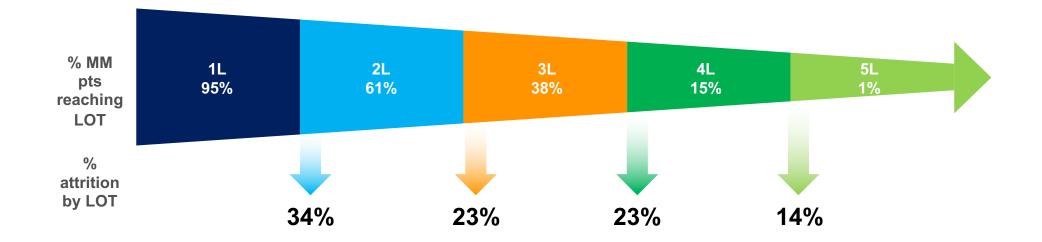


Selection and Sequencing of Therapies for Patients with Relapsed/Refractory Myeloma

Relapsing Nature of Multiple Myeloma: Clones Change over Time



MGUS = monoclonal gammopathy of undetermined significance Adapted from Dr. Brian Durie and Keats JJ, et al. *Blood*. 2012;120:1067-1076.

Only few MM patients reach later lines of therapy

In every new LOT, ~15-35% of patients are lost

Figure adapted from: Yong, K et al. Br J Haematol 2016;175(2):252-264.

An Approach to Relapsed MM

- It is not a simple algorithm of treatment #1 then 2 then 3...
- Important to leverage the benefit of multiple mechanisms of action in combination therapy

Categories:

- 1-3 prior lines
- Later Relapse
- Refractory to PI, IMiD and MoAb = Triple-Class Refractory
 Principles
- Depth of Response matters... *likely incorporate MRD soon*
- High risk vs standard risk... more aggressive Rx in high risk
- Balance efficacy and toxicity... *initially and constantly assess*

IKEMA Study design: Isa-Kd vs Kd in relapsed multiple myeloma


Stratification factors:

- Prior line 1 vs >1
- R-ISS I or II vs III vs not classified

Relapsed MM N=302

- 1–3 prior lines

- No prior therapy with carfilzomib
- Not refractory to prior anti-CD38

- Isa: 10 mg/kg on D1, 8, 15, 22 in C1, then Q2W
- K: 20 mg/m² D1–2; 56 mg/m² D8–9, D15–16 C1; 56 mg/m² D1–2, D8–9, D15–16 all subsequent cycles
- d: 20 mg D1–2, D8–9, D15–16 and D22–23 each cycle

3:2

Randomization

Treatment until PD. unacceptable toxicities, or patient choice

Kd (n=123)

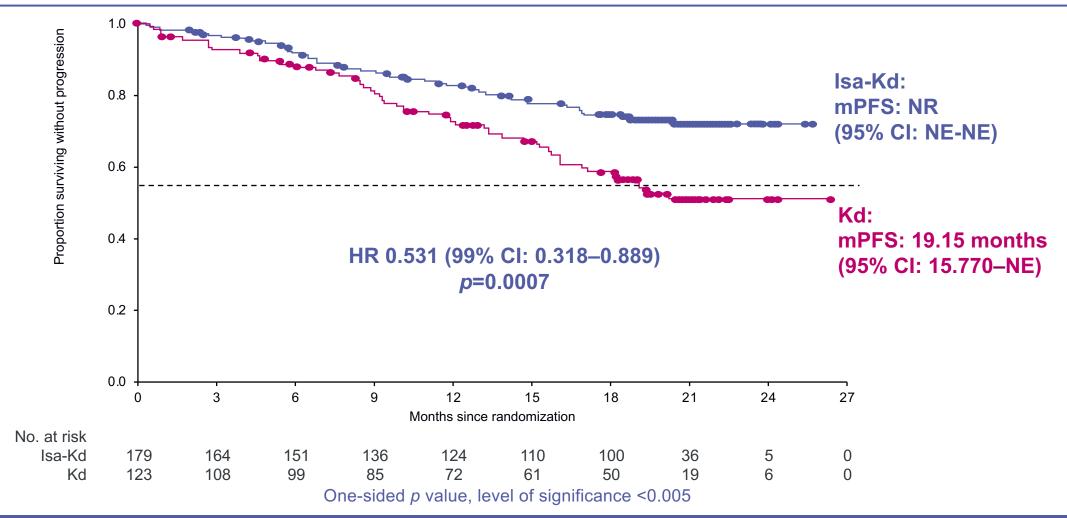
- K: 20 mg/m² D1–2; 56 mg/m² D8–9, D15–16 C1; 56 mg/m² D1–2, D8–9, D15–16 all subsequent cycles
- d: 20 mg D1–2, D8–9, D15–16 and D22–23 each cycle

Primary Endpoint: PFS (IRC)

