Therapeutic Algorithms for Patients with Treatment-Naïve Chronic Lymphocytic Leukemia (CLL)

Dr. Susan O'Brien, MD

Associate Director for Clinical Science, Chao Family Comprehensive Cancer Center; Medical Director, Sue and Ralph Stern Center for Cancer Clinical Trials and Research; UC Irvine Health, University of California

RESONATE-2 (PCYC-1115) Study Design

Patients (N=269)

- Treatment-naïve
 CLL/SLL with active
 disease
- Age ≥65 years
- For patients 65-69 years, comorbidity that may preclude FCR
- del17p excluded
- Warfarin use excluded

- ECOG status (0-1 vs. 2)
- Rai stage (III-IV vs. ≤II)

*Patients with IRC-confirmed PD enrolled into extension Study 1116 for follow-up and second-line treatment per investigator's choice (including ibrutinib for patients progressing on chlorambucil with iwCLL indication for treatment).

- Phase 3, open-label, multicenter, international study
- Primary endpoint: PFS as evaluated by IRC (2008 iwCLL criteria)^{1,2}
- Secondary endpoints: OS, ORR, hematologic improvement, safety

RESONATE-2: Long-term PFS Benefit With Ibrutinib

HR from stratified Cox regression model; artifact at the end of the curve for ibrutinib patients with del(11q) is due to the extremely low patient numbers at these time points.

- Median PFS was not reached in the ibrutinib arm
- Ibrutinib-treated patients had an 84% reduction in risk of progression or death
- At 6.5 years, 61% vs 9% of ibrutinib vs chlorambucil patients were estimated to be progression free and alive
- Ibrutinib led to a 97% reduction in risk of PD or death in patients with del(11q) and 80% for those without del(11q) vs chlorambucil
- Ibrutinib led to 89% and 80% reductions in the risk of PD or death in patients with unmutated or mutated IGHV, respectively, vs chlorambucil

ASH 2020 Abstract #2219

Long Term Efficacy of First-Line ibrutinib Treatment for CLL with 4 Years of Follow-Up in Patients with TP53 Aberrations (del(17p) or TP53 Mutation): A Pooled Analysis From 4 Clinical Trials (N=89)

- Pooled data from 4 trials, Phase 1/2 PCYC-1122e trial (NCT01500733), Phase3 ILLUMINATE (I+G), ECOG1912 (I+R), RESONATE-2 (I)
- 53% with 17p deletion, 91% TP53 mutation
- 45 with ibrutinib single agent, 44 ibrutinib with anti-CD20
- Median age 65 (33-87), 53% Rai stage III/IV, 69% unmutated IgHV

- ^aThe patient who had the longest follow-up died at 96 months, resulting in an artifact for estimating median OS. This patient's data were suppressed from the plot to correctly represent the population for which the median OS is not estimable.
- In the overall pooled population, the 4-year PFS rate was 79% the median PFS was not reached (95% CI: 67 mo to not estimable [NE];
 Figure 1A).
 - For the 47 patients who had either del(17p) only or TP53 mutation only, median PFS was not reached (95% CI: 60 mo to NE).
 - For the 11 patients who had both del(17p) and TP53 mutation, median PFS was 42.8 months (95% CI: 7 mo to NE).
- In the overall pooled population, the 4-year OS rate was 88% (Figure 1B).
- Most patients (83/89) achieved a response resulting in an ORR of 94%, including 39% who achieved a CR.

I vs IR vs BR: ALLIANCE A041202 Phase III Trial Design

A041202: PFS in ITT and in Patients With del(17p)

ECOG-E1912 IR vs FCR Study Design Primary Endpoint: PFS

Shanafelt et al. N Engl J Med. 2019 Aug 1;381(5):432-443.

E1912: IR vs FCR Progression Free Survival

ASH 2019

ELEVATE-TN Study Design

Note: After interim analysis,² PFS assessments were by investigator only

Key exclusion criteria: Significant cardiovascular disease (uncontrolled or symptomatic arrhythmias, congestive heart failure, or myocardial infarction within 6 months of screening, or any Class 3 or 4 cardiac disease as defined by the New York Heart Association Functional Classification, or QTc >480 msec at screening)

NCT02475681.

