35.7)
Medium expression	13 (35.1)	Lauren classification, n (%)	10 (55.1)
High expression	19 (51.4)	Intestinal type	10 (35.7)
Numbers of metastatic organs		Diffuse type	9 (32.1)
Median	3.0	Mixed type	7 (25.0)
Min, Max	1.0, 7.0	Previous systemic therapies, n (%)	
Median no. of previous lines, n (%)		Fluorouracil	28 (100)
1	6 (16.2)	Platinum	27 (96.4)
2	19 (51.4)	Taxanes	21 (75.0)
≥3	12 (32.4)	Paclitaxel	18 (64.3) 7 (25.0)
		Albumin paclitaxel Anti-PD-(L)1 antibody	12 (42.9)
		Polykinase inhibitor	10 (35.7)

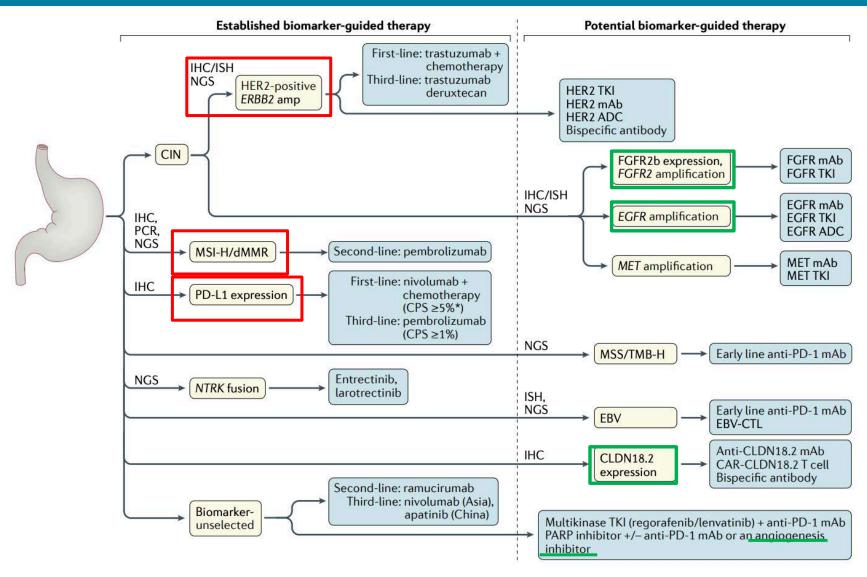

GC/GEJ ≥2 prior lines

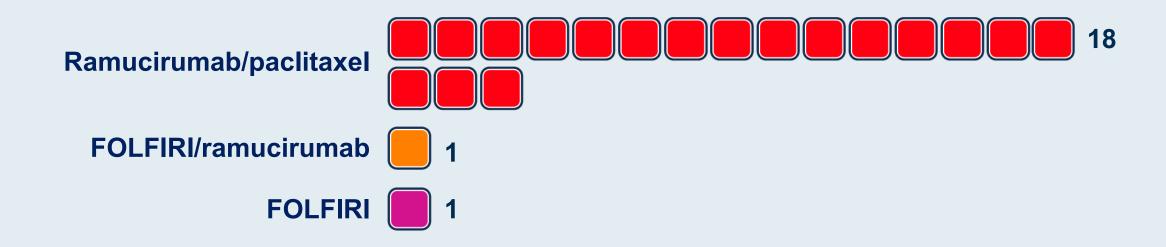

mDOR	6.4m [2.7, NE]		
mOS*	9.5m [5.2, NE]		
mPFS*	5.6m [2.6, 9.2]		
DCR [95% CI]	15 (83.3%) [58.58, 96.42]		
ORR [95% CI]	11 (61.1%) [35.75, 82.70]		

*PFS, OS and follow up duration were calculated from CAR-T infusion date.

- Encouraging activity in previously treated patients
- Toxicity consistent with prior CAR-T
- Ongoing US trial (NCT04404595)

Revisiting A Neglected Target: EGFR

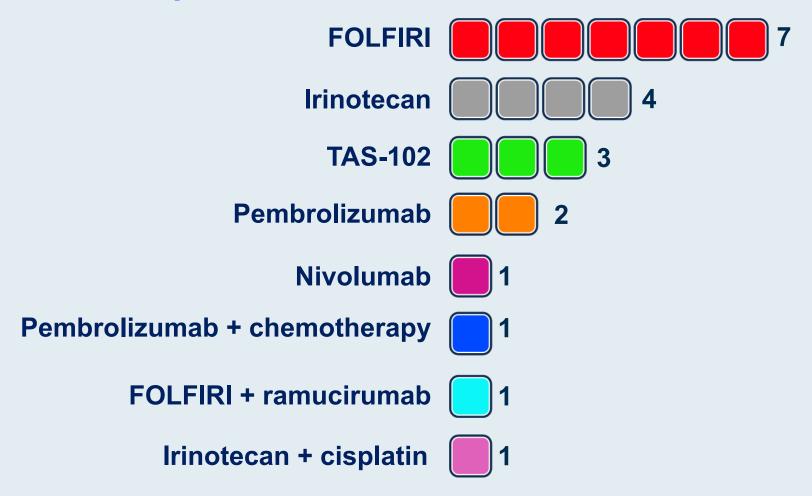



5-8% of gastroesophageal adenocarcinomas

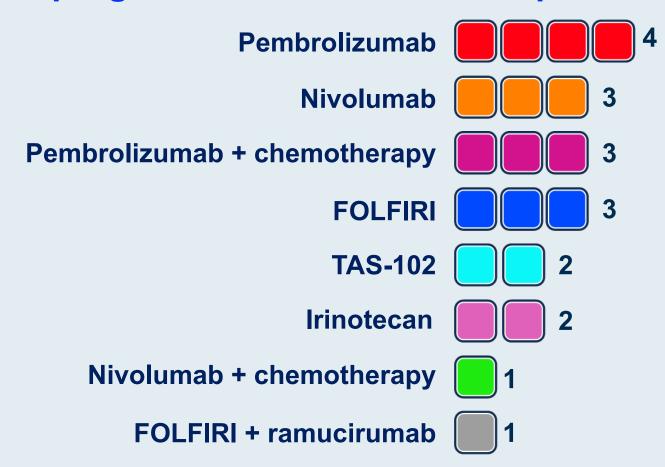
- Prior negative trials impacted by patient selection and perhaps drug choice
- Several series suggesting EGFR_{amp} benefit from EGFR-directed therapies
- Perhaps most effective where EGFR_{amp} does not co-exist with other RTK amplifications
- Trials ongoing, Amivantamab for example (NCT05117931)