Key secondary endpoints: ORR, rate of ≥VGPR, MRD negativity, **CR rate, OS**

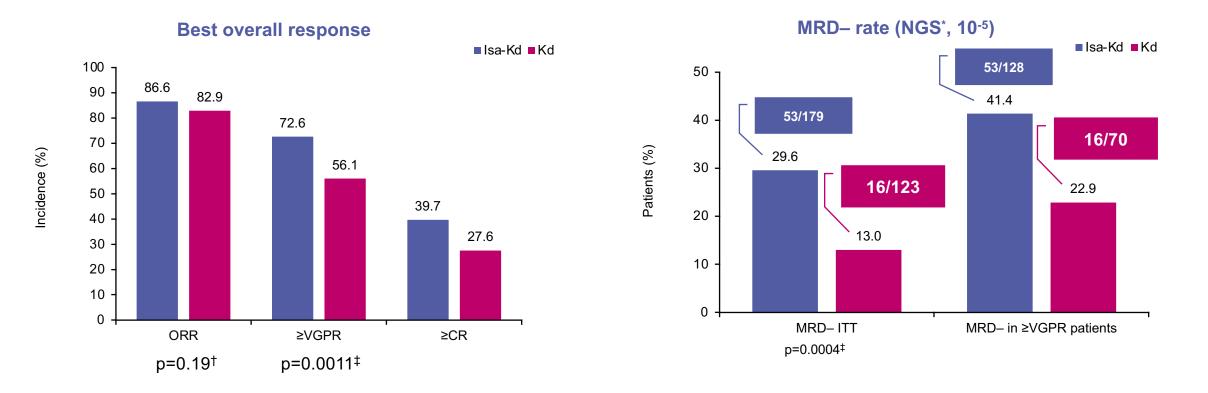
Median PFS control arm estimated at 19 months

Prespecified interim analysis when 65% PFS events (103) as per IRC


Sample size calculation: ~300 patients and 159 PFS events to detect 41% risk reduction in hazard rate for PFS with 90% power and one-sided 0.025 significance level

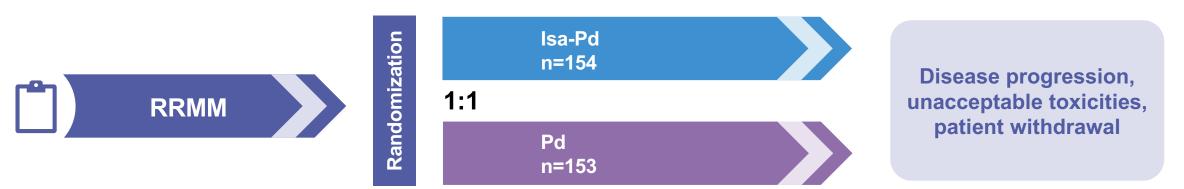
IKEMA study: NCT03275285

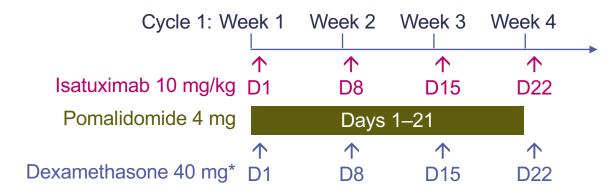
C, cycle; CD, cluster of differentiation; CR, complete response; D, day; d, dexamethasone; IRC, Independent Response Committee; Isa, isatuximab; K, carfilzomib; MM, multiple myeloma; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; Q2W, once every 2 weeks; R-ISS, Revised International Staging System; VGPR, very good partial response.

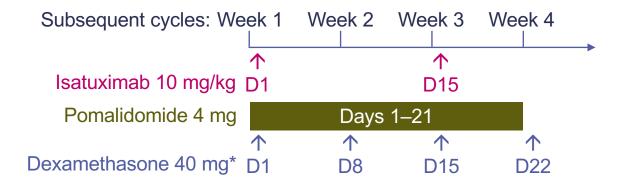

Moreau P. et al. Future Oncol. 2020;16:4347-4358.

IKEMA Interim PFS analysis – IRC assessment in ITT population (primary endpoint)

Isa-Kd showed improvement in PFS with 47% reduction of risk of progression or death vs Kd


IKEMA Depth of response


The MRD– rate more than doubled in patients receiving Isa-Kd and was approximately 30% in the ITT population


*Adaptive Biotechnologies NGS, MRD testing performed at time of VGPR or CR. †Stratified Cochran-Mantel-Haenszel test. One-sided significance level is 0.025. ‡Provided for descriptive purposes only. CR, complete response; d, dexamethasone; ITT, intent-to-treat; Isa, isatuximab; K, carfilzomib; MRD, minimal residual disease; neg, negative; NGS, next generation sequencing; ORR, overall response rate; PFS, progression-free survival; VGPR, very good partial response.

