Selection and Sequencing Therapy for Relapsed/Refractory CLL

Julie M. Vose, M.D., M.B.A. Chief, University of Nebraska Medical Center

Relapsed/Refractory CLL: Case 1

- 61 y/o female who was diagnosed with CLL 10 years ago
- 6 years ago she developed anemia requiring therapy
 - IGHV Mutated, FISH: del 13q
- She received FCR X 6 cycles with a CR
- Now she has rising lymphocytosis with new anemia (Hgb 8.5 gm/dl) and mild thrombocytopenia (plts 80,000/ul)
 - FISH still del 13q
- Many options left for therapy and combinations:
 - BTKi, Venetoclax, anti-CD20s, etc

SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL without del(17p)/*TP53* mutation (alphabetical by category)

NCCN Guidelines 4.2021

SECOND-LINE AND SUBSEQUENT THERAPY ^e				
	Preferred regimens	Other recommended regimen	<u>s</u>	
Frail patient with significant comorbidity <u>OR</u> Patients aged ≥65 y and younger patients with significant comorbidities (CrCl <70 mL/min)	 Acalabrutinib^{f,n} (category 1) Ibrutinib^f (category 1) Venetoclax^{f,g} + rituximab (category 1) Duvelisib^f Idelalisib^f + rituximab^o 	 Alemtuzumab^p ± rituximab Chlorambucil + rituximab Reduced-dose FCR^{j,k} HDMP + rituximab Idelalisib^f Lenalidomide^q ± rituximab Obinutuzumab Ofatumumab 	 Reduced-dose PCR Venetoclax^{f,g} Zanubrutinib (for patients with intolerance or contraindication to other BTKi)ⁿ Dose-dense rituximab (category 2B) Bendamustine + rituximab^r (category 2B) Bendamustine, rituximab + ibrutinib^{f,r} (category 2B) Bendamustine, rituximab + idelalisib^{f,r} (category 3) 	
Patients aged <65 y without significant comorbidities	 <u>Preferred regimens</u> Acalabrutinib^{f,n} (category 1) Ibrutinib^f (category 1) Venetoclax^{f,g} + rituximab (category 1) Duvelisib^f Idelalisib^f + rituximab^o 	Other recommended regimen • Alemtuzumab ^p ± rituximab • Bendamustine + rituximab • FC ^{j,k} + ofatumumab • FCR ^{j,k} • HDMP + rituximab • Idelalisib ^f • Lenalidomide ^q ± rituximab • Obinutuzumab • Ofatumumab	 S PCR Venetoclax^{f,g} Zanubrutinib (for patients with intolerance or contraindication to other BTKi)ⁿ Bendamustine, rituximab + ibrutinib^f (category 2B) Bendamustine, rituximab + idelalisib^f (category 2B) 	

POST SECOND-LINE CHEMOIMMUNOTHERAPY MAINTENANCE THERAPY (for complete or partial response after second-line therapy)

Other recommended regimens

Lenalidomide^m

Ofatumumab (category 2B)

Single- Agent Ibrutinib is Effective in R/R CLL – A 5-Year Experience

		~ • •	
Urograce	Inn_Lraa	Survival	modian 55 mol
FIUEIESSI		Juivivali	

	Median PFS	5-year PFS
Del17p (n=34)	26 mo	19%
Del11q (n=28)	55 mo	33%
Trisomy 12 (n=5)	NR	80%
Del13q (n=13)	NR	91%
No abnormality** (n=16)	NR	66%

	iviedian OS	5-year OS
Del17p (n=34)	57 mo	32%
Del11q (n=28)	NR	61%
Trisomy 12 (n=5)	NR	80%
Del13q (n=13)	NR	91%
No abnormality** (n=16)	NR	83%

ASCEND Study Design (ACE-CL-309)

• Interim analysis was planned after occurrence of ~79 PFS events (2/3 of primary event goal)

ASCEND: IRC-Assessed PFS Superior for Acalabrutinib vs IdR or BR

Acala = acalabrutinib; BR = bendamustine plus rituximab; HR = hazard ratio; IdR = idelalisib plus rituximab; IRC = independent review committee; NR = not reached; PFS = progression-free survival.