Data cutoff: September 11, 2020.

^aContinued until disease progression or unacceptable toxicity at 100 mg PO BID; ^bTreatments were fixed duration and administered for 6 cycles.

A, acalabrutinib; CIRS-G, Cumulative Illness Rating Scale-Geriatric; Clb, chlorambucil; CLL, chronic lymphocytic leukemia; ECOG PS, Eastern Cooperative Oncology Group performance status; INV, investigator; IRC, independent review committee; O, obinutuzumab; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; TN, treatment-naïve; uMRD, undetectable minimal residual disease.

1. Hallek M, et al. Blood. 2008;111:5446-56. 2. Sharman J, et al. Lancet. 2020;395:1278-91.

ELEVATE-TN: Investigator-assessed PFS Overall

^aHazard ratio was based on stratified Cox-Proportional-Hazards model; ^bP-value was based on stratified log-rank test.

A, acalabrutinib; CI, confidence interval; Clb, chlorambucil; HR, hazard ratio; NR, not reached; O, obinutuzumab; PFS, progression-free survival.

ELEVATE-TN: Investigator-assessed PFS in Patients With del(17p) and/or Mutated *TP53* OR Unmutated IGHV

^aHazard ratio was based on unstratified Cox-Proportional-Hazards model. ^b*P*-value was based on unstratified log-rank test. A, acalabrutinib; CI, confidence interval; Clb, chlorambucil; HR, hazard ratio; IGHV, immunoglobulin heavy chain variable region; NR, not reached; O, obinutuzumab; PFS, progression-free survival.

CLL14 TRIAL DESIGN

Abstract S146 VENETOCLAX-OBINUTUZUMAB FOR PREVIOUSLY UNTREATED CHRONIC LYMPHOCYTIC LEUKEMIA: 4-YEAR FOLLOW-UP ANALYSIS OF THE RANDOMIZED CLL14 STUDY

Al-Sawaf O et al. EHA 2021; Abstract S146.

Undetectable MRD by ASO-PCR	Venetoclax- Obinutuzumab	Chlorambucil- Obinutuzumab	<i>P</i> value
Number of patients, N	216	216	
Peripheral blood			
Undetectable (<10 ⁻⁴)	76 %	35 %	< 0.001
Undetectable (<10 ⁻⁴) in complete response	42 %	14 %	< 0.001
Bone marrow			
Undetectable (<10 ⁻⁴)	57 %	17 %	< 0.001
Undetectable (<10-4) in complete response	34 %	11 %	< 0.001

By ASO-PCR 3 months after completion of treatment Concordance BM vs. Blood: 86.8% for both treatment groups

CLL14: PROGRESSION-FREE SURVIVAL

Median observation time: 52.4 months

Al-Sawaf O et al. EHA 2021; Abstract S146.

CLL14: PROGRESSION-FREE SURVIVAL – TP53 status

Median observation time: 52.4 months

PROGRESSION-FREE SURVIVAL – IGHV status

Median observation time: 52.4 months

Al-Sawaf O et al. EHA 2021; Abstract S146.

CLL14: Most Frequent ≥ Grade 3 Adverse Events

	Venetoclax-obinutuzumab (N=212)		Chlorambucil-obinutuzumab (N=214)	
	During Treatment	After Treatment	During Treatment	After Treatment
Neutropenia	51.9%	4.0%	47.2%	1.9%
Thrombocytopenia	13.7%	0.5%	15.0%	0.0%
Anemia	7.5%	1.5%	6.1%	0.5%
Febrile neutropenia	4.2%	1.0%	3.3%	0.5%
Leukopenia	2.4%	0.0%	4.7%	0.0%
Pneunomia	3.3%	3.0%	2.8%	1.4%
Infusion-related reaction	9.0%	0.0%	9.8%	0.5%
Tumour lysis syndrome	1.4%	0.0%	3.3%	0.0%

Al-Sawaf O et al. EHA 2021; Abstract S146.