Looking Forward: Right Tool for the Job

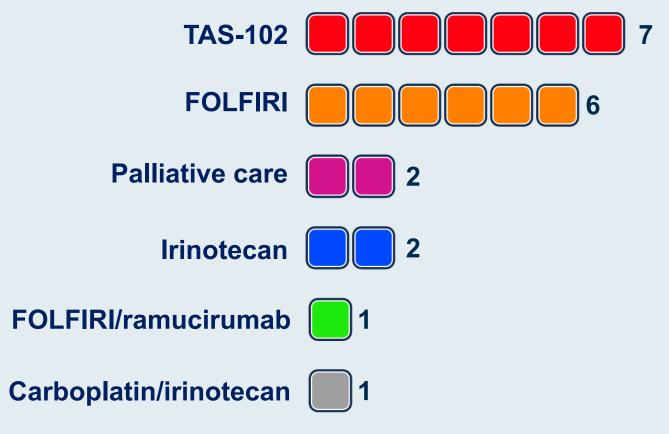
Regulatory and reimbursement issues aside, what would you currently recommend as second-line therapy for a patient with metastatic HER2-negative, MSS adenocarcinoma of the GEJ (PD-L1 CPS ≥5) who has experienced disease progression on first-line FOLFOX/nivolumab?


Beyond paclitaxel, are there any other chemotherapeutic agents that you are comfortable combining with ramucirumab for your patients with relapsed gastric/GEJ cancer?

Yes – FOLFIRI or irinotecan


No

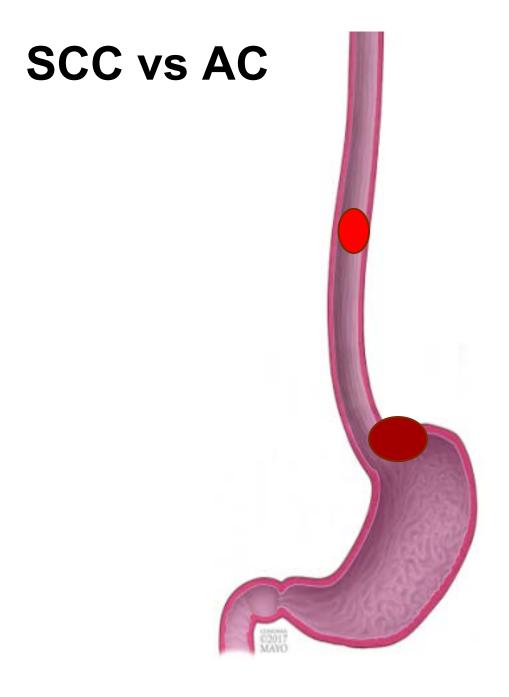
4


What is your usual <u>third-line</u> treatment for a younger patient (PS 0) with metastatic HER2-negative, MSS adenocarcinoma of the GEJ (<u>PD-L1 CPS <1</u>) who has experienced disease progression on FOLFOX and paclitaxel/ramucirumab?

What is your usual <u>third-line</u> treatment for a younger patient (PS 0) with metastatic HER2-negative, MSS adenocarcinoma of the GEJ (<u>PD-L1 CPS ≥1</u>) who has experienced disease progression on FOLFOX and paclitaxel/ramucirumab?

What is your usual next treatment for a younger patient (PS 0) with metastatic HER2-negative, MSS adenocarcinoma of the GEJ who has experienced disease progression on FOLFOX, paclitaxel/ramucirumab and an anti-PD-1/PD-L1 antibody?

MODULE 4: Key Findings Informing the Treatment of Localized and Advanced Esophageal Cancer — Dr Yoon


Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Patients with Gastroesophageal Cancers

KEY FINDINGS INFORMING THE TREATMENT OF LOCALIZED AND ADVANCED ESOPHAGEAL CANCER

Harry H Yoon, MD MHS
Co-Chair, Gastroesophageal Cancer Disease Group
Mayo Clinic
Rochester MN

An Independent Satellite Symposium (ISS) Held as a Premium Ancillary Educational Event During the 2022 Gastrointestinal Cancers Symposium Thursday, January 20th, 2022
6:15 PM – 7:45 PM PST

Esophageal squamous cell carcinoma (SCC)

- East/Central Asia, southeastern Africa
- Smoking & ETOH
- Proximal anatomic location
- ~ 50% of patients have tumor cell expression of PD-L1 (ie, TPS 1+) ¹⁻⁷

Adenocarcinoma (AC)

- Western
- Reflux & obesity
- Distal esophagus
- ~ 15% of patients have TPS 1+ ^{1, 8-12}