MURANO Study (NCT02005471)

Global, phase III, open-label, randomized study^[a]

At 48 months of follow-up, deep responses with uMRD were associated with favorable PFS^[b] *Investigator-assessed PD according to International Workshop on Chronic a. Seymour JF, et al. *N Engl J Med*. 2018;378:1107-1120; b. Kater AP, et al. *J Clin Oncol*. 2020;38:4042-4054.

MURANO: PFS and OS benefits with VenR over BR were sustained 3 years after EOT

• With this 5-year update we can now accurately define the median PFS of VenR-treated patients

• No new safety signals were identified 3 years after EOT with longer follow up and patients are outside of the adverse event reporting window

BR, bendamustine-rituximab; CI, confidence interval; EOT, end of treatment; HR, hazard ratio; NE, not evaluable; OS, overall survival; PFS, progression-free survival; VenR, venetoclax-rituximab; yr, year

MURANO: uMRD at EOT is associated with improved outcomes post-EOT in the VenR arm

	OS (95% CI) since EOT		
Category	24 month	36 month	
uMRD (<10 ⁻⁴)* (N=83)	98.8% (96.4, 100.0)	95.3% (90.0, 100.0)	
MRD (≥10 ⁻⁴) (N=35)	88.6% (78.0, 99.1)	85.0% (72.8, 97.2)	
	HR (95% CI)	P-value	
uMRD vs MRD	NS	NS	

CI, confidence interval; EOT, end of treatment; NE, not evaluable; NS, not significant; OS, overall survival; PFS, progression-free survival; (u)MRD, (undetectable) minimal residual disease; VenR, venetoclax-rituximab

Poster No. 3139

Efficacy of Subsequent Novel Targeted Therapies, Including Repeated Venetoclax-Rituximab (VenR), in Patients With Relapsed/Refractory Chronic Lymphocytic Leukemia (R/R CLL) Previously Treated With Fixed-duration VenR in the MURANO Study

Rosemary Harrup*1, Carolyn Owen², James D'Rozario³, Tadeusz Robak⁴, Arnon P. Kater⁵, Marco Montillo⁶, Javier de la Serna⁷, Marek Trneny⁸, Su Y. Kim⁹, Edward Bataillard¹⁰, Marcus Lefebure¹⁰, Michelle Boyer¹⁰, John F. Seymour¹¹

ASH 2020, abstract 3139

Subsequent therapies

Harrup, et al: ASH 2020, abst 3139

Response rates to subsequent Ven-based therapy were high

Median (range) treatment Median (range) treatment duration 11.4 (0.7-37.6) months duration 13.5 (0.2–30.7) months Subsequent therapy (ITT) 100 -5.6 VenR arm (n=67)* BR arm (n=123)* Proportion of patients (%) 30.0 80 15 (12.2%) **Best ORR** Best ORR 66.7 60 72.2% 80.0% 50.0 40 32 (47.8%) 5.6 20 11.1 10.0 11.1 10.0 0 VenR arm (n=18) BR arm (n=10) Ven CR/CRi PR/nPR SD Non-responder I PD

Best overall response rate (ORR)[†] to subsequent Ven-based therapy[#]

Harrup, et al: ASH 2020, 3139

Response rates to subsequent BTKi-based therapy were high

(26.9%)

Median (range) treatment Median (range) treatment Subsequent therapy (ITT) duration 21.9 (5.6-59.2) months duration 26.6 (0-50.4) months 100 -7.1 16.1 VenR arm (n=67)* BR arm (n=123)* Proportion of patients (%) 80 **Best ORR** 60 Best ORR 83.9% 67.9 100.0% 92.9 40 20 72 (58.5%) 10.7 5.4 0 VenR arm (n=14) BR arm (n=56) BTKi CR/CRi PR/nPR SD PD

Best overall response rate (ORR)[†] to subsequent BTKi-based therapy[#]