ICARIA: Isa-Pd vs Pd Study design

Sample size calculation: ~300 patients required to detect an HR of 0.6 with 90% power and 1-sided type 1 error of 2.5%

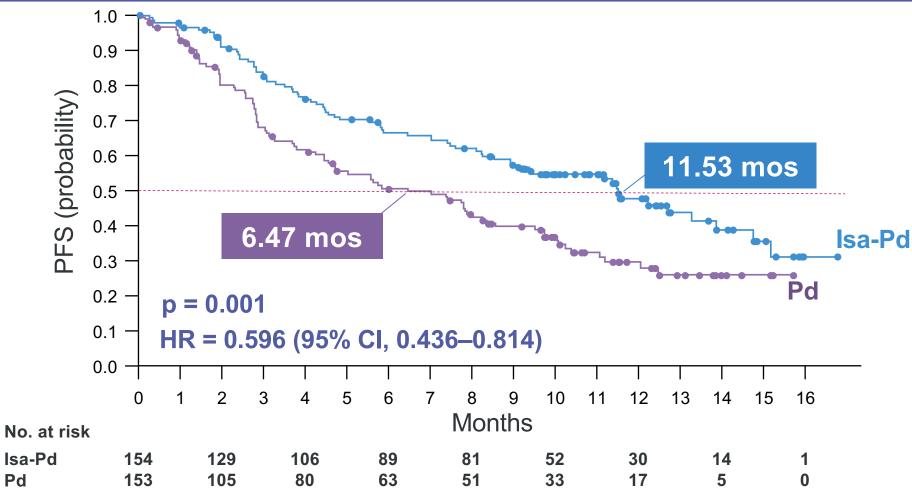
*Dexamethasone dose was 20 mg in patients aged ≥75 years

d, dexamethasone; HR, hazard ratio; Isa, isatuximab; P, pomalidomide; RRMM, relapsed/refractory multiple myeloma

CONFIDENTIAL. FOR ADVISORY BOARD USE ONLY

Richardson PG, et al. Future Oncol 2018;14:1035-47;

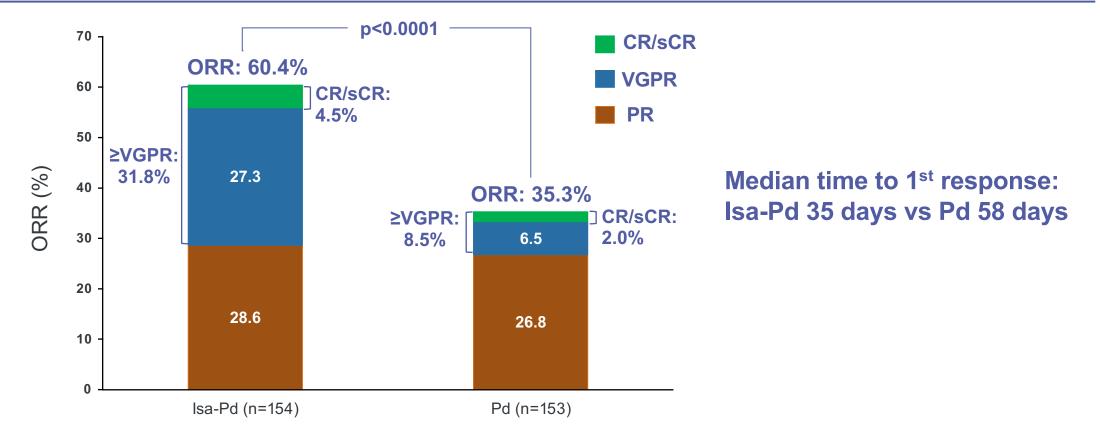
	Isa-Pd (n=154)	Pd (n=153)
Median age, years (range)	68 (36–83)	66 (41–86)
Age category, n (%)		
<65 years	54 (35.1)	70 (45.8)
65–75 years	68 (44.2)	54 (35.3)
≥75 years	32 (20.8)	29 (19.0)
Prior history of asthma / COPD, n (%)	16 (10.4)	17 (11.1)
CrCl [eGFR*] <60 mL/min/1.73m², n (%)	55/142 (38.7)	49/145 (33.8)


*By MDRD

COPD, chronic obstructive pulmonary disease; CrCl, creatinine clearance; d, dexamethasone; eGFR, estimated glomerular filtration rate; Isa, isatuximab; MDRD, Modification of Diet in Renal Disease Study; P, pomalidomide

CONFIDENTIAL. FOR ADVISORY BOARD USE ONLY

ICARIA: Isa-Pd vs Pd PFS (IRC assessment – primary endpoint)


Statistically significant improvement in PFS

CI, confidence interval; d, dexamethasone; HR, hazard ratio; IRC, Independent Review Committee; Isa, isatuximab;, mos, months; PFS, progression-free survival; P, pomalidomide

CONFIDENTIAL. FOR ADVISORY BOARD USE ONLY

ICARIA: Isa-Pd vs Pd Response summary (IRC assessment)