2021 TREATMENT LANDSCAPE FOR FIT PATIENT WITH ESOPHAGEAL SQUAMOUS CELL CARCINOMA (SCC)

Advanced, 1st-line

After chemoradiation & surgery

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

PD-L1-TPS ≥ 1

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

PD-L1-CPS 0-9

& TPS < 1

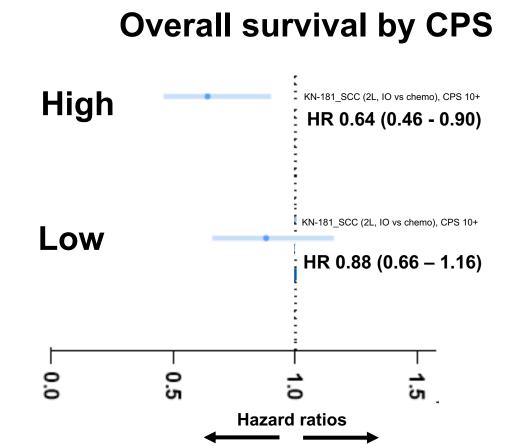
FOLFOX

(NCCN 2A)

Pembro + platin/FP

(NCCN 2B and FDA)

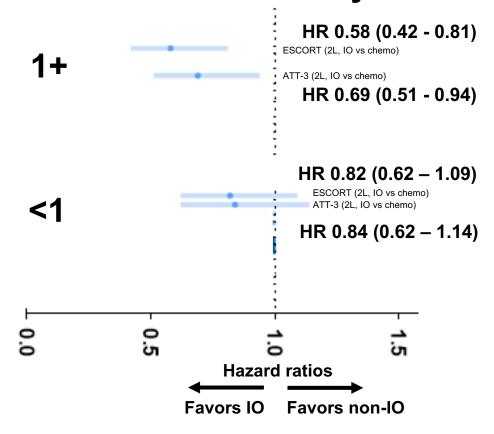
SCC or AC if non-pCR


Adjuvant nivolumab x 1 yr (CM-577)

(NCCN 1-2A and FDA)

Before 2021, available phase 3 data in SCC suggested PD-L1 expression level correlated with anti-PD-1 efficacy

Hazard ratios for overall survival with 95% CI's shown


N = 1,268 (3 trials)

Favors IO

Favors non-IO

Overall survival by TPS

2021 TREATMENT LANDSCAPE FOR FIT PATIENT WITH ESOPHAGEAL SQUAMOUS CELL CARCINOMA (SCC)

Advanced, 1st-line

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

PD-L1-TPS ≥ 1

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

PD-L1-CPS 0-9

& TPS < 1

FOLFOX

(NCCN 2A)

Pembro + platin/FP (KN590)

(NCCN 2B and FDA)

After chemoradiation & surgery

SCC or AC if non-pCR

Adjuvant nivolumab x 1 yr (CM-577)

(NCCN 1-2A and FDA)

KN-590

Patients ¹

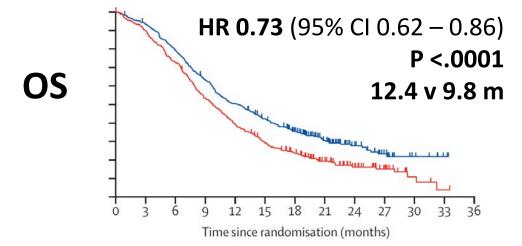
- ESCC (73%) and
 AC Siewert 1 (26%)
- 1st-line
- Asia + Non-Asia
- Any CPS, including CPS <10

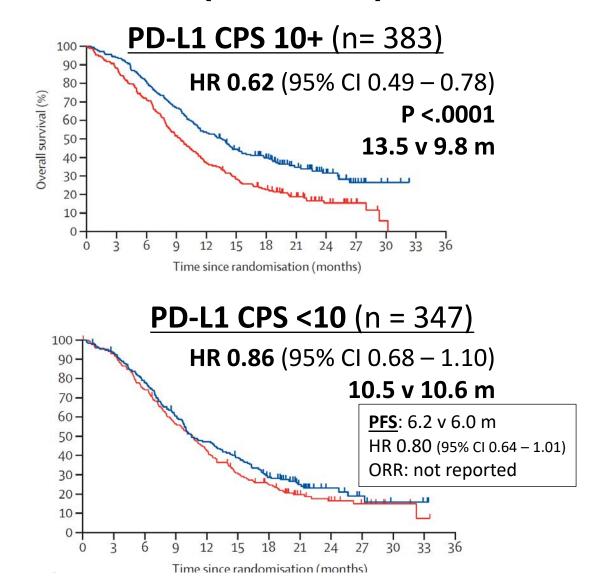
Cisplatin/FP + **pembrolizumab**

Cisplatin/FP + placebo

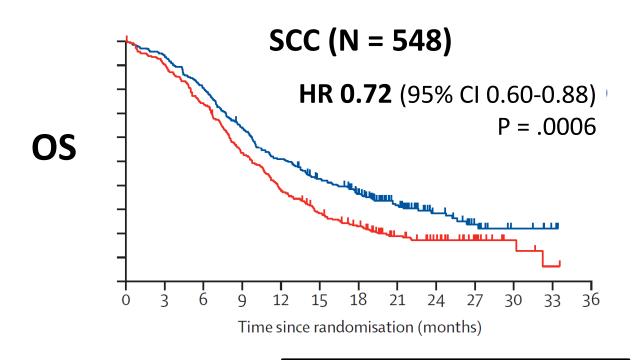
R

Primary endpoints


- PFS in ESCC
- OS in ESCC CPS ≥ 10
- OS in ESCC


1. Not reported regarding HER2 status

Pembro improves OS in PD-L1 CPS 10+, but unclear evidence of benefit in PD-L1 CPS <10 (KN-590)



P interaction for CPS 10+ vs CPS <10 not reported

Within SCC, results similar: Improved OS in CPS 10+, but unclear evidence of benefit in CPS <10 (κΝ-590 cont.)

G3-4 toxicities were similar between arms

SCC PD-L1 CPS 10+

n = 286 13.9 m vs 8.8 m **HR 0.57** (0.43-0.75)

SCC PD-L1 CPS <10 a

n = 247 10.5 m vs 11.1 m **HR 0.99** (0.74-1.32)

^a Survival curves not reported.