Harrup, et al: ASH 2020, abst 3139

Response to subsequent therapies following venetoclax discontinuation

Post-Ven Therapy	BTKi	BTKi	ВТКі	PI3Ki	CAR-T	Anti-CD20 abs
Agents	lbrutinib Acalabrutinib	Ibrutinib Acalabrutinib Non-covalent BTKi	Ibrutinib Acalabrutinib Non-covalent BTKi	Idelalisib Duvelisib	Anti-CD19	Rituximab Obinutuzumab Ofatumumab
Pre-Ven Exposure	BTKi-naïve	BTKi-exposed BTKi-resistant	BTKi-exposed BTKi-intolerant	PI3Ki-naïve BTKi-exposed	BTKi- exposed	
Patient Number	44	20	10	17	18	19
ORR	83.9%	53%	70%	46.9%	66.6%	32%
CR	9%	6.6%	20%	5.9%	33.3%	16%
PR	56.8%	26.4%	30%	35.2%	33.3%	16%
PR-L	18.1%	20%	20%	5.8%	0%	0%
SD	11.6%	20%	-	23.7%	5.7%	32%
PD	4.5%	27%	30%	29.4%	27.7%	37%

ORR BTKi (naïve) vs. BTKi (exposed, resistant), p=.001

Harrup, et al: ASH 2020, abst 3139

Relapsed/Refractory CLL: Case 2

- 75 y/o male who was diagnosed with CLL 11 years ago
- 7 years ago, he developed anemia and lymphadenopathy requiring therapy
 - IGHV Mutated, FISH: del 11q-
- He received Ibrutinib 420 mg/day good tolerance
- 3 years ago, he had rising lymphocytosis with new anemia (Hgb 9.0 gm/dl) and lymphadenopathy - (FISH: del 11q -)
- He received Venetoclax/Rituximab
 - but now progressed (FISH del 11q- with new del 17p-)
- Options left for therapy and combinations:
 - PI3K inhibitors, other BTK inhibitors, other anti-CD20 antibody combinations, clinical trials – CAR-T cells?

Treatment Recommendations for Relapsed/Refractory CLL

Ghia. JCO. 2020;38:2849. 2. Munir. Am J Hematol. 2019;94:1353. 3. Kater. JCO. 2019;37:269. 4. Kater. JCO. 2020;38:4042.
 Flinn. Blood. 2018;132:2446. 6. Flinn. JCO. 2019;37:912. 7. Davids. Clin Cancer Res. 2020;26:2096. 8. Furman. NEJM.
 2014;370:997. 9. O'Brien. Lancet Oncol. 2016;17:1409. 10. Stilgenbauer. JCO. 2018;36:1973. 11. Sharman. JCO. 2019;37:1391.

PI3K inhibitors Currently Approved for Hematologic Cancers

Idelalisib	Duvelisib	Copanlisib	Umbralisib
<section-header><section-header><text></text></section-header></section-header>	<section-header><section-header><section-header><text></text></section-header></section-header></section-header>	<section-header><section-header><text></text></section-header></section-header>	<section-header><text></text></section-header>

Phase 3 Study of Umbralisib Combined With Ublituximab vs Obinutuzumab Plus Chlorambucil in Patients With Chronic Lymphocytic Leukemia: Results From UNITY-CLL

John G. Gribben, MD DSc¹, Wojciech Jurczak, MD, PhD², Ryan W. Jacobs, MD³, Sebastian Grosicki, MD, PhD⁴, Krzysztof Giannopoulos, MD, PhD⁵, Tomasz Wrobel, MD PhD⁶, Syed F. Zafar, MD⁷, Jennifer L. Cultrera, MD⁸, Suman Kambhampati, MD⁹, Alexey Danilov, MD¹⁰, John M. Burke, MD¹¹, Jerome Goldschmidt, MD¹², Douglas F. Beach, MD¹³, Scott F. Huntington, MD, MPH¹⁴, Javier Pinilla Ibarz, MD, PhD¹⁵, Jeff P Sharman, MD¹⁶, Tanya Siddiqi, MD¹⁷, Danielle M. Brander, MD¹⁸, John M. Pagel, MD PhD¹⁹, Kathryn S. Kolibaba, MD²⁰, Monika Dlugosz-Danecka, MD, PhD², Nilanjan Ghosh, MD, PhD³, Peter Sportelli, BS²¹, Hari P. Miskin, MSc²¹, Owen A. O'Connor, MD, PhD²¹, Michael S. Weiss²¹ and Ian W. Flinn, MD, PhD²²