Addition of Isa to Pd resulted in significant improvement in overall and depth of response

Data cut-off 11 Oct, 2018

CR, complete response; d, dexamethasone; IRC, Independent Review Committee; Isa, isatuximab; ORR, overall response rate; P, pomalidomide; PR, partial response; sCR, stringent complete response; VGPR, very good partial response

SANOFI GENZYME 🌍

CONFIDENTIAL. FOR ADVISORY BOARD USE ONLY

Some biological differences but not apparently clinically significant Practical differences

Dosing

Dara weekly x4, q2 weekly x8 then q4 weeks

Isa weekly x4 then q2 week

Administration

Dara IV over 6-8 hours first 2 then 2-4 hours

Dara SQ over 5 minutes!

Isa IV 3.5 hours then 2 hours, then 75 mins

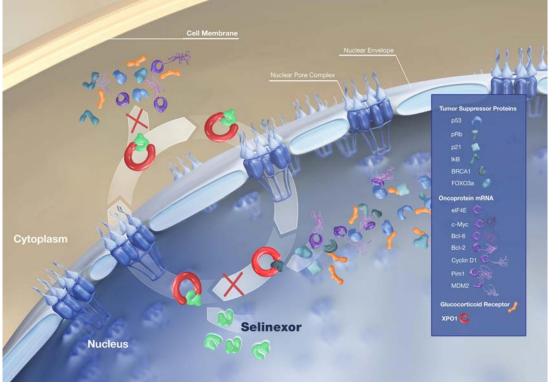
CORRESPONDENCE

Open Access

A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab

Joseph Mikhael[®], Karim Behadj-Merzoug², Cyrille Hulin³, Laure Vincent (5⁴, Philippe Moreau³, Cristina Gasparetto⁶, Ludek Pour⁷, Ivan Spicka⁸, Ravi Vij⁹, Jeffrey Zonder¹⁰, Djordje Atanackovic¹¹, Nashat Gabrail¹², Thomas G. Martin¹³, Aurore Periot (5¹⁴, Samira Bensfia¹⁵, Qilong Weng¹⁶, Claire Brillac (5¹⁷, Dorothée Semiond¹⁷, Sandrine Macé¹⁷, Kathryn P. Corzo^{15,18} and Xavier Leleu (5¹⁹)

IMPORTANT – one agent does NOT seem to overcome resistance to the other


We have much more to learn about CD38 resistance...

Selinexor: First-in-Class, Oral Selective Inhibitor of Nuclear Export (SINE)

The novel MOA of selinexor targets some hallmarks of cancer biology by targeting XPO1, the nuclear export protein central to the hallmark processes

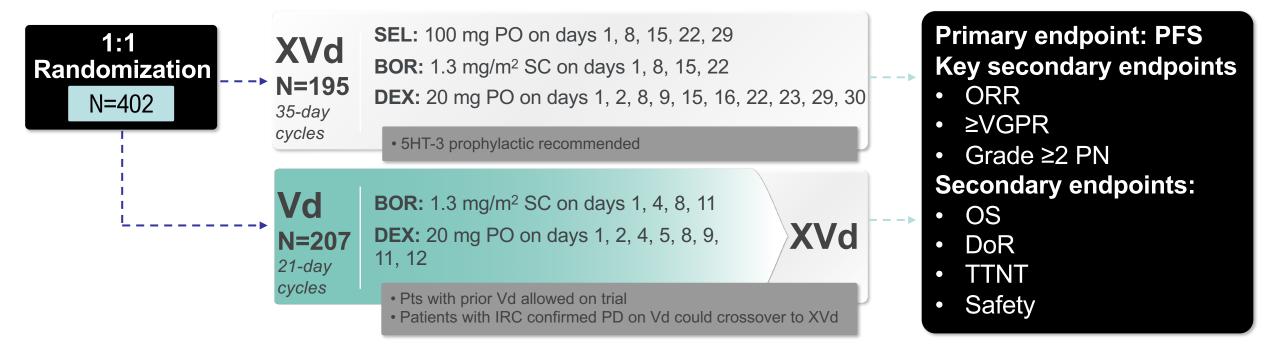
For illustrative purposes only

XPO1. Exportin 1.