PFS: 6.2 v 6.0 m

HR 0.83 (95% CI 0.64 - 1.10)

ORR: not reported

2021 TREATMENT LANDSCAPE FOR FIT PATIENT WITH ESOPHAGEAL SQUAMOUS CELL CARCINOMA (SCC)

Advanced, 1st-line

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

PD-L1-TPS ≥ 1

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

PD-L1-CPS 0-9

& TPS < 1

FOLFOX

(NCCN 2A)

Pembro + platin/FP (KN590)

(NCCN 2B and FDA)

After chemoradiation & surgery

SCC or AC if non-pCR

Adjuvant nivolumab x 1 yr (CM-577)

(NCCN 1-2A and FDA)

2021 TREATMENT LANDSCAPE FOR FIT PATIENT WITH ESOPHAGEAL SQUAMOUS CELL CARCINOMA (SCC)

Advanced, 1st-line

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

PD-L1-TPS ≥ 1

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

PD-L1-CPS 0-9

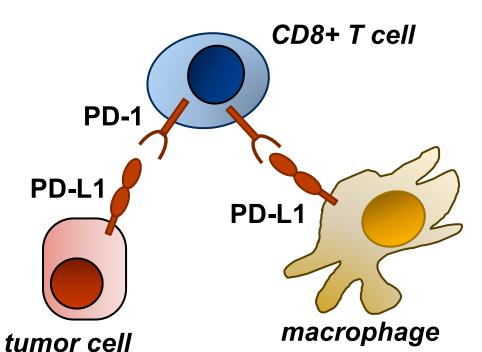
& TPS < 1

FOLFOX

(NCCN 2A)

Pembro + platin/FP (KN590)

(NCCN 2B and FDA)


After chemoradiation & surgery

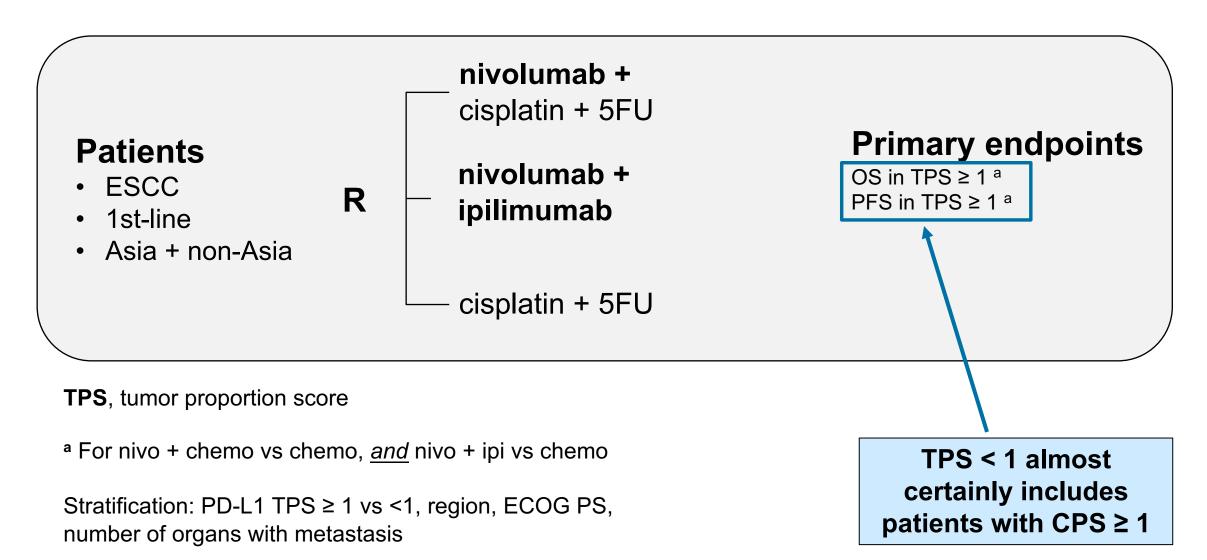
SCC or AC if non-pCR

Adjuvant nivolumab x 1 yr (CM-577)

(NCCN 1-2A and FDA)

CPS = PD-L1-expressing tumor cells or **immune cells** tumor cells

PD-L1 expression by tumor cells is induced by IFN-gamma secreted by CD8 T cells PD-L1 expression by macrophages can be IFNindependent, induced by IL-10 or IL32-gamma


TPS vs CPS

- More common to have PD-L1 expressing immune cells than tumor cells
- In AC, CPS seems more predictive than TPS 1-9
- In SCC, data on TPS or CPS were limited prior to summer 2021

1. ORIENT-15. 2. KN-061. 3. KN-062. 4. KN590_AC. 5. JAV100. 6. CM649. 7. ATT-2. 8. JAV300. 9. ATT-4.

Noguchi T et al 2017 Cancer Immunol Res; Taube JM et al 2015 Clin Cancer Res

CM-648

CM-648: Benefit appears to be in only TPS ≥ 1

Nivo vs ch	+ chemo emo	TPS ≥ 1 n=315	TPS < 1 n=329	TPS ≥ 0 N=645
os	Median,	15.4 vs 9.1 Δ 6.3	12.0 vs 12.2 Δ -0.2	13.2 vs 10.7 Δ 2.5
	HR 95% CI	0.54 0.37-0.80	0.98 NR	0.74 (0.58–96)
PFS	Median,	6.9 vs 4.4 Δ 2.5	NR	5.8 vs 5.6 Δ 0.2
	HR 95% CI	0.65 0.46-0.92	NR	0.81 0.64-1.04
				ably contains ≥ 1 patients

NR, not reported RR and duration of response not reported, to date, within TPS <1

CM-648: Benefit appears to be in only TPS ≥ 1

NR, not reported RR and duration of response not reported, to date, within TPS <1