¹Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; ²Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; ³Department of Hematology, Lymphoma Division, Levine Cancer Institute, Charlotte, NC; ⁴Department of Hematology and Cancer Prevention, School of Public Health, Silesian Medical University, Katowice, Poland; ⁵Medical Univ. of Lublin, Lublin, Poland; ⁶Department of Hematology, Wroclaw Medical University, Wroclaw, Poland; ⁷Florida Cancer Specialists South / Sarah Cannon Research Institute, Fort Myers, FL; ⁸Florida Cancer Specialists North / Sarah Cannon Research Institute, St. Petersburg, FL; ⁹Sarah Cannon Research Institute At Research Medical Ctr, Kansas City, MO; ¹⁰Knight Cancer Institute, Oregon Health & Science University, Duarte, CA; ¹¹US Oncology Hematology Research Program, Rocky Mountain Cancer Centers, Aurora, CO; ¹²Blue Ridge Cancer Centers / US Oncology Research, Blacksburg, VA; ¹³Pennsylvania Hospital, Philadelphia, PA; ¹⁴Yale Cancer Center, New Haven, CT; ¹⁵Department of Immunology, Moffitt Cancer Center, Tampa, FL; ¹⁶Willamette Valley Cancer Institute and US Oncology Research, Eugene, OR; ¹⁷Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA; ¹⁸Duke Cancer Institute, Duke University Health System, Durham, NC; ¹⁹Swedish Cancer Institute, Seattle, WA; ²⁰Compass Oncology / US Oncology Research, Vancouver, WA; ²¹TG Therapeutics, Inc., New York, NY; ²²Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN

Umbralisib Is a Dual Inhibitor of PI3Kδ and CK1ε

Umbralisib ¹	Idelalisib ¹	Duvelisib ¹	Copanlisib ²
	$F \qquad 0 \qquad $	$\begin{array}{c} CI \\ \downarrow \\ $	
	K _d (nM)	
>10000	600	40	0.04
>10000	19	0.89	1.5
1400	9.1	0.21	0.31

ΡΙ3Κδ	6.2	1.2	0.047	0.068
CK1ε	180	>30,000	>30,000	>6,000

- Umbralisib is an oral, once daily, dual inhibitor of PI3Kδ and CK1ε
- Umbralisib has >1000-fold greater selectivity for PI3Kδ compared to α and β isoforms³
- Umbralisib is also >200-fold more selective for PI3Kδ relative to PI3Kγ

PI3k: phosphoinositide 3-kinase; CK1ɛ: casein kinase 1ɛ.

Isoform PI3kα PI3Kβ PI3Kγ

1. Burris HA, et al. Lancet Oncol. 2018;19(4):486-496. 2. Data on File [TGR 001]. TG Therapeutics, Inc, New York City, NY.

UNITY-CLL Study Design (UTX-TGR-304) Focus is on primary analysis:U2 vs O+Chl (n=421)

R

Α

Ν

D

0

Μ

Ζ

1:1

Patients (N=421)

- Treatment-naïve or relapsed/refractory CLL
- Requiring treatment per iwCLL criteria
- Adequate organ function
- ECOG PS ≤2

Stratification

- del(17p): present vs absent
- Treatment status: treatment-naive vs previously treated

Obinutuzumab^c + Chlorambucil^d (O+Chl)

^c1000 mg IV on D1/2, 8, 15 of Cycle 1, D1 of cycles 2 – 6 ^d0.5 mg/kg PO on D1 and D15 Cycles 1 – 6