First Results of a Head-to-Head Trial of Acalabrutinib versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia

John C. Byrd¹; Peter Hillmen²; Paolo Ghia³; Arnon P. Kater⁴; Asher Chanan-Khan⁵; Richard R. Furman⁶; Susan O'Brien⁷; Mustafa Nuri Yenerel⁸; Arpad Illes⁹; Neil Kay¹⁰; Jose A. Garcia-Marco¹¹; Anthony Mato¹²; Javier Pinilla-Ibarz¹³; John F. Seymour¹⁴; Stephane Lepretre¹⁵; Stephan Stilgenbauer¹⁶; Tadeusz Robak¹⁷; Priti Patel¹⁸; Kara Higgins¹⁸; Sophia Sohoni¹⁸; Wojciech Jurczak¹⁹

¹The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ²St. James's University Hospital, Leeds, UK; ³Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy; ⁴Amsterdam University Medical Center, Amsterdam, on behalf of Hovon, Netherlands; ⁵Mayo Clinic Jacksonville, Jacksonville, FL, USA; ⁶Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, USA; ⁷Chao Family Comprehensive Cancer Center, University of California-Irvine, Irvine, CA, USA; ⁸Istanbul University, Istanbul, Turkey; ⁹University of Debrecen, Debrecen, Hungary; ¹⁰Mayo Clinic Rochester, Rochester, MN, USA; ¹¹Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain; ¹²University of Pennsylvania, Philadelphia, PA, USA; ¹³Moffit Cancer Center, Tampa, FL, USA; ¹⁴Peter MacCallum Cancer Centre, Royal Melbourne Hospital and University of Melbourne, Victoria, Australia; ¹⁵Centre Henri Becquerel and Normandie University UNIROUEN, Rouen, France; ¹⁶University of Ulm, Ulm, Germany; ¹⁷Medical University of Lodz, Lodz, Poland; ¹⁸AstraZeneca, South San Francisco, CA, USA; ¹⁹Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland

ELEVATE-RR: Phase 3 Randomized Non-inferiority Open-Label Trial

Patients (N=533) **Key Inclusion Criteria**

- Adults with previously treated CLL requiring therapy (iwCLL 2008 criteria¹)
- Presence of del(17p) or del(11q)^a

• ECOG PS of ≤ 2

Stratification

- del(17p) status (yes or no)
- ECOG PS (2 vs ≤1)
- No. prior therapies $(1-3 \text{ vs } \ge 4)$

Non-inferiority on IRC-assessed

Secondary endpoints (hierarchical

- Incidence of any grade atrial fibrillation/flutter
- Incidence of grade ≥3 infection
- Incidence of Richter's

Key exclusion criteria: Significant CV disease; concomitant treatment with warfarin or equivalent vitamin K antagonist; prior treatment with ibrutinib, a BCR inhibitor, (eg, BTK, PI3K, or Syk inhibitors) or a BCL-2 inhibitor (eg, venetoclax)

NCT02477696 (ACE-CL-006).

^aBy central laboratory testing; ^bcontinued until disease progression or unacceptable toxicity; ^cconducted after enrollment completion and accrual of ~250 IRC-assessed PFS events. Afib/flutter, atrial fibrillation/flutter; BCL-2, B-cell leukemia/lymphoma-2; BID, twice daily; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; CV, cardiovascular; ECOG PS, Eastern Cooperative Oncology Group performance status; IRC, independent review committee; iwCLL, International Workshop on CLL; PFS, progression-free survival; PI3K, phosphatidylinositol 3-kinase; PO, orally; QD, once daily. 1. Hallek M, et al. Blood. 2008;111:5446-56.

ELEVATE-RR

Primary Endpoint: Non-inferiority Met on IRC-Assessed PFS

Median follow-up: 40.9 months (range, 0.0–59.1).

CI, confidence interval; IRC, independent review committee; PFS, progression-free survival.