_	+ chemo	TPS ≥ 1	TPS < 1	TPS ≥ 0
vs ch	iemo	n=315	n=329	N=645
os	Median,	15.4 vs 9.1 Δ 6.3	12.0 vs 12.2 Δ -0.2	13.2 vs 10.7 Δ 2.5
	HR 95% CI	0.54 0.37-0.80	0.98 NR	0.74 (0.58–96)
PFS	Median,	6.9 vs 4.4 Δ 2.5	NR	5.8 vs 5.6 Δ 0.2
	HR 95% CI	0.65 0.46-0.92	NR	0.81 0.64-1.04
Nivo		TD0 > 4	TD0 14	
14140	∓ iβi	TPS ≥ 1	TPS < 1	TPS ≥ 0
vs ch	•	1PS ≥ 1 n=314	1PS < 1 n=330	1PS ≥ 0 N=644
vs ch	•			
	nemo Median,	n=314 13.7 vs 9.1	n=330 12.0 vs 12.2	N=644 12.8 vs 10.7
vs ch	Median, months HR	n=314 13.7 vs 9.1 Δ 4.6 0.64	n=330 12.0 vs 12.2 Δ -0.2 0.96	N=644 12.8 vs 10.7 Δ 2.1 0.78

G3-4 toxicity seems higher with nivo + chemo

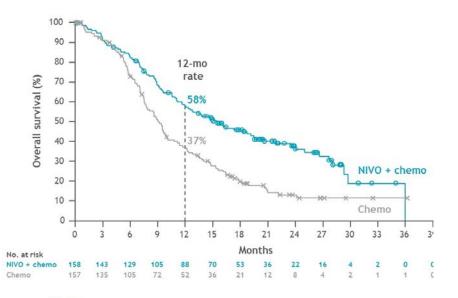
	Nivo + Chemo	Nivo + Ipi	Chemo
Any G3-4	47% 1.3x		36% <i>ref</i>
Serious G3-4	18% 1.4x		13% <i>ref</i>
G3-4 AE leading to treatment discontinuation	9% 1.8x		5% <i>ref</i>
Treatment duration	5.7 m 1.7x		3.4 m <i>ref</i>

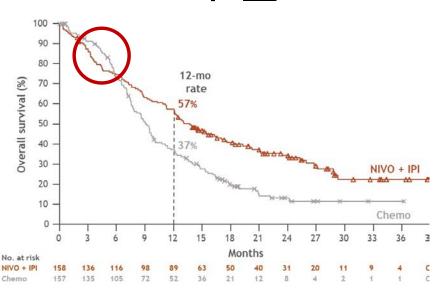
G3-4 toxicity seems even higher with nivo + ipi

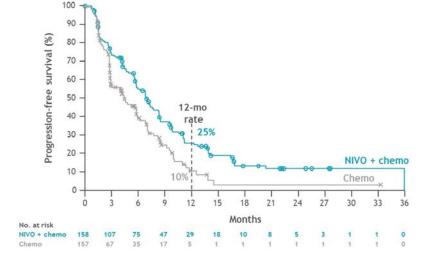
	Nivo + Chemo	Nivo + Ipi	Chemo
Any G3-4	47% 1.3x	32% 0.9x	36% <i>ref</i>
Serious G3-4	18% 1.4x	23% 1.8x	13% <i>ref</i>
G3-4 AE leading to treatment discontinuation	9% 1.8x	13% 2.6x	5% <i>ref</i>
Treatment duration	5.7 m 1.7x	2.8 m 0.8x	3.4 m <i>ref</i>

CM-648 CONCLUSIONS

- Nivo + chemo and nivo + ipi show promise as options for 1L treatment of ESCC
 - Benefit appears limited to TPS 1+
 - Pending review by FDA and NCCN


• Which nivo regimen to choose?


EARLY DEATH WITH NIVO + IPI


Nivo + Ipi vs chemo

PFS

Advanced, 1st-line

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

PD-L1-TPS ≥ 1

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

Would be helpful to see data according to <u>CPS</u>.

PD-L1-CPS 0-9 & TPS < 1 **FOLFOX**

(NCCN 2A)

Pembro + platin/FP (KN590)

(NCCN 2B and FDA)

Advanced, 1st-line

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

PD-L1-TPS ≥ 1

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

PD-L1-CPS 0-9

& TPS < 1

FOLFOX

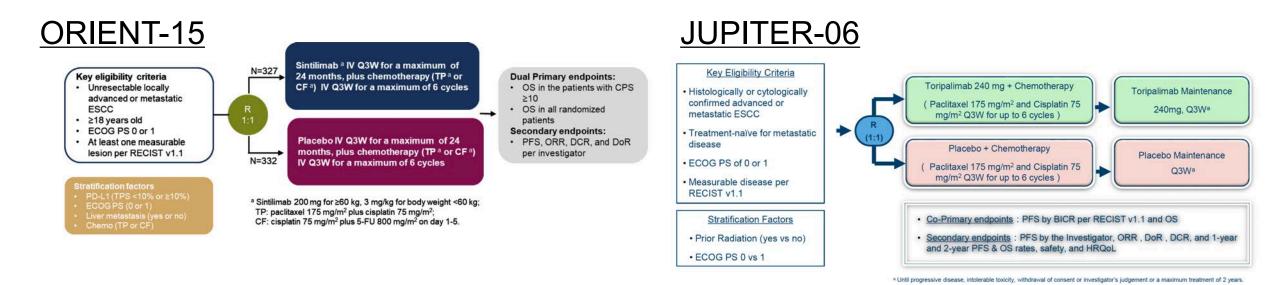
(NCCN 2A)

Pembro + platin/FP (KN590)

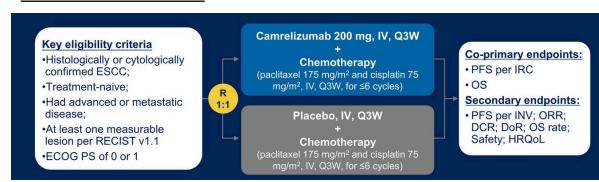
(NCCN 2B and FDA)