Hallmarks of cancer include¹:

- Self-sufficiency in growth signals
- Insensitivity to anti-growth signals
- Evasion of apoptosis
- Sustained angiogenesis
- Limitless replicative potential

XPO1 overexpression:


- Inactivates tumor suppressor proteins (eg, p53) by mislocalization²
- Enhances proto-oncoprotein translation (eg, c-myc, Bcl-2)^{2,3}
- Correlates with poor clinical outcomes and poor response to treatment⁴⁻⁶

XPO1 inhibition by selinexor targets these hallmarks by:

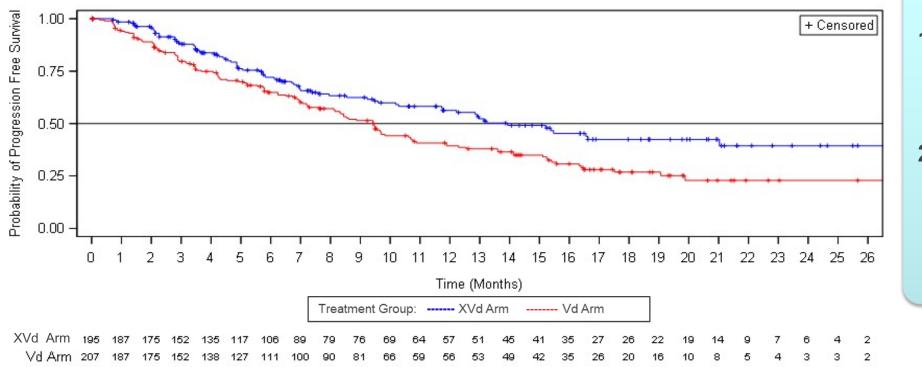
- Reactivating multiple tumor suppressor proteins by preventing nuclear export^{2,7}
- Inhibiting oncoprotein translation by sequestering mRNA in the nucleus^{2,7}
- Blocks DNA damage repair ^{2,7}
- Reactivating glucocorticoid receptor signaling in presence of dexamethasone⁸⁻

1. Hanahan D, et al. Cell. 2000;100(1):57-70. 2. Sun Q, et al. Signal Transduct Target Ther. 2016;1:16010. 3. Gandhi UH, et al. Clin Lymphoma Myeloma Leuk. 2018;18(5):335-345. 4. Noske A, et al. Cancer. 2008;112(8):1733-1743. 5. Shen A, et al. Neurosurgery. 2009;65(1):153-159. 6. Huang W, et al. Clin Invest Med. 2009;32(6):E315. 7. Wang AY, Liu H. Stem Cell Investig. 2019;6:6. 8. Chen CI, et al. Blood. 2014;124(21):4773. 9. Kashyap T, et al. Blood. 2015;126(23):3683. 10. Argueta C, et al. Oncotarget. 2018;9(39):25529-25544.

BOSTON: phase 3, global, randomized, open label, controlled study in patients with multiple myeloma who had received 1-3 prior therapies

The XVd regimen requires approximately **40% less bortezomib** than Vd which entails **37% fewer clinic visits** over the first 6 months of treatment

DoR, duration of response; IRC, independent review committee; PN, peripheral neuropathy; TTNT, time to next treatment; X, Selinexor.



BOSTON Primary endpoint – PFS with XVd vs Vd

 XVd (n=195)
 Vd (n=207)

 Median PFS, mos (95% Cl)
 13.93 (11.73, NE)
 9.46 (8.11, 10.78)

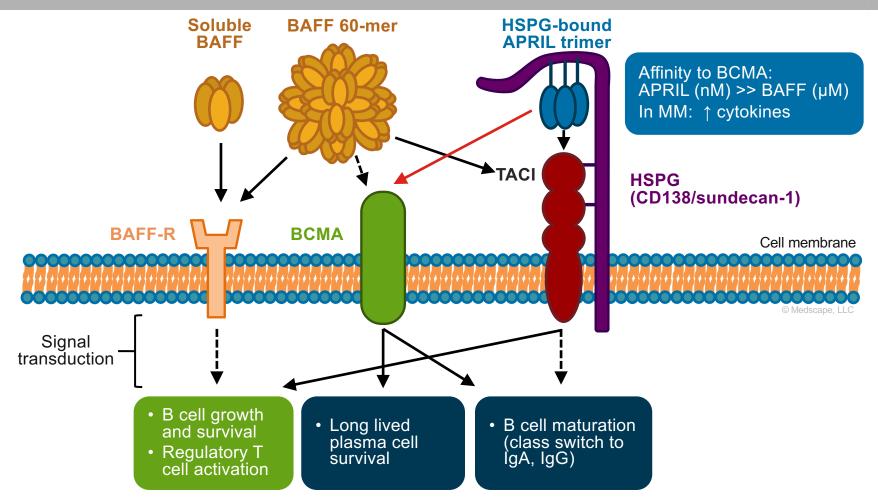
 HR=0.7020 (95% Cl: 0.5279, 0.9335); one-sided P=0.0075

This data represents:

- 1. An increase of 4.47 months in median PFS
- 2. A 30% reduction in the risk of disease progression or death

Note – 50% of patients in the intervention had HIGH RISK cytogenetics

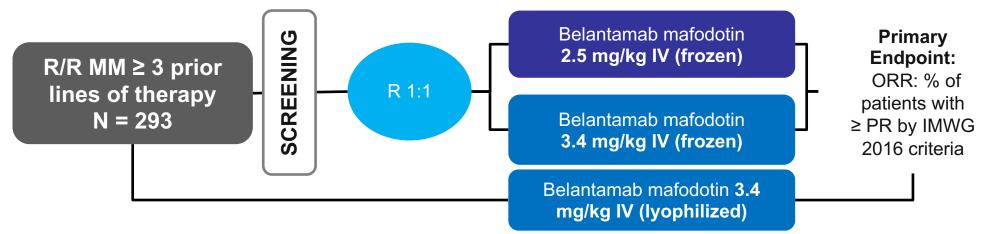
Grosicki S, et al. Lancet. 2020;396:1563-1573; Karyopharm Therapeutics Inc. Data on file.