ELEVATE-RR

Events of Clinical Interest

	Any grade		Grad	le ≥3
Events, n (%)	Acalabrutinib (n=266)	lbrutinib (n=263)	Acalabrutinib (n=266)	lbrutinib (n=263)
Cardiac events	64 (24.1)	79 (30.0)	23 (8.6)	25 (9.5)
Atrial fibrillation ^{a*}	25 (9.4)	42 (16.0)	13 (4.9)	10 (3.8)
Ventricular arrhythmias ^b	0	3 (1.1)	0	1 (0.4)
Bleeding events*	101 (38.0)	135 (51.3)	10 (3.8)	12 (4.6)
Major bleeding events ^c	12 (4.5)	14 (5.3)	10 (3.8)	12 (4.6)
Hypertension ^d *	25 (9.4)	61 (23.2)	11 (4.1)	24 (9.1)
Infections ^e	208 (78.2)	214 (81.4)	82 (30.8)	79 (30.0)
ILD/pneumonitis*	7 (2.6)	17 (6.5)	1 (0.4)	2 (0.8)
SPMs excluding NMSC	24 (9.0)	20 (7.6)	16 (6.0)	14 (5.3)

Higher incidence indicated in **bold blue** for terms with statistical differences.

*Two-sided P-value for event comparisons <0.05 without multiplicity adjustment.

^aIncludes events with preferred terms atrial fibrillation and atrial flutter.

^bIncludes events with preferred terms torsade de pointes, ventricular arrhythmia, ventricular extrasystoles, ventricular fibrillation, ventricular flutter, ventricular tachyarrhythmia, and ventricular tachycardia.

^cDefined as any hemorrhagic event that was serious, grade \geq 3 in severity, or a central nervous system hemorrhage (any severity grade).

^dIncluded events with the preferred terms of hypertension, blood pressure increased, and blood pressure systolic increased.

^eMost common grade ≥3 infections were pneumonia (acalabrutinib, 10.5%; ibrutinib, 8.7%), sepsis (1.5% vs 2.7%, respectively), and UTI (1.1% vs 2.3%).

ILD, interstitial lung disease; NMSC, nonmelanoma skin cancer; SPMs, second primary malignancies; UTI, urinary tract infection.

FIRST INTERIM ANALYSIS OF ALPINE STUDY: RESULTS OF A PHASE 3 RANDOMIZED STUDY OF ZANUBRUTINIB VS IBRUTINIB IN PATIENTS WITH RELAPSED/REFRACTORY CHRONIC LYMPHOCYTIC LEUKEMIA/ SMALL LYMPHOCYTIC LYMPHOMA

Peter Hillmen, MBChB, PhD¹; Barbara Eichhorst, MD²; Jennifer R. Brown, MD, PhD³; Nicole Lamanna MD⁴; Susan O'Brien, MD⁵; Constantine S. Tam, MBBS, MD^{6,7,8,9}; Lugui Qiu, MD, PhD¹⁰; Maciej Kazmierczak, MD, PhD¹¹; Keshu Zhou, MD, PhD¹²; Martin Šimkovič, MD, PhD^{13,14}; Jiri Mayer, MD¹⁵; Amanda Gillespie-Twardy, MD¹⁶, Mazyar Shadman, MD, MPH^{17,18}; Alessandra Ferrajoli, MD¹⁹; Peter S. Ganly, BMBCh, PhD^{20,21}; Robert Weinkove, MBBS, PhD^{22,23}; Tommi Salmi, MD²⁴; Meng Ji, MD²⁴; Jessica Yecies, PhD²⁴; Kenneth Wu, PhD²⁴; William Novotny, MD²⁴; Jane Huang, MD²⁴; Wojciech Jurczak, MD, PhD²⁵

¹St James's University Hospital, Leeds, United Kingdom; ²Department of Internal Medicine, University of Cologne, Cologne, Germany; ³Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; ⁵Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; ⁶Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ⁷University of Melbourne, Parkville, Victoria, Australia; ⁸St Vincent's Hospital, Fitzroy, Victoria, Australia; ⁹Royal Melbourne Hospital, Parkville, Victoria, Australia; ¹⁰Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China; ¹¹Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland; ¹²Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China; ¹³4th Department of Internal Medicine - Hematology, University Hospital, Hradec Kralove, Czech Republic; ¹⁴Faculty of Medicine, Charles University, Prague, Czech Republic; ¹⁵Department of Internal Medicine-Hematology and Oncology, Masaryk University and University Hospital, Brno, Czech Republic; ¹⁶Blue Ridge Cancer Care, Roanoke, VA, USA; ¹⁷Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁸Department of Medicine, University of Washington, Seattle, WA, USA; ¹⁹Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²⁰Department of Haematology, Christchurch Hospital, Christchurch, New Zealand; ²¹Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; ²²Wellington Blood and Cancer Centre, Capital and Coast District Health Board, Wellington, New Zealand; ²⁴BeiGene (Beijing) Co, Ltd., Beijing, China and BeiGene USA, Inc, San Mateo, CA, USA; and ²⁵Maria Sklodowska-Curie National Institute of Oncology, Krakow, Poland