Phase 3 data of investigational anti-PD-1 Abs

camrelizumab (ESCORT_1st) = sintilimab (ORIENT-15) toripalimab (JUPITER-06)


tislelizumab (RATIONALE-302)

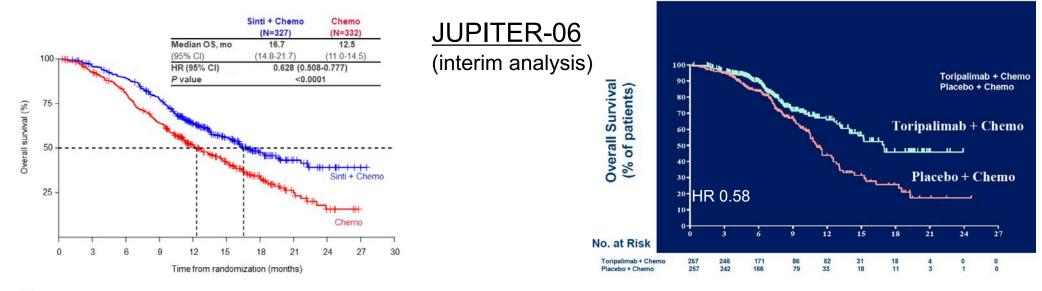
Asia-only
1st-line
IO + chemo vs chemo


Asia + non-Asia 2nd-line IO vs chemo

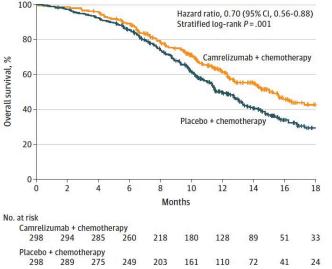
All 4 trials reported positive OS results in overall SCC population

PHASE III TRIALS OF INVESTIGATIONAL PD-1 ANTIBODIES

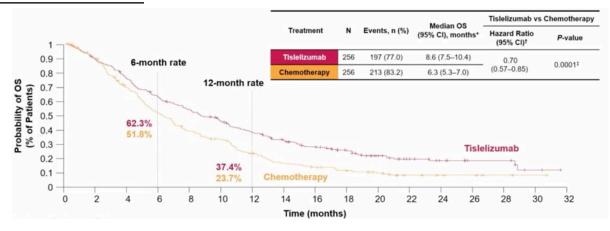
ESCORT-1st



RATIONALE-302

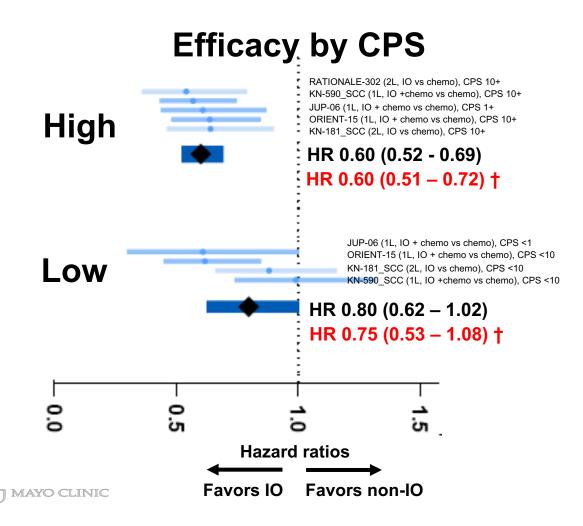


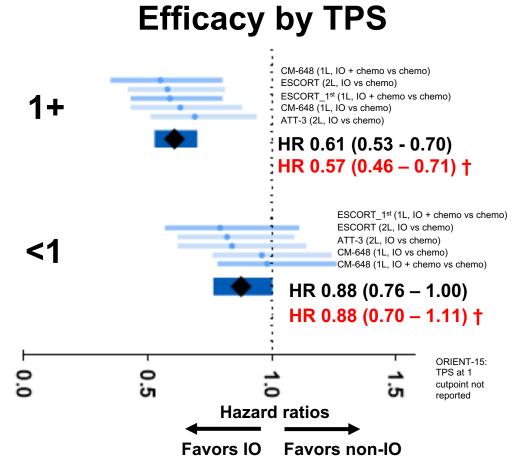
PHASE III TRIALS OF INVESTIGATIONAL PD-1 ANTIBODIES: OS IN OVERALL POPULATION


ORIENT-15

ESCORT-1st

RATIONALE-302




Shen L et al. ESMO 2021; Xu R-H et al. ESMO 2021; Luo H et al. JAMA 2021; Ajani J et al. ESMO GI 2021

With more data in 2021, anti-PD-1/-L1 efficacy in SCC appears to differ by PD-L1 expression

† IO + chemo
vs
chemo

Hazard ratios with 95% Cl's shown N = 3,817 (10 trials)

Advanced, 1st-line

After chemoradiation & surgery

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

PD-L1-TPS ≥ 1

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

PD-L1-CPS 0-9

& TPS < 1

FOLFOX

(NCCN 2A)

Pembro + platin/FP (KN590)

(NCCN 2B and FDA)

SCC or AC if non-pCR

Adjuvant nivolumab x 1 yr (CM-577)

(NCCN 1-2A and FDA)

Advanced, 1st-line

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

PD-L1-TPS ≥ 1

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

PD-L1-CPS 0-9

& TPS < 1

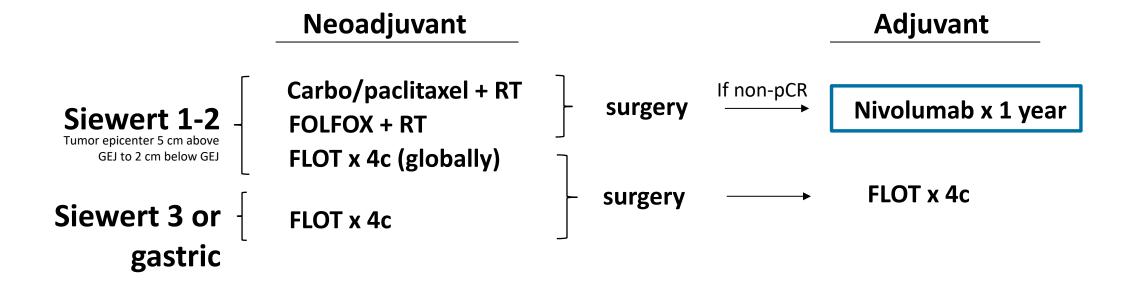
FOLFOX

(NCCN 2A)