- PLUS
 - First phase 3 trial to properly use weekly bortezomib
 - Provides another option for lenalidomide refractory disease
 - Selinexor is much better tolerated in weekly dosing
 - 50% of patients had HIGH RISK disease
 - Now combining Selinexor with Carfilzomib and Daratumumab!
- MINUS
 - Bortezomib, even weekly, is not an ideal relapse partner
 - · Limited by neurotoxicity, usually seen prior and not most potent PI

PS. Don't dismiss selinexor due to toxicity – it can work well but has to be administered carefully, with 2 anti-nauseants, especially in the first month

BCMA-targeted therapy MOA

BAFF, B-cell activation factor; BCMA, B-cell maturation antigen; HSPG, heparin sulfate proteoglycan; TACI, transmembrane activator and calcium modulator and cyclophilin ligand interactor.



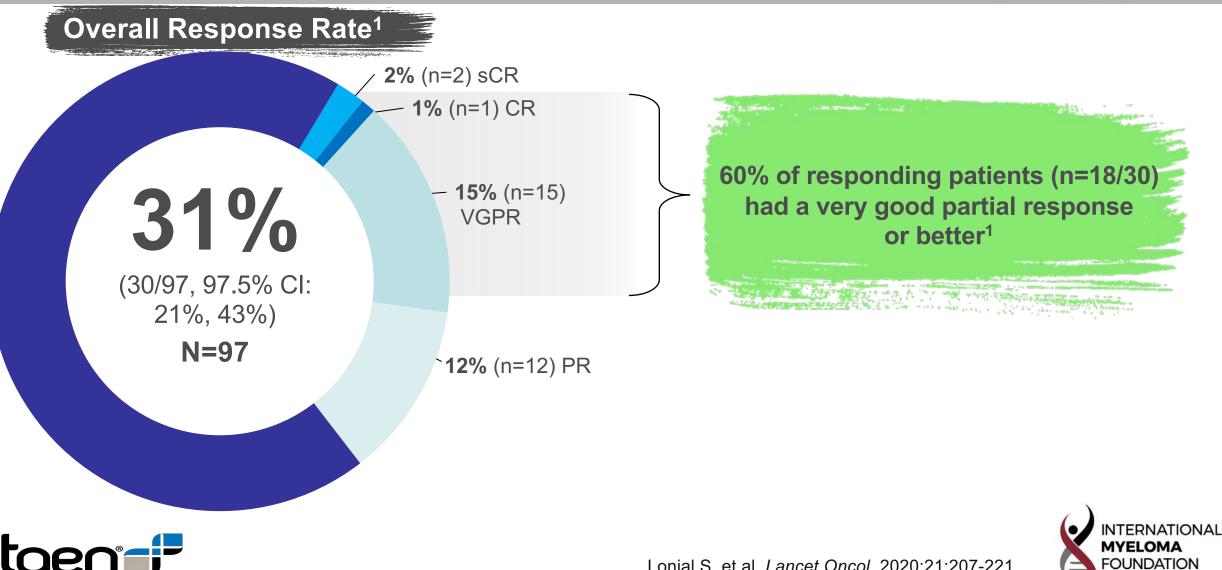
Tai Y-T, et al. *Immunotherapy*. 2015;7:1187–1199.

Belantamab mafodotin DREAMM-2 trial study design

- Belantamab mafodotin
 - ADC: Anti-BCMA mAb conjugated to auristatin F through a non-cleavable linker

Belantamab mafodotin administered once every 3 weeks until disease progression or unacceptable toxicity

Belantamab mafodotin-blmf (2.5 mg/kg): FDA accelerated approval on August 5, 2020 for R/R MM after \geq 4 prior therapies, including an anti-CD38 monoclonal antibody, a PI, and an immunomodulatory agent


ADC, antibody-drug conjugate

Lonial S, et al. *Lancet Oncol.* 2020;21:207-221; https://www.fda.gov/drugs/drug-approvals-and-databases/fda-granted-accelerated-approvalbelantamab-mafodotin-blmf-multiple-myeloma FDA.gov