June 11, 2021 Presidential Symposium (Abstract LB1900)

ALPINE: Phase 3, Randomized Study of Zanubrutinib vs Ibrutinib in Patients With Relapsed/Refractory CLL or SLL

BID, twice daily; BTK, Bruton tyrosine kinase CLL, chronic lymphocytic leukemia; CT, computed tomography; MRI, magnetic resonance imaging; QD, once daily; R, randomized; R/R, relapsed/refractory; SLL, small lymphocytic lymphoma.

ALPINE study. Hillmen et al. LB1900 EHA 2021.

ALPINE

ORR by Investigator Assessment

	Zanubrutinib (n=207), n (%)	lbrutinib (n=208), n (%)		
Duine and a sint.	162 (78.3)	130 (62.5)		
	95% CI: 72.0, 83.7	95% CI: 55.5, 69.1		
ORR (PR+CR)	Superiority 2-sided P=0.0006 compared with pre-specified alpha of 0.0099			
CR/CRi	4 (1.9)	3 (1.4)		
nPR	1 (0.5)	0		
PR	157 (75.8)	127 (61.1)		
ORR (PR-L+PR+CR)	183 (88.4)	169 (81.3)		
PR-L	21 (10.1)	39 (18.8)		
SD	17 (8.2)	28 (13.5)		
PD	1 (0.5)	2 (1.0)		
Discontinued or new therapy prior to 1st assessment	6 (2.9)	9 (4.3)		

	del(17p) (n=24), n (%)	del(17p) (n=26), n (%)
ORR (PR+CR)	20 (83.3)	14 (53.8)

CR, complete response; CRi, complete response with incomplete bone marrow recovery; D/C, discontinuation; DOR, duration of response; NE, not evaluable; nPR, nodular partial response; ORR, overall response rate; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease.

ALPINE study. Hillmen et al. LB1900 EHA 2021.

ALPINE

PFS by Investigator Assessment

*Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events is reached. Median PFS follow-up was 14.0 months for both zanubrutinib and ibrutinib arms by reverse KM method. PFS, progression-free survival.

ALPINE study. Hillmen et al. LB1900 EHA 2021.

ALPINE

Additional AEs of Special Interest

Safety Analysis Population	Zanubrutinib (n=204), n (%)		lbrutinib (n=207), n (%)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Cardiac disorders ^a	28 (13.7)	5 (2.5)	52 (25.1)	14 (6.8)
Atrial fibrillation and flutter (key 2º endpoint)	5 (2.5)	2 (1.0)	21 (10.1)	4 (1.9)
Hemorrhage Major hemorrhage ^b	73 (35.8) 6 (2.9)	6 (2.9) 6 (2.9)	75 (36.2) 8 (3.9)	6 (2.9) 6 (2.9)
Hypertension	34 (16.7)	22 (10.8)	34 (16.4)	22 (10.6)
Infections	122 (59.8)	26 (12.7)	131 (63.3)	37 (17.9)
Neutropenia ^c	58 (28.4)	38 (18.6)	45 (21.7)	31 (15.0)
Thrombocytopenia ^c	19 (9.3)	7 (3.4)	26 (12.6)	7 (3.4)
Secondary primary malignancies Skin cancers	17 (8.3) 7 (3.4)	10 (4.9) 3 (1.5)	13 (6.3) 10 (4.8)	4 (1.9) 2 (1.0)

AE, adverse events. All events are of any grade unless otherwise specified.