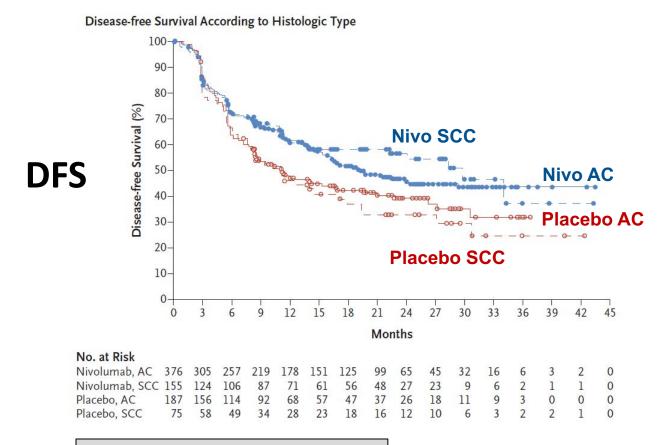
Pembro + platin/FP (KN590)

(NCCN 2B and FDA)

After chemoradiation & surgery


SCC or AC if non-pCR

Adjuvant nivolumab x 1 yr (CM-577)


(NCCN 1-2A and FDA)

2021 TREATMENT FOR LOCALLY ADVANCED GE CA

RESECTABLE LOCALLY ADVANCED

Adjuvant nivo x 12 m in esoph/GEJ carcinoma if residual tumor after neoadjuvant CRT and surg (CM-577)

SCC, HR 0.61 (95% CI 0.42-0.88)

AC, HR 0.75 (95% CI 0.59-0.96)

Study treatment was initiated within 4 to 16 weeks after R0 resection

Toxicity

- G3-4 34% vs 32%
- Leading to discontinuation 7% vs 6%

Treatment exposure 10.1 vs 9.0 months

FDA and NCCN Cat 1 approved

ONGOING RCTS IN LOCALLY ADV DISEASE

	N	Tumor	Treatment arms	Primary endpoint
ESOPEC	438	E/GEJ	carbo/Taxol + RT → S FLOT x 4 → S → FLOT x 4	os
RACE	340	Siew 1-3	FLOT x 2 then FU/Ox/RT $^a \rightarrow S \rightarrow FLOT x 4$ FLOT x 4 $\rightarrow S \rightarrow FLOT x 4$	PFS
TOPGEAR	752	G	ECF x 2 then RT \rightarrow S \rightarrow ECF x 3 ECF x 3 \rightarrow S \rightarrow ECF x 3	OS
KN-585	800	G Siew 2-3	CF/FLOT x 3 + pembro \rightarrow S \rightarrow CF/FLOT x 3 + pembro CF/FLOT x 3 \rightarrow S \rightarrow CF/FLOT x 3 b	OS, EFS, pCR
MATTER- HORN	900	G/GEJ	FLOT + durva \rightarrow S \rightarrow FLOT + durva FLOT \rightarrow S \rightarrow FLOT	EFS
DANTE/ FLOT8	295	G/GEJ	FLOT x 4 + atezo \rightarrow S \rightarrow FLOT x 4 + durva FLOT x 4 \rightarrow S \rightarrow FLOT x 4	PFS/DFS
EA2174	278	E Siew 1-2	carbo/Taxol/RT + Nivo → S → Nivo +/- IPI carbo/Taxol/RT → S	pCR, DFS

Atezo, atezolizumab; **durva**, durvalumab; **E** = esophagus; **EFS**, event free survival; **FU**, 5-fluorouracil; **G** = gastric; **Ox**, oxaliplatin; **Siew** = Siewert

^a oxaliplatin 45 mg/m2 weekly (d1, 8, 15, 22, 29) and continuous infusional 5-FU 225 mg/m2 + RT 45 Gy over 5 weeks

Advanced, 1st-line

After chemoradiation & surgery

PD-L1-CPS ≥ **10**

Pembro + platin/FP (KN590)

(NCCN 1-2A and FDA)

-----,

Consider Nivo + FOLFOX (CM648)

(Await FDA & NCCN)

PD-L1-CPS 0-9

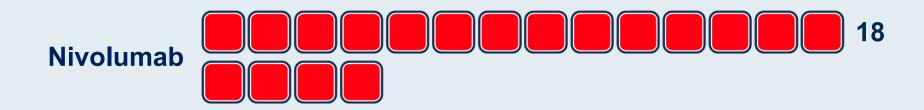
 $PD-L1-TPS \ge 1$

& TPS < 1

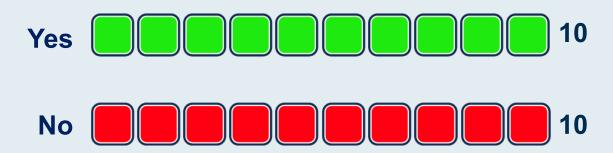
FOLFOX

(NCCN 2A)