Primary endpoint

- IRC-assessed PFS U2 vs O+Chl

Secondary endpoints

- IRC-assessed:
 - ORR, CR, DOR
- uMRD (central)
- Safety

- Interim analyses for PFS were performed at:
 - 50% IRC-assessed PFS events to assess futility only
 - 75% IRC-assessed PFS events to evaluate superiority of U2 vs O+Chl

CR: complete response; DOR: duration of response; DSMB: data safety monitoring board; ECOG PS: Eastern Cooperative Oncology Group performance status; IRC: independent review committee; IV: intravenously; ORR: overall response rate; PFS: progression-free survival, PO: orally; Q3: every 3; QD: daily; uMRD: undetectable minimal residual disease; D1/2 signifies split doses ublituximab (150 mg / 750 mg) obinutuzumab (100 mg /900 mg); cycles were 28 days. U2 combination continued until progressive disease, unacceptable toxicity, or withdrawal of consent.

UNITY-CLL: IRC-Assessed Progression-Free Survival Previously Treated Population

CI: confidence interval; HR: hazard ratio; IRC: independent review committee; O+ChI: obinutuzumab + chlorambucil; PFS: progression-free survival; U2: umbralisib + ublituximab

UNITY-CLL: Events of Clinical Interest – PI₃K specific

	L N=	2 206	O+ N=	Chl 200
AEs, n (%)	Any	Grade ≥3	Any	Grade ≥3
ALT elevation	35 (17.0)	17 (8.3)	9 (4.5)	2 (1.0)
AST elevation	28 (13.6)	11 (5.3)	9 (4.5)	4 (2.0)
Colitis (non-infectious) ^a	10 (4.9)	4 (1.9)	0	0
Colitis (infectious) ^a	1(0.5)	1(0.5)	1 (0.5)	1 (0.5)
Pneumonitis	6 (2.9)	1(0.5)	1(0.5)	0
Rash ^a	26 (12.6)	5 (2.4)	10 (5.0)	1 (0.5)
Opportunistic Infections ^a	29 (14.1)	12 (5.8)	11 (5.5)	3 (1.5)

^aGroup includes multiple MedDRA terms. AE: adverse event; O+Chl: obinutuzumab + chlorambucil; U2: umbralisib + ublituximab.

ALPINE: Phase III Randomized Trial of Zanubrutinib vs Ibrutinib in Relapsed/Refractory CLL or SLL – 1° Outcome

	Zanubrutinib (n = 207), n (%)	Ibrutinib (n = 208), n (%)
Primary endpoint:	162 (78.3) 95% CI: 72.0, 83.7	130 (62.5) 95% CI: 55.5 <i>,</i> 69.1
	Superiority 2-sided <i>p</i> = 0.0006 comp	pared with prespecified alpha of 0.0099
CR/CRi	4 (1.9)	3 (1.4)
nPR	1 (0.5)	0
PR	157 (75.8)	127 (61.1)
ORR (PR-L + PR + CR)	183 (88.4)	169 (81.3)
PR-L	21 (10.1)	39 (18.8)
SD	17 (8.2)	28 (13.5)
PD	1 (0.5)	2 (1.0)
Discontinued or new therapy prior to first assessment	6 (2.9)	9 (4.3)
	Del(17p) (n = 24), n (%)	Del(17p) (n = 26), n (%)
ORR (PC + CR)	20 (83.3)	14 (53.8)

CI, confidence interval; CR, complete response; CRi, complete response with incomplete bone marrow recovery; nPR, nodular partial response; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease

Take-Home Messages on R/R CLL in 2021

- Continuous novel agent monotherapy remains a viable approach
- Prospective data support continuous venetoclax monotherapy in patients progressing on ibrutinib
- Venetoclax + R is a 2-year time-limited therapy with durable benefit post CIT
- Many new promising strategies are on the horizon, including ven + BTKi, ven + PI3Ki, BTKi + PI3Ki, and reversible BTKi to overcome irreversible BTKi resistance
- Cellular therapies (BMT and CAR-T) should be considered in later therapy lines especially for fit patient with *TP53* aberrant disease
- Active participation in clinical trials remains critical