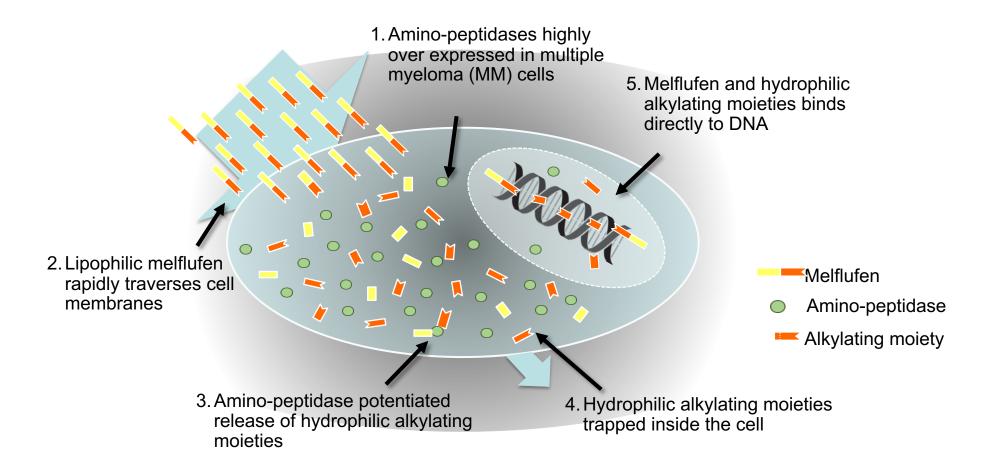
DREAMM-2 efficacy results

DREAMM-2 Safety overview

Number of Patients With Event	Belantamab Mafodotin 2.5 mg/kg (n = 95)		Belantamab Mafodotin 3.4 mg/kg (n = 99)			
(Safety Population), n (%)	Grade 1/2	Grade 3	Grade 4	Grade 1/2	Grade 3	Grade 4
Keratopathy or corneal epithelium changes	41 (43)	26 (27)	0	53 (54)	20 (20)	1 (1)
Thrombocytopenia	14 (15)	8 (8)	11 (12)	24 (24)	11 (11)	22 (22)
Anemia	4 (4)	19 (20)	0	12 (12)	22 (22)	3 (3)
Nausea	23 (24)	0	0	31 (31)	1 (1)	0
Pyrexia	18 (19)	2 (2)	1 (1)	21 (21)	4 (4)	0
Blurred vision	17 (18)	4 (4)	0	28 (28)	2 (2)	0
Infusion-related reactions	17 (18)	3 (3)	0	15 (15)	1 (1)	0
Increased aspartate aminotransferase	17 (18)	2 (2)	0	18 (18)	6 (6)	0
Fatigue	13 (14)	2 (2)	0	21 (21)	5 (5)	0
Dry eye	12 (13)	1 (1)	0	23 (23)	0	0
Neutropenia	4 (4)	5 (5)	4 (4)	12 (12)	12 (12)	3 (3)

Belantamab mafodotin-blmf Ocular toxicity warning

- Changes in the corneal epithelium resulting in changes in vision including severe vision loss and corneal ulcer, and symptoms, such as blurred vision and dry eyes
- Conduct ophthalmic exams at baseline, prior to each dose, and promptly for worsening symptoms
 - Withhold until improvement and resume, or permanently discontinue, based on severity
- Available only through REMS program
 - Prescribers must be certified with the program by enrolling and completing training
 - Prescribers must counsel patients about the risk of ocular toxicity and the need for ophthalmic examinations prior to each dose
 - Patients must be enrolled in the REMS program and comply with monitoring
 - Healthcare facilities must be certified with the program and verify that patients are authorized
 - Wholesalers and distributers must only distribute to certified healthcare facilities


My take – belantamab mafodotin

- The first BCMA directed therapy in MM
- Impressive response rates
- Corneal toxicity remains a significant issue, however
 - REMS program in the US/risk management plan in Europe must see eye specialist before EACH dose!
 - Possible dose adjustment in the future
- Will be important to see it combined with other agents
- Very accessible to community centers (no risk of CRS)
- Now being combined with MULTIPLE other MM agents

Melphalan flufenamide (Melflufen) is a peptidase enhanced therapy with an alkylating payload

1. Chauhan D, et al. *Clin Cancer Res*. 2013;19:3019; 2. Wickström M, et al. *Invest New Drugs*. 2008;26:195; 3. Ray A, et al. *Br J Haematol*. 2016;174:397; 4. Strese S, et al. *Biochem Pharmacol*. 2013;86:888; 5. Wickström M, et al. *Oncotarget*. 2017;8:66641.