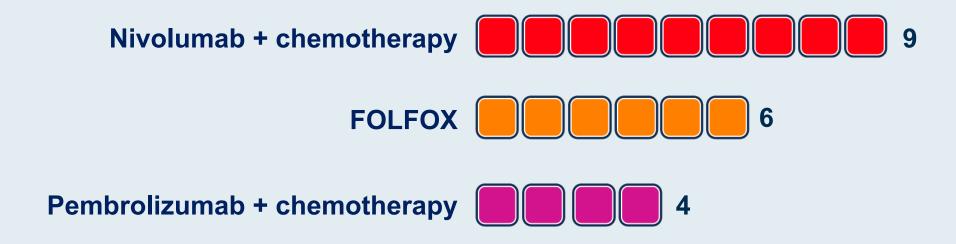
Pembro + platin/FP (KN590)

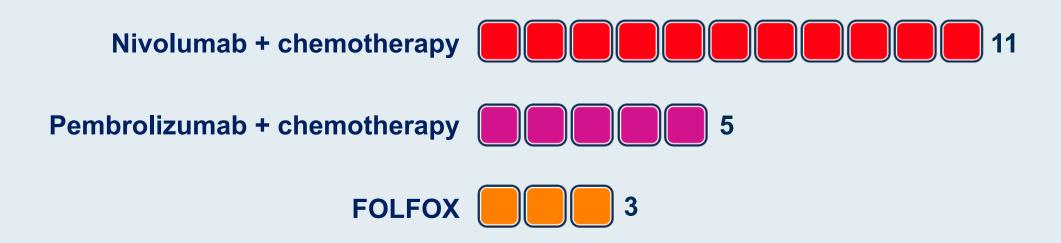

(NCCN 2B and FDA)

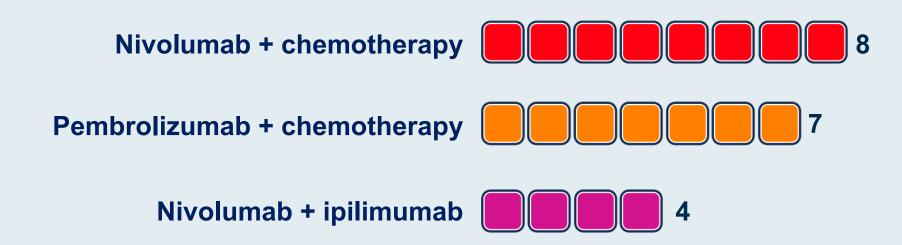
SCC or AC if non-pCR

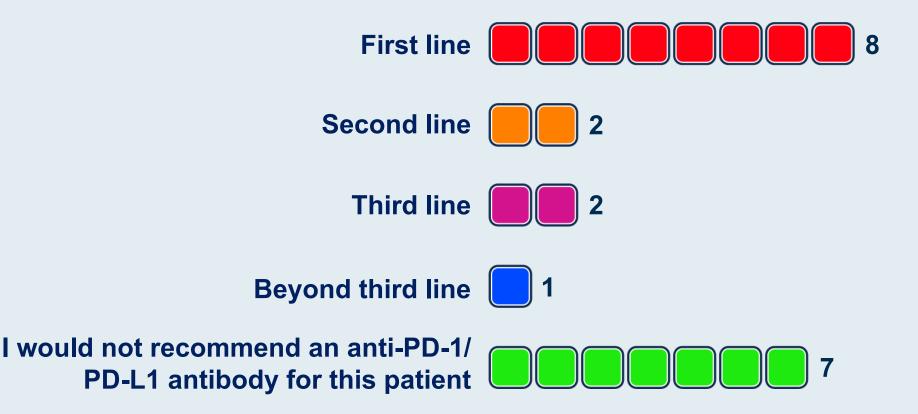

Adjuvant nivolumab x 1 yr (CM-577)

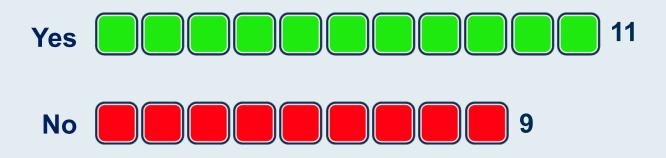
(NCCN 1-2A and FDA)


Which adjuvant systemic therapy would you currently recommend to a patient with HER2-negative, MSS squamous cell carcinoma of the esophagus who receives neoadjuvant carboplatin/paclitaxel and concurrent radiation therapy and has residual disease at surgery?


Regulatory and reimbursement issues aside, would you consider adding an anti-PD-1/PD-L1 antibody as a component of adjuvant treatment for a patient with HER2-negative, MSS adenocarcinoma of the GEJ who receives preoperative FLOT (docetaxel, oxaliplatin, leucovorin and 5-fluorouracil), undergoes resection and has residual disease at surgery?


Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient with metastatic HER2-negative, MSS squamous cell carcinoma of the esophagus with a PD-L1 CPS of 1?


Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient with metastatic HER2-negative, MSS squamous cell carcinoma of the esophagus with a PD-L1 CPS of 5?


Regulatory and reimbursement issues aside, which first-line therapy would you most likely recommend for a 65-year-old patient with metastatic HER2-negative, MSS squamous cell carcinoma of the esophagus with a PD-L1 CPS of 10?

Regulatory and reimbursement issues aside, in which line of therapy would you generally recommend an anti-PD-1/PD-L1 antibody (with or without chemotherapy) for a 65-year-old patient with metastatic HER2-negative, MSS squamous cell carcinoma of the esophagus with a PD-L1 CPS of 0?

If the novel anti-PD-1 antibodies (eg, sintilimab, toripalimab) under investigation in esophageal cancer were available, would you consider substituting them for currently available agents?

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Hepatobiliary Cancers (Part 3 of a 3-Part Series)

Friday, January 21, 2022 6:15 PM - 7:45 PM PT

Faculty

Ghassan Abou-Alfa, MD, MBA Richard S Finn, MD Robin K Kelley, MD

Moderator Tanios Bekaii-Saab, MD

Thank you for attending!

CME Credit Information

For those participating in person today, please remit your CME credit form as you exit the meeting room.

For all others, a CME credit link will be provided in the chat room at the conclusion of the program.