^a Cardiac disorders leading to treatment discontinuation: zanubrutinib 0 patients and ibrutinib 7 (3.4%) patients.

^bIncludes hemorrhages that were serious or grade \geq 3 or CNS hemorrhages of all grades.

^c Pooled terms including neutropenia, neutrophil count decreased, and febrile neutropenia; thrombocytopenia and platelet count decreased.

ALPINE study. Hillmen et al. LB1900 EHA 2021.

Positive Topline Results Announced from the Phase 3 <u>SEQUOIA</u> Trial Comparing Zanubrutinib to Bendamustine Plus Rituximab (BR) in Patients with Treatment-Naïve Chronic Lymphocytic Leukemia

"The <u>SEQUOIA</u> trial met the primary endpoint at interim analysis, with Zanubrutinib significantly prolonging progression-free survival compared to chemoimmunotherapy, and safety and tolerability consistent with its known profile.

<u>SEQUOIA</u> is the second positive global Phase 3 trial of Zanubrutinib in chronic lymphocytic leukemia, following <u>ALPINE</u> in the relapsed or refractory setting.

With a median follow-up of 25.8 months, the SEQUOIA trial met the primary endpoint of progressionfree survival (PFS) as assessed by independent review committee (IRC), as Zanubrutinib achieved a highly statistically significant improvement in PFS compared to B+R.

In addition, the trial demonstrated a statistically significant improvement in PFS per investigator assessment, a secondary endpoint.

Zanubrutinib was also generally well-tolerated, consistent with its known safety profile."

https://www.businesswire.com/news/home/20210729006225/en/BeiGene-Announces-Positive-Topline-Results-from-Phase-3-SEQUOIA-Trial-Comparing-BRUKINSA%C2%AE-Zanubrutinib-to-Bendamustine-Plus-Rituximab-in-Patients-with-Treatment-Na%C3%AFve-Chronic-Lymphocytic-Leukemia

Conclusions

- BTKi +/- obin is an excellent continuous therapy option
 - Ibrutinib frontline PFS is 61% at 6.5 years
 - Ibrutinib produces longer PFS compared to every chemoimmunotherapy in frontline therapy
 - High-risk (del)11q patients have a favorable outcome with ibrutinib
 - In P53 aberrant patients, 4-year PFS is 79% with ibrutinib and 75% with acalabrutinib
 - Acalabrutinib +/- obin produced a 4-year PFS of 78-87% months
- Venetoclax + Obin produces a 4-year PFS of 74% with only one year of therapy; in P53 aberrant patients median PFS was 49 months
- In Elevate-RR, ibrutinib and acalabrutinib have overlapping PFS curves as assessed by IRC, less atrial fibrillation and HTN with acalabrutinib
- In ALPINE, interim analysis showed higher ORR, longer PFS and less atrial fibrillation with Zanu compared to ibrutinib, by investigator assessment

Case 2: A 71-year-old patient with CLL

A 71-year-old man presents to an oncologist after CBC done as part of preop work for knee replacement shows lymphocytosis, patient is asymptomatic PMH: kidney stones, no labs done in many years

- PE: 1-2 cm cervical nodes, 2 cm axillary nodes, shotty inguinal nodes, no hepatosplenomegaly
- CBC: ALC 48,000, Hgb 12.6, Plts 120
- Flow: consistent with CLL, CD38 negative
- FISH: 13q deletion, IGHV mutated

Case 2 (continued)

12 months later

Patient has mild fatigue, occasional night sweats

PE: 2-3 cm cervical nodes, 3-4 cm axillary nodes, 1 cm inguinal nodes, 2 cm palpable spleen

CBC: ALC 62,000, Hgb 11.8, Plts 113

Plan: continue observation

Case 2 (continued)

- 24 months from diagnosis
- Patient has increasing fatigue and night sweats
- PE: 3 cm cervical nodes, 4 cm axillary nodes, 2 cm inguinal nodes, 5 cm palpable spleen
- CBC: ALC 74,000, Hgb 11.2, Plts 101
- **Repeat FISH: 13 deletion, P53 wild type**

Plan: order abdominal CT to assess TLS risk and then start venetoclax and obinutuzumab