Key findings of the HORIZON study of melflufen/Dex – subset of 97 patients with 4 prior lines AND refractory to at least one PI, IMID and CD38 mAb

- Baseline median 6 prior lines, 70% prior ASCT and 75% refractory to alkylation
- Response rate 23.7% with median DOR 4.2 months
- PFS 3.8 months, OS 9.1 months
- In EMD the ORR was 15%
- Key points
 - Very heavily pretreated with median 6 prior lines (Indication mandates 4 prior LINES)
 - Hematologic toxicities are main adverse events
 - Must be given with a central line
 - Very attractive in light of less use of alkylation but also can overcome resistance

EMD, extramedullary disease

OCEAN: Melflufen/dexamethasone vs pomalidomide/dexamethasone in RRMM

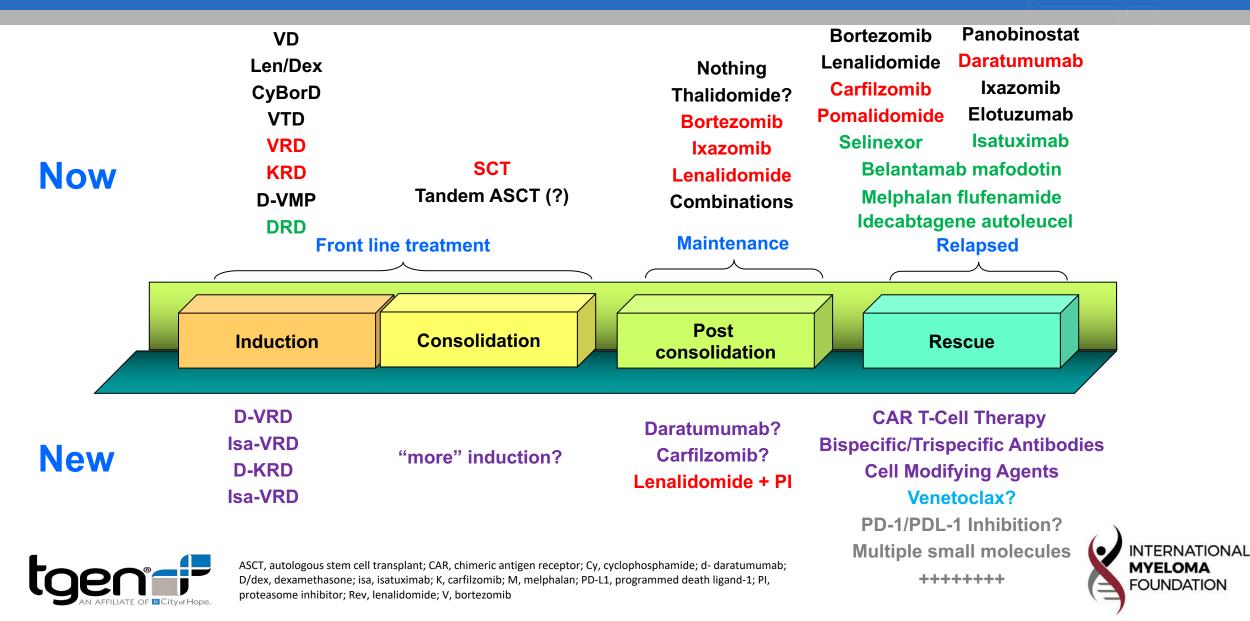
Updated results of the phase 3 OCEAN study (NCT03151811)

Trial met its primary end point of superior progression-free survival (PFS) with melflufen vs the pomalidomide combination as assessed by independent review committee (IRC; HR, 0.792; 95% CI, 0.640-0.979; P = .0311)

Key secondary end point of the trial, overall survival (OS), favored the control arm (HR, 1.104; 95% CI, 0.846-1.441) FDA alerts patients and health care professionals about clinical trial results showing an increased risk of death associated with melphalan flufenamide -CDER Alert (July 28, 2021)

ISSUE: FDA is alerting patients and health care professionals that a clinical trial (OCEAN, Study OP-103) evaluating melphalan flufenamide with dexamethasone to treat patients with multiple myeloma showed an increased risk of death.

The trial compared melphalan flufenamide with low-dose dexamethasone to pomalidomide with low-dose dexamethasone in patients with relapsed or refractory (resistant) multiple myeloma following 2-4 lines of prior therapy and in patients who were resistant to lenalidomide in the last line of therapy.


RECOMMENDATIONS:

- FDA encourages health care professionals to review patients' progress on melphalan flufenamide and discuss the risks of continued administration with each patient in the context of other treatments.
- Patients currently receiving melphalan flufenamide should also discuss with their health care
 professional the risks and benefits of receiving melphalan flufenamide.

The Evolution of Myeloma Therapy

- 68-year-old woman with p53 deletion kappa light chain myeloma
- Has 10-year history of myeloma including
 - CyBorD then ASCT, maintenance lenalidomide
 - KPD at relapse
 - Aggressive relapse with EMD and p53 deletion treated with DPACE then second ASCT
 - Next relapse treated with DPD
 - Selinexor monotherapy for 10 months with VGPR
 - Belantamab mafodotin for 6 months with PR, treatment delays due to keratopathy
 - Progressive disease with extensive marrow and EMD involvement
 - Starting cycle 2 melphalan flufenamide (MR after cycle 1)

